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Abstract—Energy usage has been an important concern in recent research on online job scheduling, where processors are allowed to

vary the speed dynamically so as to save energy whenever possible. Providing good quality of service such as response time (flowtime)

and conserving energy are conflicting objectives. An interesting problem for scheduling is how to optimize an economic trade-off of

flowtime and energy. To this end, the past two years have witnessed significant progress in the single-processor setting, and online

algorithms with performance close to optimal have been obtained. In this paper, we extend the study of optimizing the trade-off between

flowtime and energy to the multiprocessor setting. We devise and analyze a simple nonmigratory online algorithm that makes use of the

classified round-robin (CRR) strategy to dispatch jobs. Even in the worst case, its performance is within OðlogP Þ times of the optimal

migratory offline algorithm, where P is the ratio of the maximum job size to the minimum job size. Technically speaking, this online

result stems from a nontrivial solution to an offline problem of eliminating migration, which is also interesting by itself.

Index Terms—Analysis of algorithms and problem complexity, sequencing and scheduling, online computation, energy-aware systems.

Ç

1 INTRODUCTION

ENERGY consumption has become a key issue in the
design of modern processors. A popular technology to

reduce energy usage is dynamic speed scaling (see, e.g., [10],
[21], and [34]), where the processor can vary its speed
dynamically. Running a job at a slower speed is more
energy efficient, yet it takes longer time and may affect the
performance. In the past few years, a lot of effort has been
devoted to revisiting classical scheduling problems with
dynamic speed scaling and energy usage taken into
consideration (e.g., [1], [2], [7], [8], [11], [12], [23], [31], and
[36]; see [22] for a survey). The challenge basically arises
from the conflicting objectives of providing good “quality of
service” (QoS) and conserving energy.

One commonly used QoS measurement for scheduling
jobs on a processor is the average response time, or
equivalently, the total flowtime (the latter is more popular
in the literature of online scheduling). In this paper, we
investigate online scheduling algorithms for multiproces-
sors, which take flowtime and energy usage into considera-
tion. Details are given as follows:

1.1 Models and Previous Work

Jobs with arbitrary size are released at unpredictable times.
A scheduling algorithm has to select, at any time, a job to
execute. Preemption is allowed, and a preempted job can be
resumed at the point of preemption. The flowtime (or
response time) of a job is the time elapsed since it arrives
until it is completed.

Online algorithms and competitive analysis. Both off-
line and online scheduling have been studied extensively.
An offline algorithm knows the complete job sequence in
advance, which is not possible in many practical problems.
An online algorithm, in contrast, makes scheduling decisions
based on jobs released so far and thus is more applicable to
reality. We analyze the performance of online algorithms
using competitive analysis, i.e., the worst case comparison
between an online algorithm and the optimal offline
algorithm. Formally speaking, given a cost function to
minimize, such as total flowtime, an online algorithm is
said to be c-competitive if for any input, the cost incurred is
never more than c times the cost required by an optimal
offline algorithm. Note that the competitive ratio is the worst
case performance guarantee, and it does not depend on job
distribution. For more details about competitive analysis,
Borodin and El-Yaniv’s book [9] is a good reference.

Speed models. The theoretical study of energy-efficient
scheduling was initiated by Yao et al. [36]. They studied a
model in which the processor incurs an energy of s� per
unit time when running at speed s, where � is typically 2
or 3 [10], [27]. In the infinite speed model [36], a processor can
run at any speed between 0 and1. A more realistic model,
known as the bounded speed model [12], imposes a bound T

on the maximum allowable speed. In this paper, we focus
on the bounded speed model.

Objective: flowtime and energy. The objectives flow-
time and energy are orthogonal. To better understand the
trade-off between them, Albers and Fujiwara [1] proposed
combining the dual objectives into a single one of minimiz-
ing the sum of total flowtime and energy.1 The intuition is
that, from an economic viewpoint, flowtime and energy can
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1. Sum of objectives are common in biobjective optimizations, e.g., TCP
acknowledgment problem [18], [25] with sum of acknowledgment cost and
acknowledgment delays as objective, network design problem [20] with
total hardware and QoS costs, and the facility location problem [17] with
facility installation and client service costs.
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each be measured in money terms; thus, it can be assumed
that users are willing to pay one unit of energy to reduce a
certain units (say, � units) of flowtime. A large value of �
means that energy is more of a concern; on the other hand,
if � ¼ 0, the problem reduces to the traditional flowtime
scheduling. In general, the objective is to optimize the total
flowtime plus � times the energy used. Oð1Þ-competitive
algorithms have been proposed in both infinite speed [1],
[8] and bounded speed model [6]. In the latter, a processor
with maximum speed ð1þ �ÞT is required (more details in
Section 1.3).

