
Compressed Persistent Index for Efficient

Rank/Select Queries

Wing-Kai Hon1,�, Lap-Kei Lee2,��, Kunihiko Sadakane3,���,
and Konstantinos Tsakalidis4

1 Department of Computer Science, National Tsing Hua University, Taiwan
2 HKU-BGI Bioinformatics Algorithms & Core Technology Research Laboratory,

University of Hong Kong, Hong Kong
3 National Institute of Informatics, 2-1-2 Hitotsubashi, Tokyo 101-8430, Japan

4 Department of Computer Science & Engineering, HKUST, Hong Kong

Abstract. We design compressed persistent indices that store a bit vec-
tor of size n and support a sequence of k bit-flip update operations, such
that rank and select queries at any version can be supported efficiently.
In particular, we present partially and fully persistent compressed indices
for offline and online updates that support all operations in time polylog-
arithmic in n and k. This improves upon the space or time complexities
of straightforward approaches, when k = O(n

log n
), which is common in

biological applications. We also prove that any partially persistent index
that occupies O((n + k) log(nk)) bits requires ω(1) time to support the
rank query at a given version.

1 Introduction

In this paper we consider the problem of maintaining persistently a compressed
bit vector under (online and offline) bit-flip updates, such that rank and select
queries (and even updates) can be supported at any version of the bit vector.
We consider the word-RAM model of computation. Although many persistent
implementations have been devised for specific data structures, such as deques,
dictionaries, etc. [8], this is the first study of making a compressed data structure
persistent. A potential application of our data structures can be found in tempo-
ral indexing of similar DNA sequences. Many existing index implementations are
for a single DNA sequence and rely on rank/select queries over compressed bit
vectors to support pattern searching queries, e.g., FM-index [5], wavelet tree [6].
By interpreting differences between sequences as offline updates and temporal
modifications of the sequences as online updates, our structures provide the extra
capability of temporal rank/select queries over any version of the sequences.

Specifically, let B[1..n] be a bit vector of length n. For a bit c∈{0, 1} and
an integer i∈[1, n], the query operation rankc(B, i) returns the number of oc-
currences of c in the prefix B[1..i] of B, and the query operation selectc(B, i)

� W.K. Hon was supported by Taiwan NSC Grant 99-2221-E-007-123.
�� L.K. Lee was supported by Hong Kong Research Grant Council HKU 713512E.

��� K. Sadakane was supported by JSPS KAKENHI 23240002.

F. Dehne, R. Solis-Oba, and J.-R. Sack (Eds.): WADS 2013, LNCS 8037, pp. 402–414, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Compressed Persistent Index for Efficient Rank/Select Queries 403

returns the position of the i-th occurrence of c in B. In the dynamic case, the
index also supports the bit-flip(B, i) update operation that flips the bit B[i] from
1 to 0, or from 0 to 1. Yet such an index is ephemeral, meaning that an update
operation creates a new version of B without maintaining previous versions.

In this paper, we are interested in maintaining a persistent index that more-
over remembers all versions of B when updates are performed to it. In particular,
we consider two notions of persistence: A partially persistent index allows only
updates to the latest version of B and the other versions are read-only; the ver-
sions of B form a list called version list. A fully persistent index allows updates
and queries to any version of B; the versions form a tree called version tree.

The ephemeral static and dynamic data structures proposed for this problem
are all succinct (see [13,14] and references therein), namely their space usage is
as close as possible to the information-theoretic lower bound. Following the liter-
ature, for a bit vector B of length n that stores m occurrences of 1-bits, this is n
times the empirical zero-order entropy H0(B) = m

n log n
m + n−m

n log n
n−m . How-

ever, a complication arises when independent update operations are maintained
persistently, since after k updates at least log k+logn bits are required in order to
store respectively both the version number and the position of the bit flip of each
update. Therefore, we define a persistent index to be compressed when it uses
nH0(B0)+o(n)+O(k· log(kn)) bits of space, where B0 is the initial version of the
bit vector of length n. In other words, the initial bit vector is to be represented
by a succinct data structure using space close to the information-theoretic lower
bound, while we simultaneously maintain the information of each update us-
ing only O(log(kn))=O(log k+ logn) bits. Notice that after k=ω(n

logn) updates,

the O(k log(kn)) term dominates the space complexity and thus the structure
occupies ω(n) bits. Then, we can straightforwardly modify a regular persistent
binary tree [4] to support the operations in O(log n) time, using O(n) words.

Therefore we focus on “small” sequences of k=O(n
log n) updates wherein the

structure occupies O(n) bits. This is a typical scenario in biological applications:
We want to store a set of related DNA strings together, so that pattern searching
queries can be supported efficiently. We may think of one string as a modification
of the other. Here, the number k of DNA mutations is much smaller than the
length of a DNA string. For example, for a human genome k is in the order
of millions, while its length is around 3 billion nucleotides [15]. We study the
problem under two types of updates, namely offline and online updates. For
offline updates, all the k updates (and thus all the k versions of B) are known in
advance. For online updates, the updates to B arrive in an online fashion such
that an update must be performed before the next update arrives.