Multiprocessor scheduling for flowtime and energy.

When energy was not a concern, flowtime scheduling on
multiprocessors running at fixed speed was an interesting
problem by itself (e.g., [3], [4], [14], [15], [26], and [29]). In
this setting, jobs remain sequential in nature and cannot be
executed by more than one processor in parallel. Different
online algorithms have been proposed for the migratory,
nonmigratory, and immediate dispatching models, respec-
tively. All of them are �ðlogP Þ-competitive, where P is the
ratio of the maximum job size to the minimum job size.

In this paper, we extend the study of minimization of
flowtime plus energy to the setting with m � 2 processors.
This extension is not only of theoretical interest, as modern
processors adopt multicore technology (dual core and quad
core are getting common). A multicore processor is
essentially a pool of parallel processors. To make our work
more meaningful, we aim at schedules that do not require
job migration among processors. In practice, migrating jobs
requires overheads and is avoided in many applications.

We defer the discussion of some practical considerations
to Section 8, including some other energy models consid-
ered in the literature. We show that the model we adopted,
though simpler, is general enough so that our results can be
adapted to many other models easily.

1.2 New Results and Ideas

The online algorithm CRR-SB and its performance. To
balance the energy usage of multiple processors, it is
natural to consider some kind of round-robin strategy to
dispatch jobs. Typical examples include IMD2 for flowtime
scheduling [3] and CRR for energy-efficient deadline
scheduling3 in the infinite speed model [2]. The main
contribution of this paper is to apply CRR (classified round
robin) for optimizing flowtime plus energy and give a
nontrivial analysis of its performance. Unlike [2], we apply
CRR according to the job size rather than the job density.
Specifically, we define the dispatching policy of CRR based
on the following notion of classes. A job is said to be in class
k if its size is in the range ð2k�1; 2k�. Intuitively, CRR handles
different classes independently; jobs of the same class are
dispatched (upon their arrival) to the m processors using a
round-robin strategy. Note that CRR is similar to IMD in the
sense that both algorithms divide jobs into classes according

to their size, but IMD is slightly more complicated in job
dispatching. For minimizing flowtime alone, IMD is known
to be OðlogP Þ competitive [3]; yet, no similar result is
known for CRR.

Jobs that are dispatched by CRR to the same processor
can be scheduled by using an algorithm that minimizes
flowtime plus energy on a single processor. In particular, we
schedule jobs using the online algorithm Shortest Remain-
ing Processing Time (SRPT) and scale the speed based on
the Bansal-Pruhs-Stein (BPS) algorithm [8]. Roughly speak-
ing, the speed of each processor would be determined
dynamically as the total fractional weight of jobs raised to
the power of 1=�, where the fractional weight of a job is
simply the unfinished fraction of the work of the job.

In analyzing the performance of the resulting algo-
rithm, denoted as CRR-SRPT-BPS or CRR-SB in short, we
focus on the bounded speed model and compare it against
the optimal migratory offline algorithm using maximum
speed T . We list below the competitiveness of CRR-SB for
minimizing flowtime plus energy:

. For jobs restricted to power-of-2 size, CRR-SB
using processors with maximum speed T is
Oð� logP Þ-competitive.

. For jobs of arbitrary size, CRR-SB still has a similar
performance when using processors with slightly
higher maximum speed. Precisely, given any � > 0,
CRR-SB using processors with maximum speed
ð1þ �ÞT is ðOð� log1þ� P Þ þ 2�ð1þ �Þ�Þ-competitive.

Our analysis can also be applied to the infinite

speed model, though it is of less interest. In this case,

CRR-SB is ðOð� logP Þ þ �2�Þ-competitive, where � ¼
maxf2; 2ð��1Þ

��ð��1Þ1�1=ð��1Þg < 2�.

Lower bound. For minimizing flowtime on multipro-
cessors running at a fixed speed, Leonardi and Raz [26]
showed that any online scheduling algorithm (without extra
speed) is �ðlogP Þ-competitive. This lower bound can be
easily adapted to the problem of minimizing flowtime plus
energy in the bounded speed model (see Section 7). That is,
any online algorithm using speed scaling with maximum
speed T is �ðlogP Þ-competitive for minimizing flowtime
plus energy. This lower bound remains valid even if jobs
are all power-of-2 size (because the original proof in [26]
uses only such jobs). In other words, CRR-SB when
scheduling jobs of power-of-2 size achieves the best possible
performance (up to a constant factor).

Eliminating migration offline. The analysis of CRR-SB
relies on an offline result to eliminate migration, which is an
interesting result on its own. The cost of eliminating
migration has been investigated in the classical setting such
as deadline scheduling [13], [24] and flowtime scheduling
[3], [4]. Our work extends along this line to take energy
consumption into consideration. Precisely, given a migra-
tory schedule S on m processors, we show how to construct
a nonmigratory schedule N such that the flowtime plus
energy incurred by N is at most ðOðlogP Þ þ 2�Þ times of S.
More importantly, N dispatches jobs to processors in the
same way as CRR. The last property is the key for deriving
the online result and is difficult to attain. In fact, we can
exploit existing results on flowtime [3], [4] to eliminate
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2. IMD divide jobs into classes according to their sizes and dispatches a
job to the processor with the smallest accumulated work of jobs of the
corresponding class.

3. In [2], CRR divides jobs into classes according to their “density”
(defined as the job size divided by the difference between deadline and
release time) and dispatch jobs of the same class to the processors in a
round-robin fashion.



migration with energy preserved; yet, it is difficult to have
the resulting schedule to always follow a certain online
algorithm to dispatch jobs.

The above offline result stems from a transformation of
an arbitrary job set to an “m-parallel” job set, in which jobs
are partitioned into batches, each with m jobs of identical
release time and size. We then observe that for an m-parallel
job set, any migratory m-processor schedule can be
transformed into a “trivially nonmigratory” schedule, de-
fined as any schedule in which all processors have
identical schedules and at any time, execute respectively
the m different jobs in a batch. The whole argument
involves three transformations, exploiting tricks that allow
us to modify the release times backward and forward, while
constructing charging schemes to account for the shuffling
of job schedules required.

Organization of paper. In the remainder of this section,
we review some related work. In Section 2, we give some
definitions necessary for discussion. In Section 3, we
present the online algorithm CRR-SB. Section 4 gives an
overview of the transformations involved in eliminating
migration in offline scheduling. In Section 5, we investigate
the cost of eliminating migration in a schedule of parallel
jobs. In Section 6, we do the same for any job set, which also
completes the analysis of CRR-SB. Then, we give the
�ðlogP Þ lower bound in Section 7. Finally, in Section 8,
we show that our results can be applied to other energy
models.

1.3 Related Work

In the traditional flowtime scheduling of single processor, the
processor is running at a fixed speed (and thus, energy is not
a concern). The objective of a scheduler is simply to minimize
the total flowtime of all jobs, and the online algorithm
SRPT (shortest remaining processing time) is known to
produce an optimal (i.e., 1-competitive) schedule [5].

Single processor scheduling for flowtime and energy.
Pruhs et al. [30] were the first to consider flowtime and
energy together. They studied offline scheduling for
minimizing the total flowtime with a given amount of
energy. They gave a polynomial time optimal algorithm for
the special case when jobs are of unit size. However, in the
online setting, this problem does not admit any constant
competitive online algorithm even if jobs are of unit size [8].

For the objective total flowtime plus � times energy,

Albers and Fujiwara [1] considered the infinite speed

model and presented the first online algorithm that is

Oð1Þ-competitive for jobs of unit size (precisely, the

competitive ratio is 8:3eð3þ
ffiffi
5
p

2 Þ
�, which is approximately

404 if � ¼ 3). This result was recently improved by Bansal

et al. [8], who considered jobs with arbitrary size and

presented an Oð1Þ-competitive online algorithm. Precisely,

the competitive ratio is ���, where � ¼ maxf2; 2ð��1Þ
��ð��1Þ1�1=ð��1Þg

and �� ¼ maxfð1þ 1=�Þ; ð1þ �Þ�g for any � > 0. For exam-

ple, suppose � ¼ 3, then choosing � ¼ 0:466 would give a

competitive ratio of 7.94.
Bansal et al. [6] adapted the previous results on

minimizing flowtime plus energy [8] to the bounded speed

model. For jobs of arbitrary size, they gave a ð2��ð�þ
oð1ÞÞ= ln�Þ-competitive algorithm that uses a processor with
maximum speed ð1þ �ÞT for any � > 0.

Multiprocessor scheduling for flowtime and energy.
The only previous work on multiprocessors taking flowtime
and energy into consideration was by Bunde [11], which is
about an offline approximation algorithm for jobs of unit
size. As for online algorithms, no work has been known that
takes flowtime and energy into consideration.