Previous Results. In the word-RAM model, Raman et al. [13] present a static
succinct data structure that supports rank and select queries in O(1) time.
Sadakane and Navarro [14] present the range min-max tree, a dynamic suc-
cinct data structure that supports all operations in O(log n

log logn) time. If we utilize
this structure and store every version explicitly, the space usage will degrade to
O(n) words after only k=O(log n) updates. On the other hand, if we maintain
only the information relevant to an update operation and reproduce a queried

404 W.-K. Hon et al.

Table 1. Asymptotic time bounds for persistent rank, select and bit-flip operations,
where n is the size of bit vector B, k is the number of updates/versions and ε is any
positive constant. The fully persistent index for online updates occupies nH0(B0) +
o(n) +O(k log n log(kn)) bits, while the other indices are compressed. † is amortized.

Offline updates Online updates

Partially log k
log log k

, log n(log k
log log k

) , − (log k
log log k

)2 , log n(log k
log log k

)2 , log4+ε k
persistent

Fully log2 k
log log k

, log n(log2 k
log log k

) , − log3 n , log3 n , log2 n log log n†
persistent

version by the sequence of updates that created it, then the query time has a
linear dependence on k in the worst case.

There exist generic techniques to render a data structure persistent in the
pointer machine [4], word-RAM [3,9] and external memory [1] models. It is nat-
ural to consider applying these techniques to the range min-max tree [14]. The
node splitting technique of Driscoll et al. [4] is applicable to pointer-based struc-
tures of constant-size nodes, which is not the case for the range min-max tree.
Alternatively, we can store the tree in arrays and make them persistent using
techniques in [3,9]. However, the arrays are not succinct and the update time is
only efficient in expectation.

Our Contributions. This paper presents partially and fully persistent com-
pressed indices for bit vectors that support efficient rank and select queries under
sequences of offline and online bit-flip updates (see Table 1). They improve the
space usage of straightforward approaches, as long as the number of bit flips k is
O(n

logn), where n is the bit vector size. These are the first compressed persistent
indices that support all operations in time polylogarithmic in n and k.

In Section 2 we present the partially persistent indices for offline and online
updates. They are obtained by storing the initial bit vector in a static structure
for rank and select queries [13], and maintaining the information relevant to ev-
ery update operation in a static (respectively dynamic) structure that supports
planar orthogonal range counting queries [7,11]. Then we show how to obtain the
answers of rank and select queries to a particular version without reconstructing
the queried version, but instead by interpreting them as range counting queries
appropriately. We follow a similar approach in the case of the fully persistent
index for offline updates (Section 3), where we moreover apply centroid path
decomposition (see, e.g., [2]) to the version tree in order to efficiently determine
the updates that have created a queried version. To obtain the fully persistent
index for online updates (Section 4), we first present the range sum tree, a simpli-
fication of the range min-max tree [14] that is succinct and supports rank, select
and bit-flip in O(log n) time. Then we parametrize the I/O-efficient technique
for full persistence of [1] such that it can handle nodes of non-constant size in
the word-RAM model, and we apply it to the range sum tree.

Finally, in Section 5 we prove a superconstant lower bound on the rank query
time of any partially persistent index that supports offline bit-flip updates and

Compressed Persistent Index for Efficient Rank/Select Queries 405

uses O((n+k) log(nk)) bits of space. This is in contrast to the non-persistent
setting, where there exist succinct representations of the bit vector that support
rank queries in O(1) time [13].

2 Compressed Partially Persistent Index

In this section, we present two compressed partially persistent indices for offline
and online updates, respectively. Let k be the number of updates and let n be
the size of the bit vector B. The main results are stated below.

Theorem 1. There is a compressed partially persistent index for offline updates
that occupies nH0(B0)+o(n)+O(k log(kn)) bits, and supports at any version,
rank queries in O(log k

log log k) time and select queries in O(log n log k
log log k) time.

Theorem 2. There is a compressed partially persistent index for online up-
dates that occupies nH0(B0)+o(n)+O(k log(kn)) bits, and supports at any ver-
sion, rank queries in O((log k

log log k)
2) time, select queries in O(log n(log k

log log k)
2) time

and accessing a bit in O((log k
log log k)

2) time. An update at the latest version takes

O(log4+ε k) time, for any constant ε>0.

2.1 Data Structure and Algorithm for Offline Updates

We now show Theorem 1. The compressed partially persistent index consists of
two components. The first component is a succinct data structure for the initial
bit vector B0. We use the data structure of Raman et al. [13] that occupies
nH0(B0)+o(n) bits and supports rank and select queries on B0 in O(1) time.