Remarks. It is worth mentioning that for other scheduling
objectives (such as makespan and deadlines), the literature
already contains several multiprocessor results on dynamic
speed scaling in the infinite speed model. In particular,
Pruhs et al. [31] and Bunde [11] both studied offline
algorithms for the makespan objective. Albers et al. [2]
studied online algorithms for jobs with restricted deadlines.
There are also some experimental work on different variants
of energy-efficient deadline scheduling using dynamic
speed scaling [16], [32], [33], [35], [37].

2 PRELIMINARIES

Definitions and notations. Given a job set J , we want to
schedule J on a pool of m � 2 processors. Jobs are
sequential in nature and cannot be executed by more than
one processor in parallel. All processors are identical, and a
job can be executed in any processor. Preemption is
allowed, and a preempted job can be resumed at the point
of preemption. We differentiate two types of schedules: a
migratory schedule can move partially executed jobs from
one processor to another processor without any penalty,
and a nonmigratory schedule dispatches each job to one of
the m processors and runs the job entirely in that processor.
In this paper, the two types of schedules are usually
represented by the symbols S and N , respectively.

We use rðjÞ and pðjÞ to denote respectively the release
time and work requirement (or size) of job j. The time
required to complete a job j using a processor with fixed
speed s is pðjÞ=s. For a set J of jobs, we let pðJÞ ¼

P
j2J pðjÞ

be the total size of J , and let P ðJÞ (or simply P ) denote the
ratio of the largest job size to the smallest job size. Following
[8], we define the fractional weight of a job j at a particular
time to be q=pðjÞ, where q is the remaining work of j at the
time of concern. Note that the fractional weight decreases
from 1 to 0 in the course of executing j.

With respect to a schedule S of a job set J , we use
max-speedðSÞ, EðSÞ, �F ðSÞ, and F ðSÞ to denote the max-
imum speed, energy usage, total flowtime, and total
fractional flowtime of S, respectively. Note that �F ðSÞ is
the sum, over all jobs, of the time since a job is released until
it is completed or, equivalently, the integration over time of
the number of unfinished jobs. On the other hand, F ðSÞ is
defined as the integration over time of the total fractional
weight of unfinished jobs. Obviously, F ðSÞ � �F ðSÞ. Note
that processor speed can vary dynamically, and the time to
execute a job j is not necessarily equal to pðjÞ. We use XðjÞ
to denote the execution time of job j (i.e., flowtime minus
waiting time) and define XðSÞ ¼

P
j2J XðjÞ to be the total

execution time of S.
Our primary concern is to minimize the flowtime plus �

times the energy used. Technically, � can be assumed to
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be one.4 Then, the objective is simply to optimize total
flowtime plus energy. Nevertheless, it is helpful to first
analyze the fractional flowtime plus energy. It is convenient
to define �GðSÞ ¼ �F ðSÞ þ EðSÞ and GðSÞ ¼ F ðSÞ þEðSÞ.
The following lemma shows a lower bound that
�GðSÞ � pðJÞ, irrelevant of the number of processors. This

is an extension of a similar bound for unit-size jobs given by
Bansal et al. [8].

Lemma 1. For any m-processor schedule S for a job set J ,
�GðSÞ � pðJÞ.

Proof. Denote F as the flowtime of a job j. The energy usage
for j is minimized if j is run at speed pðjÞ=F throughout,
and hence, it is at least F ðpðjÞ=F Þ� ¼ pðjÞ�ð1=F Þ��1. It
remains to show that F þ pðjÞ�=F��1 � pðjÞ. Case 1. If
F � pðjÞ, the statement is obviously true. Case 2. If
F < pðjÞ, ðpðjÞ=F Þ��1 > 1, and pðjÞ�=F��1 � pðjÞ. Sum-
ming over all jobs, we obtain the desired lower bound.tu

Global critical speed and flowtime in multiprocessor
schedules. To optimize flowtime plus energy, it is useful to
define the global critical speed to be 1=ð�� 1Þ1=�, which is
first observed by Albers and Fujiwara [1] in the context of
single-processor scheduling. Throughout this paper, we
assume that if necessary, a multiprocessor schedule can be
transformed without increasing the flowtime plus energy so
that it never runs a job j at speed less than the global critical
speed (see Lemma 2 below and the proof in the Appendix),
and hence, XðjÞ � ð�� 1Þ1=�pðjÞ, which is at most 1:322pðjÞ
for all possible � � 1.