Lemma 1. [13] A bit vector B0[1..n] can be stored using nH0(B0) +O(n lg lgn
lgn)

bits to support in O(1) time the queries rankc(B0, i) and selectc(B0, i), for any
1≤i≤n and c∈{0, 1}.
The second component stores the information of the update for each version.
We reduce the rank and select query to the problem of planar range counting
which, given Z points on a N×N grid, asks for the number of points in a given
range [x1, x2]×[y1, y2]. We employ the data structure of JáJá et al. [7].

Lemma 2. [7] Let Z points lie on an N×N grid. Planar range counting queries
can be supported in O(logZ

log logZ) time, using O(Z logN) bits.

We define two gridsG0 and G1 of size max(k, n)×max(k, n), such that an update
on bit i of versionBt−1 from 1 to 0, which creates the new versionBt, corresponds
to the point (t, i) on grid G0 (similarly, on G1 for bit-flips from 0 to 1).1 We
maintain two data structures of Lemma 2 for the grids G0 and G1, respectively.
They occupy in total 2·O(k log(max(k, n))) = O(k log(kn)) bits. Thus, the total
space of both components is the space stated in Theorem 1.

1 For offline updates, we can determine if the bit is flipped from 0 or 1 at no cost.

406 W.-K. Hon et al.

Query Algorithm. We can answer the queries rankc(Bt, i) and selectc(Bt, i),
for any version t, position 1≤i≤n and bit c∈{0, 1}, as follows. Let countc(t , i)
be the number of points in the range [0, t]×[0, i] of Gc.

– rankc(Bt, i): First, we obtain rankc(B0, i) from the succinct data struc-
ture for B0. Then, we make two range counting queries on the data struc-
tures for grids Gc and G1−c to obtain countc(t , i) and count1−c(t , i). Then
rankc(Bt, i) = rankc(B0, i) + countc(t , i) − count1−c(t , i).

– selectc(Bt, i): selectc(Bt, i) is the smallest j∈[1, n] such that
rankc(Bt, j) = i. We find such a j, by a binary search on rankc(Bt, j).

Lemma 3. For any version t, bit position 1≤i≤n and bit c∈{0, 1}, the above
query algorithms correctly answer rankc(Bt, i) and selectc(Bt, i) in O(log k

log log k)

time and O(log n log k
log log k) time, respectively.

Proof. We prove the correctness of answering rankc(Bt, i) by induction on
the version t. When t=0, since countc(0 , i)=count1−c(0 , i)=0 , we have
rankc(Bt, i) = rankc(B0, i)+countc(0 , i)−count1−c(0 , i) = rankc(B0 , i). As-
sume that for some version t≥1, rankc(Bt−1, i) can be correctly answered, i.e.,
rankc(Bt−1, i) = rankc(B0, i)+countc(t−1 , i)−count1−c(t−1 , i). Recall that for
a partially persistent index, an update on Bt−1 (i.e., version t−1 of B) is a single
bit-flip on Bt−1, which creates the bit vector Bt. There are three cases: (1) If
a bit in position [i+1, n] is flipped, rankc does not change. Since countc and
count1−c remain the same, rankc(Bt, i) = rankc(Bt−1, i). (2) If a bit in posi-
tion [1, i] is flipped from 1−c to c, then rankc is increased by 1. We have the
point (t, i) in grid Gc, so countc(t , i) = countc(t−1 , i)+1 , while count1−c is
unchanged. Thus, rankc(Bt, i) = rankc(Bt−1, i)+1. (3) If a bit in position [1, i]
is flipped from c to 1−c, then rankc is decreased by 1. The point (t, i) is in grid
G1−c, so count1−c(t , i) = count1−c(t−1 , i)+1 while countc is unchanged. Thus,
rankc(Bt, i) = rankc(Bt−1, i)−1. Therefore, rankc(Bt, i) is correctly answered
for all version t. It takes O(1) time to obtain rankc(B0, i) and O(log k

log log k) time

to obtain both countc(t , i) and count1−c(t , i). The total time is O(log k
log log k).

The correctness of selectc(Bt, i) follows from its definition. The binary search
makes at most O(log n) queries on rankc(Bt, j) for j∈[1, n], and each takes
O(log k

log log k) time, which implies the stated time complexity. ��

2.2 Data Structure and Algorithm for Online Updates

We now consider online updates and show Theorem 2. For online updates, we will
define a new query access(Bt, i) that returns bit i in Bt. Similarly to Section 2.1,
we divide the compressed partially persistent index into two components. The
first component is the succinct data structure for the initial bit vector B0 given
in Lemma 1. The second component stores the update for each version, utilizing
a dynamic data structure for the planar range counting problem.

Specifically, for an online update on bit i of Bt−1 that creates Bt, we need to
add the point (t, i) to one of the gridsG0 andG1 in an online fashion. Nekrich [11]

Compressed Persistent Index for Efficient Rank/Select Queries 407

has presented data structures for the dynamic planar range counting problem,
where points can be added to or removed from the grid dynamically.

Lemma 4. [11] Let Z points lie on an N×N grid. Planar range counting queries
can be supported in O((logZ

log logZ)2) time, and updates in O(log4+ε Z) time, for any

constant ε>0, using O(Z logN) bits.

In the case of online updates, the maximum version number, denoted by K, is
not fixed. We can set K to some constant and double it, whenever the current
version number k is equal to K. In this way, K is always at most 2k, and thus a
version number can be represented in O(log k) bits. Similarly to Section 2.1, we
define two grids G0 and G1 of size max(K,n)×max(K,n), such that an update
on bit i of Bt−1 from 1 to 0 (that gives Bt) corresponds to the point (t, i) on
grid G0 (similarly, on G1 for 0-to-1 bit-flips). Here, to determine if an update is
a bit-flip from 0 to 1 or vice versa, we need to call access(Bt−1, i).

We maintain two data structures of Lemma 4 for the grids G0 and G1, respec-
tively, which occupy 2·O(k log(max(K,n))) = O(k log(kn)) bits of space in total.
Thus, the total space of both components is the space stated in Theorem 2.

Query Algorithm. For any version t, position 1≤i≤n and bit c∈{0, 1}, we an-
swer rankc(Bt, i) and selectc(Bt, i) in the same way as in Section 2.1. We answer
access(Bt, i), as follows. First, we obtain access(B0, i), which is the value of B0[i],
from the succinct data structure for B0. We make four planar range counting
queries on gridsG0 and G1 to obtain count0 (t , i−1), count0 (t , i), count1 (t , i−1)
and count1 (t , i). Then we report access(Bt, i) to be

access(B0, i) + (count1 (t , i)−count1 (t , i−1)) − (count0 (t , i)−count0 (t , i−1)) .

The correctness of the rank and select queries follows directly from Lemma 3.
Their time complexities are blown up by a factor of O(log k

log log k), because we use
the data structure of Lemma 4, instead of that of Lemma 2. Thus, the following
lemma suffices to complete the proof of Theorem 2.

Lemma 5. For any version t and bit position 1≤i≤n, the above query algorithm
correctly answers access(Bt, i) in O((log k

log log k)
2) time. Furthermore, an update at

the latest version takes O(log4+ε k) time, for any constant ε>0.

Proof. Note that count1 (t , i)−count1 (t , i−1) is the number of times bit i is
flipped from 0 to 1 up to version t, while count0 (t , i)−count0 (t , i−1) is the
number of times bit i is flipped from 1 to 0 up to version t. Therefore, their
difference is equal to the change of bit i from B0 to Bt, and the correctness of
access(Bt, i) follows. The access query involves a call to access(B0, i) that takes
O(1) time, and four planar range counting queries that take O((log k

log log k)
2) time,

which implies the time complexity stated in Theorem 2.
For an online update on bit i of Bt−1 that creates Bt, we need a query on

access(Bt−1, i) to determine which of grid G0 or G1 to add the point (t, i) to.
This takes O((log k

log log k)
2) time. By Lemma 4, adding the point (t, i) to a grid

takes O(log4+ε k) time. Thus, each update takes O(log4+ε k) time in total. ��

408 W.-K. Hon et al.

3 Compressed Fully Persistent Index for Offline Updates

This section considers offline updates and presents a compressed fully persistent
index. Let k be the number of updates and let n be the size of the bit vector B.

Theorem 3. There is a compressed fully persistent index for offline updates
that occupies nH0(B0)+o(n)+O(k log(kn)) bits, and supports at any version,

rank queries in O(log2 k
log log k) time and select queries in O(log n log2 k

log log k) time.

The fully persistent index allows updates to any version. A version Bt is created
by flipping a single bit in Bp for some p<t. Let T be the version tree.

Centroid Path Decomposition. We decompose the version tree T using cen-
troid path decomposition (see, e.g., [2]), as follows. For any internal node u, let v
be the child of u with the largest number of leaves in its subtree (ties are broken
arbitrarily). We refer to edge uv as a core edge, and to non-core edges as side
edges. A centroid path C is a maximal path connecting consecutive core edges.
The root of C, denoted by r(C), is the top-most node of C. We denote by Δ(T),
the set of all centroid paths in T . The following property is well-known.

Property 1. Let T be a tree of k nodes with a centroid path decomposition. The
path from the root of T to any node v traverses at most log k centroid paths.