Lemma 2. Given any m-processor schedule S for a job set
J , we can construct an m-processor schedule S0 for J
such that S0 never runs a job at speed less than the global
critical speed and �GðS0Þ � �GðSÞ. Moreover, S0 needs
migration if and only if S does, and max-speedðS0Þ �
maxfmax-speedðSÞ; 1=ð�� 1Þ1=�g.

Furthermore, we assume that the maximum speed T is at
least the global critical speed. Otherwise, any multiproces-
sor schedule including the optimal one would always run a
job at the maximum speed. It is because when running a job
below, the global critical speed, the slower the speed, the
more total flowtime plus energy is incurred. In other words,
the problem is reduced to minimizing flowtime alone.

Critical speed and fractional flowtime in single-

processor schedules. In our analysis of nonmigratory
schedules, we need to focus on individual processors and
analyze the fractional flowtime for each processor. In this
case, we need to consider fractional weight and make a
different assumption of the minimum speed and transfor-
mation. At any time t, we define the critical speed of a job j to
be ðq=ð�� 1ÞpðjÞÞ1=�, where q � pðjÞ denotes the remaining

work of job j at time t. Note that the critical speed of j
changes over time. We can show that a single-processor
schedule can be transformed without increasing the frac-
tional flowtime plus energy so that it never runs a job at
speed less than its critical speed (see Lemma 3 below and
the proof in the Appendix).

Lemma 3. Given any single-processor schedule N for a job
set J , we can construct another schedule N 0 for J such
that N 0 never runs a job at speed less than its critical
speed and GðN 0Þ � GðN Þ. Moreover, max-speedðN 0Þ �
maxfmax-speedðN Þ; 1=ð�� 1Þ1=�g.

3 THE ONLINE ALGORITHM CRR-SB

In this section, we present an online algorithm, called
CRR-SB (for CRR-SRPT-BPS), which produces a nonmi-
gratory CRR-dispatching schedule for m � 2 processors
and state some properties of CRR-SB. As mentioned
earlier, the analysis of CRR-SB stems from an offline result
to eliminate migration. We state a theorem about this
offline result (to be proved in later sections) and analyze
the performance of CRR-SB based on this offline result.

CRR dispatching. We now define CRR formally. Recall
that a job is said to be in class k if its size is in the range
ð2k�1; 2k�. Jobs of the same class are dispatched (upon their
arrival) to the m processors using a round-robin strategy,
i.e., the ith job of a class is dispatched to processor
ðimodmÞ, and different classes are handled independently.
The resulting schedule is called a CRR-dispatching schedule.
Once dispatched to a processor, a job will be processed there
entirely; thus, CRR-dispatching is nonmigratory in nature.

The intuition of using a CRR-dispatching schedule
comes from an offline result on eliminating migration,
which states that for any migratory schedule, there is a
CRR-dispatching schedule such that the total flowtime plus
energy is OðlogP Þ times that of the migratory schedule (see
Theorem 9 below). Then, to devise an online algorithm that
is competitive against the optimal migratory offline algo-
rithm, we can first dispatch jobs using a CRR-dispatching
policy, and then schedule jobs in each processor indepen-
dently, in a way that is competitive in the single-processor
setting. This is the approach to be used by CRR-SB; more
specifically, jobs dispatched to each processor is scheduled
using SRPT, and the speed is determined based on the
single-processor algorithm BPS [6], [8].

Below, we review the BPS algorithm and define CRR-SB.
Unless otherwise stated, logarithms are in base 2.

Algorithm BPS. At any time t, let waðtÞ be the total
fractional weight of jobs. Use the speed waðtÞ1=� if allowed,
or the maximum allowable speed otherwise.5 Select the job
with the smallest size to execute, ties are broken by selecting
partially finished jobs.

Algorithm CRR-SB. Jobs of the same class are dis-
patched to the m processors using the CRR-dispatching
policy. Jobs in each processor are scheduled independently.
At any time, the job with the shortest remaining work
(processing time) is selected for execution, and the speed to
be used is determined by the current speed of the following
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4. Given a job set I to be scheduled on processors with maximum speed
T for minimizing total flowtime plus � times the energy, we define another
job set I0 by scaling the work of each job j in I to pðjÞ � �1=� for minimizing
total flowtime plus energy. Then, any schedule S0 for jobs I 0 with maximum
speed T 0 ¼ �1=�T can be transformed to a schedule S for jobs I with
maximum speed T (by decreasing the speed by a factor of �1=�), and vice
versa. The total flowtime remains the same while energy usage of S0 is equal
to ð�1=�Þ� ¼ � times that of S. Therefore, any algorithm minimizing total
flowtime plus energy can be extended to minimize total flowtime plus �
times the energy, and the competitive ratio preserves.