Data Structure and Algorithm. The compressed fully persistent index con-
sists of three components. The first component is the succinct data structure for
the initial bit vector B0 given in Lemma 1. The second component stores the
version tree T and three pieces of auxiliary information for each node in T . In
particular, for each version v, we maintain the version number p(v) of its parent.
We also assign a node label �(v) from 1 to k to each node v in ascending order
of their depth, such that the node labels are strictly increasing along the path
from the root of T to any node v of T . Finally, every node v is in some centroid
path C, and we define f(v) to be the root r(C) of C. We can store p(v), �(v) and
f(v) in three arrays of size k, which allows O(1) time access, given the version
number v. In total, the second component takes O(k log(kn)) bits of space.

The third component stores the information of the update for each version,
using the data structure for the planar range counting problem of Lemma 2,
as follows. For each centroid path C, we define two grids G0(C) and G1(C)
of size max(k, n)×max(k, n). Consider each update on a version p that creates
a version t>p, where t∈C. If the update flips bit i of Bp from 1 to 0, there
is a point (�(t), i) on grid G0(C) (similarly, on G1(C) for 0-to-1 bit-flips). For
each centroid path C, we maintain two structures of Lemma 2 for the grids
G0(C) and G1(C), respectively. These data structures are associated with the
node r(C). For all centroid paths, this takes 2·∑C∈Δ(T) O(|C| log(max(k, n))) =

2·O(k log(max(k, n))) = O(k log(kn)) bits of space. Thus, the total space of all
components is the space stated in Theorem 3.

Query Algorithm. Consider any version t, position 1≤i≤n and bit c∈{0, 1}.
We answer the query on selectc(Bt, i) by using rankc in the same way as in

Compressed Persistent Index for Efficient Rank/Select Queries 409

Section 2.1. We now give the query algorithm for answering rankc(Bt, i). Let
countc(C , t , i) be the number of points in the range [0, t]×[0, i] of Gc(C).

– rankc(Bt, i): First, we obtain rankc(B0, i) from the succinct data structure
for B0. Then, we consider all updates along the path from the root of T to
version t. Let U = (u0=0, u1, u2, . . ., ux−1, ux=t) be the path that contains x
versions. Suppose U traverses y centroid paths in the order of C1, C2, . . ., Cy.
The roots of all these y centroid paths must be in U ; we denote them by
uz(1), uz(2), . . ., uz(y). Note that uz(1) = u0 = 0.

Let count ′c =
∑y−1

j=1 countc(Cj , �(uz(j+1)−1), i)+countc(Cy , �(t), i), and let

count ′1−c =
∑y−1

j=1 count1−c(Cj , �(uz(j+1)−1), i)+count1−c(Cy , �(t), i). We
compute them as follows. Since t=ux is in Cy, the root of Cy is uz(y)=f(t).
Since uz(y)−1 is in Cy−1, the root of Cy−1 is uz(y−1)=f(uz(y)−1). We repeat
the above to identify the roots of all the y centroid paths, and make 2y range
counting queries on grids Gc(Cj) and G1−c(Cj) for 1≤j≤y, respectively, to
compute the counts. Finally, rankc(Bt, i) = rankc(B0, i)+count ′c−count ′1−c.

To establish Theorem 3, it suffices to prove the correctness and time complexity
for the rank query, since for select they follow similarly to Lemma 3.

Lemma 6. For any version t, position 1≤i≤n and c∈{0, 1}, the above query

algorithm correctly answers rankc(Bt, i) in O(log2 k
log log k) time.

Proof. It suffices to prove that counter count ′c (resp. count ′1−c) counts correctly
the updates along the path U that flip the bits in position [1, i] from 1−c to c
(resp. from c to 1−c). Since each such flip contributes 1 (resp. -1) to rankc(Bt, i),
rankc(Bt, i) = rankc(B0, i)+count ′c−count ′1−c will follow.

Recall that count ′c =
∑y−1

j=1 countc(Cj , �(uz(j+1)−1), i)+countc(Cy , �(t), i).
For convenience, we set z(y+1) = t+1. We focus on the path Uj = (uz(j), uz(j)+1,
. . . , uz(j+1)−1) for some 1≤j≤y. Then Uj⊆Cj . By the definition of node la-
bels, we have that �(uz(j))<�(uz(j)+1)<· · ·<�(uz(j+1)−1) and all other nodes
in Cj have a node label larger than �(uz(j+1)−1). Thus, on the grid Gc(Cj),
countc(Cj , �(uz(j+1)−1), i) correctly counts the updates along the path Uj that
flip bits in position [1, i] from 1−c to c. Summing over all j, it follows that
count ′c =

∑y
j=1 countc(Cj , �(uz(j+1)−1), i) correctly counts such bit flips made

by the updates along the path U . The correctness of count ′1−c follows similarly.
Regarding time complexity, it takes y·O(1) = O(y) time to identify the roots

of the y centroid paths. By Lemma 2, it takes 2y·O(log k
log log k) = O(y· log k

log log k) time
for the 2y range counting queries. By Property 1, the number of centroid paths

in U is y=O(log k). Therefore, the total time complexity is O(log2 k
log log k). ��

4 Compressed Fully Persistent Index for Online Updates

This section considers online updates and presents a compressed fully persistent
index. Let k be the number of updates and let n be the size of the bit vector B.