5. When the objective function is total flowtime plus � times energy, the
speed is set as waðtÞ1=�=�1=��1=�2

.



simulated schedule: The size of each job j dispatched to this
processor is rounded up to 2dlog pðjÞe. Simulate BPS on these
enlarged jobs to obtain a simulated schedule.

We use J 0 to denote the set of enlarged jobs with size
rounded up to the nearest power of 2. Note that we only
make use of the speed of the simulated schedule, the exact
way it schedules jobs is ignored. In fact, this schedule
probably over schedules each job j (for 2dlog pðjÞe instead of
pðjÞ units of work). On the other hand, after finishing pðjÞ
units of work for a job j, CRR-SB immediately moves on to
the next job. At any time, CRR-SB and the simulated
schedule probably schedule different jobs.

Adapting the analysis of BPS. Before, we analyze the
performance of CRR-SB, we need to adapt the previously
known performance of BPS. It is known that BPS performs
well in minimizing fractional flowtime plus energy [6].

Fact 4. [6] For minimizing fractional flowtime plus energy on a
single processor, BPS is 2�-competitive.

However, the bound does not translate directly to
flowtime plus energy (i.e., �G). To bound the flowtime plus
energy of BPS, we first make the following observations
about BPS.

Property 5. By definition, a BPS schedule satisfies the following
properties:

1. At any time, the schedule has at most one partially
processed job of each size.

2. The schedule never idles when there are unfinished
jobs.

3. The schedule always runs a job at speed at least its
critical speed.

For any nonmigratory schedule satisfying the above
properties, we can upper bound its flowtime in terms of its
fractional flowtime and total execution time (Lemma 6), and
the latter can be further shown to be at most twice of the
total size of all jobs (Lemma 7).Then, it is easy to analyze the
flowtime incurred by BPS (Corollary 8).

Lemma 6. Consider any nonmigratory schedule N for a job set J
in which Properties 5.1 and 5.2 in hold in every processor.
Then, �F ðN Þ � F ðN Þ þK �XðN Þ, where K is the number of
different job sizes in J . (Recall that XðN Þ is the total
execution time of N .)

Proof. As N is nonmigratory, we can analyze �F ðN Þ and
F ðN Þ by summing up the total flowtime and fractional
flowtime of individual processors. Consider any proces-
sor i, let �FiðN Þ ðFiðN ÞÞ be the corresponding total
(fractional) flowtime. At any time, the number of
unfinished jobs in a processor can exceed the total
fractional weight of unfinished jobs by at most the
number of partially processed jobs, which is at most K.
Furthermore, whenever a processor is idle, there is no
unfinished jobs to charge to �FiðN Þ and FiðN Þ. Thus,
�FiðN Þ � FiðN Þ � K

P
j2Ji XðjÞ, where Ji is the subset of

jobs executed in processor i. Summing over all proces-
sors, we have �F ðN Þ � F ðN Þ � K

P
j2J XðjÞ. tu

Lemma 7. Consider any single-processor schedule N for a job set
J satisfying Property 5.3. Then, for any job j,
XðjÞ � ð�=ð�� 1Þ1�1=�ÞpðjÞ � 2pðjÞ, and XðN Þ � 2pðJÞ.

Proof. Consider a job j running at its critical speed starting

at time 0 until it completes at some time tc. At a time t, let

q be the remaining work of j. Then, the speed at t is

� dq
dt ¼ ð

q
ð��1ÞpðjÞÞ

1=�. This implies

Z tc

0

dt ¼
Z 0

pðjÞ
� ð�� 1Þ pðjÞð Þ1=�q�1=�dq;

or equivalently, tc ¼ �pðjÞ
ð��1Þ1�1=� . Consider any single-

processor schedule N of J that never runs a job at speed

less than its critical speed. Then, for any job j,

XðjÞ � �=ð�� 1Þ1�1=�
� �

pðjÞ � 2pðjÞ;

where the last inequality is due to the fact that

�=ð�� 1Þ1�1=� is maximized when � ¼ 2.
Therefore, summing over all jobs j,

XðN Þ ¼
X
j2J

XðjÞ �
X
j2J

2pðjÞ ¼ 2pðJÞ:

tu

We apply Lemmas 6 and 7 to upper bound the flowtime

incurred by BPS.

Corollary 8. Consider scheduling a job set J with K distinct

sizes on a single processor. Let N and N� be the schedule of

BPS and the optimal offline schedule for J , respectively. Then,
�GðN Þ � 2� �GðN �Þ þ 2KpðJÞ.