410 W.-K. Hon et al.

Theorem 4. There is a compressed fully persistent index for online updates that
occupies nH0(B0)+o(n)+O(k logn log(kn)) bits, and supports at any version,
rank, select and access queries in O(log3 n) worst case time. An update at any
version takes O(log2 n log log n) amortized time.

Overview. To show Theorem 4, we first present the range sum tree, a simpli-
fication of the range min-max tree of Sadakane and Navarro [14], that supports
rank, select and bit-flip in O(log n) time. Then we make it fully persistent us-
ing a generic method from [1], which is designed for the I/O model and can be
applied to the word-RAM model with a modest blow-up on time.

Range Sum Tree. The range sum tree is a balanced binary tree T , where each
node corresponds to a range [i, j] of B and it stores i, j and a value e(i, j) that
represents the number of 1’s in B[i, j]. We divide the bit vector B into segments
of length L= log2 n and each leaf of T corresponds to the range of a segment.
Let [iz, jz] be the range of a node z. An internal node z with left child u and
right child v has the range [iu, jv] and e(iz, jz) = e(iu, ju)+e(iv, jv). Therefore,
the number of nodes in T is O(n

log2 n
) and each node needs O(log n) bits, which

sums up to O(n
logn) bits of space.

Each leaf node also stores the bits in B[i, j] for the query, as follows. We further
divide the length-L segment into 2 logn sub-segments of length t= log n

2 . A leaf
node has 2 logn extra fields, each representing a sub-segment succintly [13]: Each
sub-segment with x bits belongs to a class x of t-bitmaps. E.g., if t=2, class 0 is
{00}, class 1 is {01, 10} and class 2 is {11}. As class x contains

(
t
x

)
elements, we

can use �log (tx
)	 bits and �log(t+1)	 bits respectively to represent its element

index within the class and the class identifier. As shown in [13], all sub-segments
take at most nH0(B)+O(n

logn) bits of space.
Let Px,y be the length-t sub-segment represented by element y of class x. We

maintain three universal tables Urank , Uselect,0 and Uselect,1 for each class, such
that given class x, element index y and an integer 0≤i≤t, Urank (Px,y, i) returns
the number of 1’s in Px,y[1, i]; and Uselect,0(Px,y, i) (resp. Uselect,1(Px,y, i)) re-
turns the smallest index j such that Px,y[1, j] contains i 1’s (resp. i 0’s). These
tables need 3·O(2t·t· log t) = O(

√
n logn log logn) = o(n) bits. Thus, the range

sum tree takes nH0(B)+2·O(n
log n)+o(n) = nH0(B)+o(n) bits in total.

Query Algorithm.We traverse T to answer a query on any bit position 1≤i≤n.
Initially, we set z to be the root of T . Note that [iz, jz]=[1, n]. We traverse T
depending on whether z is an internal node or leaf node as follows.

– rank1(B, i): We count the number of 1’s in [1, i] using a counter count1
initiated to 0. (1) z is an internal node with left child u and right child v: If
i∈[iv, jv], we add e(iu, ju) (i.e., the number of 1’s in [iu, ju]) to count1 , and set
z=v. If i∈[iu, ju], we set z=u. Then we repeat this procedure. (2) z is a leaf
node: Let (S1, S2, . . ., S2 logn) be the sub-segments of z. Suppose position i
is in Sj . We make j queries to the universal tables Urank to determine the
number of 1’s in S1, S2, . . ., Sj−1 and Sj up to position i and add them to
count1 . Finally, we return count1 that is clearly the number of 1’s in [1, i].

Compressed Persistent Index for Efficient Rank/Select Queries 411

– select1(B, i): We find the i-th 1-bit using a variable j (initiated to i) as
follows. (1) z is an internal node with left child u and right child v: If
j>e(iu, ju), the i-th 1-bit is not in [iu, ju]. We decrease j by e(iu, ju) and set
z=v. If j≤e(iu, ju), the i-th 1-bit is in [iu, ju] and we set z=u. Then we repeat
this procedure. (2) z is a leaf node: If j>e(iz, jz), the i-th 1-bit does not exist
and we simply return select1(B, i)=0. Otherwise, let (S1, S2, . . ., S2 logn) be
the sub-segments of z. We make at most 2 logn queries to the universal
table Urank (S�, t), where t= logn

2 , from �=1, 2, . . ., until we find an x, such
that

∑x
�=1 Urank (S�, t)≥j.2 Then the i-th 1-bit is in Sx. We make a query

on Uselect,1(Sx, j−
∑x−1

�=1 Urank (S�, t)) to obtain the position of B’s i-th 1-

bit in Sx. We return select1(B, i) = iz+(x−1)·(log n
2)−1+Uselect,1(Sx, j −

∑x−1
�=1 Urank (S�, t)).