Proof. By Lemmas 6 and 7, �GðN Þ ¼ �F ðN Þ þEðN Þ �
F ðN Þ þ 2KpðJÞ þ EðN Þ. By Fact 4, the latter is at most

2�ðF ðN �Þ þ EðN �ÞÞ þ 2KpðJÞ. Since F ðN �Þ � �F ðN �Þ,
�GðN Þ � 2� �GðN �Þ þ 2KpðJÞ. tu

Analysis of CRR-SB. As we mentioned before, the

analysis of CRR-SB is based on an offline result to eliminate

migration. We state the theorem formally below (the next

three sections are devoted to proving this theorem):

Theorem 9. Given a job set J , let J 0 be the same set of jobs but

with size rounded up to the nearest power of 2. Let S be a

migratory schedule of J . Then, there is a CRR-dispatching

scheduleN for J 0, which also defines a schedule for J , such that

1. if jobs in J have arbitrary size, then �GðN Þ � ð2� þ
11:932dlogPe þ 14:576Þ �GðSÞ, and max-speedðN Þ �
2�max-speedðSÞ;

2. if all jobs in J are of power-of-2 size, then J 0 ¼ J , and
�GðN Þ � ð5:966dlogPe þ 7:288Þ �GðSÞ, and the max-

imum speed remains the same.

Furthermore, if we change the definition of classes in

CRR such that class k includes jobs of size in the range

ðð1þ �Þk�1; ð1þ �Þk� for any � > 0, then Theorem 9.1

would give a CRR-dispatching schedule N such that

GðN Þ�ðð1þ�Þ�þ5:966ð1þ�Þdlog1þ� Peþ 7:288ð1þ�ÞÞ �GðS�Þ,
and max-speedðN Þ � ð1þ �Þ �max-speedðSÞ.

Recall that CRR-SB schedules jobs using SRPT and the

speed function is based on the BPS algorithm. The following

lemma shows that if we focus on a particular speed function

using SRPT is the best way to schedule a job set on a single
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processor. The proof adapts the result on fixed-speed

processor scheduling in [5].

Lemma 10. Consider a job set J and a speed function f . Among

all single-processor schedules of J using speed function f , the

schedule that selects jobs using SRPT has the minimum total

flowtime.

Proof. We prove the lemma by contradiction. Among all

single-processor schedules of J using speed function f ,

suppose that N� is the one with the minimum total

flowtime and that there is a time instance N� does not

follow the SRPT policy. Let t be the first such time and j‘
be the job running at t in N�. Let js be a job with the

shortest remaining processing time at t, Consider all the

time intervals starting from t that N� runs j‘ or js. We

modify the schedule in these time intervals such that js is

run to completion before j‘ starts using the same speed

function f . At time t, js has a smaller remaining

processing time than j‘, thus the sum of their completion

time, as well as the sum of flowtime in the new schedule

are strictly less than before. The execution of other jobs

remains unchanged. Therefore, the new schedule has a

smaller total flowtime than N�, which contradicts the

optimality of N�. tu

We are now ready to prove the performance of CRR-SB

using Theorem 9, Corollary 8, and Lemma 10.

Theorem 11. CRR-SB is ðð23:864�þ 4ÞdlogPe þ ð29:152þ
2�þ1Þ�þ 4Þ-competitive for minimizing flowtime plus en-

ergy when using processors with maximum speed 2T (the

comparison is made against an optimal migratory schedule

with maximum speed T ).

Proof. Let S� be the optimal migratory schedule of a job set

J . Let J 0 be the set of jobs in J but with the size rounded

up to the nearest power of 2. By Theorem 9.1, we can

obtain a CRR-dispatching schedule N 1 for J 0 such that
�GðN 1Þ � ð2� þ 11:932dlogPe þ 14:576Þ �GðS�Þ. Let N 2 be

another CRR-dispatching schedule for J 0 such that jobs

dispatched to each processor are scheduled by BPS.

J 0 contains at most dlogP þ 1e different job sizes.