Note that the number of 0’s in a range [i, j] is equal to (j−i+1)−e(i, j). Thus, we
can answer rank0(B, i) and select0(B, i) in a similar way, where for select0(B, i)
we query Uselect,0 instead of Uselect,1. To answer access(B, i), we traverse the path
from the root to the leaf z containing B[i], and identify the sub-segment Sx in z
that contains B[i], as described for rank1(B, i). Let B[i] be bit j of Sx. We obtain
B[i] = Urank (Sx, j)−Urank (Sx, j−1) with two queries on Urank .

Regarding query time, each query takes O(1) time for an internal node, and
O(log n) time for a leaf node, since we make O(logn) queries on universal ta-
bles, where each takes O(1) time. Since a path contains O(log(n

log2 n
))=O(log n)

internal nodes and a leaf node, a query takes O(log n·1+ log n) = O(log n) time.

Updating Bit i. To update bit i, we first make a query on access(B, i) to locate
the leaf node z that contains B[i]. We update the sub-segment with B[i] to a
new sub-segment in O(log n) time, since the sub-segment is of length t = log n

2 .
Then, we update each node u on the path from the root to z, as follows. If the
update flips B[i] from 0 to 1, we increase e(iu, ju) by 1; otherwise, we decrease
it by 1. The update time is O(log(n

log2 n
)) = O(log n).

Lemma 7. The range sum tree for a length-n bit vector B is a balanced search
tree, where each internal node contains O(1) fields and each leaf node contains
O(log n) fields. It occupies nH0(B)+o(n) bits and supports access, rank and se-
lect queries and updating a bit of B in O(log n) time by accessing O(log n) in-
ternal nodes and a leaf node (and for update, modifying a field in each of them).

Fully Persistent Range Sum Tree. We apply on the range sum tree T the
following result of [1] for the I/O model with disk block size of B words.

Lemma 8. [1] Let T be a pointer-based ephemeral data structure that supports
queries in O(q) worst case I/Os and where updates make O(u) modifications to T
in the worst case. Given that every node of T occupies at most O(1) blocks and
has O(1) maximum in-degree, T can be made fully persistent such that a query to
a particular version is supported in O(q) worst case I/Os, and an update to any

2 Such an x exists, because j≤e(iz, jz)=
∑2 log n

�=1 Urank(S�, t).

412 W.-K. Hon et al.

version is supported in O(u logB) amortized I/Os. After performing a sequence
of k updates, the fully persistent structure occupies O(u· kB) blocks of space.

In the scheme of [1] for the above lemma, each I/O can be simulated by
O(B) RAM operations, so that the time complexity in the word-RAM model
is O(B) times that in the I/O model. We set the block size B=logn, such that
a block contains log n words and each (internal or leaf) node of T occupies
O(1) blocks. Since all algorithms are implemented only by top-down traversals
of T , the tree can be implemented such that each node has in-degree 1. We set
q=O(log n), since accessing an internal node takes O(1) time and a leaf node
takes O(log n) time. By Lemma 7, the rank, select and access queries access
O(log n) nodes and thus take O(log n·q·B)=O(log3 n) time. We set u=O(log n),
since by Lemma 7, an update makes O(log n) modifications to T . Thus, the up-
date time is O(u·B· logB) = O(log2 n log log n) amortized. The fully persistent
structure occupies O(log n· kB) blocks = O(log n·k) words = O(log n·k· log(kn))
bits, since the word size is O(log(kn)). This gives Theorem 4.

5 Lower Bound

In this section, we show that even for offline updates, a partially persistent index
for a length-n bit vector B that occupies O((n+k) log(kn)) bits, where k is the
number of updates, must answer the rank query at any version in ω(1) time.

Our proof is based on a reduction of the problem of planar dominance count-
ing, which is defined as follows: on a grid [1, N]×[1, N] with N points, a dom-
inance counting query (x, y) asks for the number of points in a given range
[0, x]×[0, y]. Pǎtraşcu [12] has shown that any static data structure of size O(N)
words must take Ω(lgN

lg lgN) time to answer a dominance counting query.

Theorem 5. Let B be a length-n bit vector, where k offline bit-flip updates have
been performed. A partially persistent index for B that occupies O((n+k) log(kn))
bits of space must answer the rank query at any version in ω(1) time.

Proof. Suppose for the sake of contradiction, the partially persistent index, de-
noted by I, can answer the rank query at any version in O(1) time. We show how
to use I in combination with y-fast tries [16] to answer a dominance counting
query on a grid G=[1, n]×[1, n] with n points in O(log log n) time, using only
O(n) words of space. This contradicts the lower bound of Ω(lgn

lg lgn) time for

dominance counting queries [12] and thus proves the theorem.
Based on the n points on G, we construct a bit vector B[1..n] and n offline

bit-flip updates, as follows. All n bits in B are initially 0, which is the initial
version B0 of B. For each point (i, j) on G, suppose that among all the n points, i
is the p-th smallest x-coordinate and j is the q-th smallest y-coordinate, where
ties are broken arbitrarily. We construct an update operation that flips the p-bit
of Bq−1 from 0 to 1 to create version Bq.

We maintain the partially persistent index I for B that uses O(2n logn2) =
O(n log n) bits, i.e., O(n) words. In addition, we maintain a y-fast trie for all the

Compressed Persistent Index for Efficient Rank/Select Queries 413

distinct x-coordinatesX andanother y-fast trie for all the distinct y-coordinatesY .
These two y-fast tries occupyO(|X |+|Y |)=O(2n)=O(n) words and allowus, given
a dominance counting query (a, b), to determine in O(log logn) time the predeces-
sor predX(a) of a in X (i.e., the largest element c∈X such that c≤a) and the pre-
decessor predY (b) of b in Y . For each element c∈X (resp. c∈Y), we also store the
number rX(c) (resp. rY (c)) of points on G whose x- (resp. y-) coordinates are at
most c. This requires O(n) words.

To answer the dominance counting query (a, b), it is not hard to see that we
can ask I for the rank of rX(predX(a)) in version rY (predY (b)) of B. The query
time is O(log log n) and the space is O(n) words, completing the proof. ��

6 Conclusion

In this paper we presented the first efficient compressed persistent indices for
bit vectors that support temporal rank/select queries and independent bit-flip
updates. Extending our results to handle general alphabets and/or correlated
updates (that exhibit a smaller information-theoretic space lower bound) may
find important applications in computational biology [10] and other fields. We
leave as open the problem of designing a compressed fully persistent index for
online updates. The rest of our structures can be improved by use of succinct
(static or dynamic) data structures for planar range counting.

References

1. Brodal, G.S., Sioutas, S., Tsakalidis, K., Tsichlas, K.: Fully persistent B-trees. In:
Proc. SODA, pp. 602–614 (2012)

2. Cole, R., Gottlieb, L.A., Lewenstein, M.: Dictionary matching and indexing with
errors and don’t cares. In: Proc. STOC, pp. 91–100 (2004)

3. Dietz, P.F.: Fully Persistent arrays. In: Dehne, F., Santoro, N., Sack, J.-R. (eds.)
WADS 1989. LNCS, vol. 382, pp. 67–74. Springer, Heidelberg (1989)

4. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures
persistent. J. Comput. Syst. Sci. 38(1), 86–124 (1989)

5. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:
Proc. FOCS, pp. 390–398 (2000)

6. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes.
In: Proc. SODA, pp. 841–850 (2003)

7. JáJá, J., Mortensen, C.W., Shi, Q.: Space-efficient and fast algorithms for multidi-
mensional dominance reporting and counting. In: Fleischer, R., Trippen, G. (eds.)
ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)

8. Kaplan, H.: Persistent data structures. In: Handbook on Data Structures and Ap-
plications, ch. 31, pp. 31-1–31-26. CRC Press (2004)

9. Kopelowitz, T.: On-line indexing for general alphabets via predecessor queries on
subsets of an ordered list. In: Proc. FOCS, pp. 283–292 (2012)

10. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comp. Biology 17(3), 281–308 (2010)

11. Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. Comput.
Geom. 42(4), 342–351 (2009)

414 W.-K. Hon et al.

12. Pǎtraşcu, M.: Lower bounds for 2-dimensional range counting. In: Proc. STOC,
pp. 40–46 (2007)

13. Raman, R., Raman, V., Satti, S.R.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4), 43 (2007)

14. Sadakane, K., Navarro, G.: Fully-functional succinct trees. In: Proc. SODA, pp.
134–149 (2010)

15. The 1000 Genomes Project Consortium. A map of human genome variation from
population-scale sequencing. Nature 467(7319), 1061–1073 (2010)

16. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space Θ(n).
Information Processing Letters 17(2), 81–84 (1983)

	Compressed Persistent Index for EfficientRank/Select Queries
	1 Introduction
	2 Compressed Partially Persistent Index
	2.1 Data Structure and Algorithm for Offline Updates
	2.2 Data Structure and Algorithm for Online Updates

	3 Compressed Fully Persistent Index for Offline Updates
	4 Compressed Fully Persistent Index for Online Updates
	5 Lower Bound
	6 Conclusion
	References