Applying Corollary 8 to individual processors, we can

conclude that �GðN 2Þ � 2� �GðN 1Þ þ 2dlogP þ 1epðJ 0Þ. On

the other hand, pðJ 0Þ � 2pðJÞ, and by Lemma 1,

pðJÞ � �GðS�Þ. Therefore,

�GðN 2Þ � 2� 2� þ 11:932dlogPe þ 14:576Þ �GðS�
� �
þ 4dlogP þ 1e �GðS�Þ

� ð23:864�þ 4ð ÞdlogPeþð29:152þ 2�þ1Þ�þ 4Þ �GðS�Þ:

Let N be the schedule of CRR-SB for J . To prove
Theorem 11, it remains to show that �GðN Þ � �GðN 2Þ.
First, we note that N 2 also defines a CRR-dispatching
schedule for J (just pad each job j in J with enough idle
time to act as a job of size 2dlog pðjÞe). Furthermore, N , by
definition, uses the same speed function as N 2. Since N
is using SRPT, we can apply Lemma 10 to individual
processors to conclude that �GðN Þ � �GðN 2Þ. Theorem 11
then follows. tu

Similarly, we have the following theorem for jobs of
power-of-2 sizes:

Theorem 12. If jobs are of power-of-2 sizes, CRR-SB is
ðð11:932�þ 2ÞdlogPe þ 16:576�þ 2Þ competitive in mini-
mizing total flowtime plus energy. The maximum speed used is
the same as the optimal migratory offline algorithm.

Proof. Note that J 0 ¼ J in this case. We can then repeat the
same argument in the proof of Theorem 11 by applying
Theorem 9.2 instead of Theorem 9.1 to obtain the
theorem. tu

Again, if we change the definition of classes in CRR-SB
to use a base of 1þ � (instead of 2) for any � > 0, then
Theorem 11 would imply that CRR-SB, when using
processors with maximum speed ð1þ �ÞT , has a competi-
tive ratio ð2�ð1þ �Þ�þð11:932�ð1þ�Þþ2ð1þ�ÞÞdlog1þ� Peþ
14:576�ð1þ �Þ þ 2ð1þ �ÞÞ for scheduling jobs of arbitrary
size.

4 OVERVIEW OF TRANSFORMATIONS TO ELIMINATE

MIGRATION

In this section, we give an overview of an offline method for
transforming a given migratory schedule to a nonmigratory
schedule. Roughly speaking, the method involves eliminat-
ing migration in two types of schedules: schedule for a set
of special jobs called parallel jobs and schedule for a set of
arbitrary jobs. This section states the lemmas and theorems
related to these two steps (to be proved in Sections 5 and 6).
More importantly, we explain how to apply these results to
obtain the main theorem of transforming a migratory
schedule to a nonmigratory schedule. To ease discussion,
Fig. 1 is given as an overview of how various lemmas and
theorems are applied.

We first recall some definitions to be used in the
following sections. We consider a job set J and denote the
maximum-minimum ratio of job sizes by P . A job set is said
to be m-parallel if the jobs can be partitioned into batches,
each with m jobs of identical release time and size. For an
m-parallel job set, a trivially nonmigratory schedule is
defined as any schedule in which all processors have
identical schedules and at any time, execute respectively
the m different jobs in a batch.

The key ideas and steps involved in the transformation
are listed as follows:
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1. It is easy to convert J into an m-parallel job set J�

(see the procedure Make_Parallel below). And, a
migratory schedule for J would naturally define a
migratory schedule for J�.

2. More interestingly, the migratory schedule for J�

can be transformed to a trivially nonmigratory
schedule for J�.

3. Finally, any trivially nonmigratory schedule for J�

can be transformed to a schedule for J which is CRR
dispatching.

Furthermore, all transformations incur only a moderate

increase in the flowtime plus energy.
The procedure Make_Parallel is defined as follows: It

transforms J to three job sets, each has at most dlogP þ 1e
distinct job sizes.

. J 0. Same as J except that the size of each job j is
raised to 2dlog pðjÞe.

. Jþ. Jobs of the same size in J 0 are grouped into
batches of m jobs, in the order of release time. The
last batch may not be full. Jþ is the set of all jobs that
are in a “full” batch. Let J� ¼ J 0 � Jþ.

. J�. For each batch in Jþ, we pick a job with the
earliest release time as the leader and change the
release time of every other job to that of the leader.
We use rðjÞ and r�ðjÞ to denote the original and the
new release time of a job j. The resulting job set is
denoted by J�, which is m-parallel.

The following lemmas and theorem define a sequence of

transformations from a migratory schedule S of J to

different intermediate schedules (for Jþ, J� and J�) and
eventually to a nonmigratory CRR-dispatching schedule of

J ; see Fig. 1 for a summary of these transformations. Each

transformation consists of a few steps only; yet, the analysis

of the increase of flowtime and energy is often quite
involved. The details and proofs will be given in Sections 5

and 6. In the rest of this paper, we need to deal with

different migratory and nonmigratory schedules of the job

sets J , J 0, Jþ, J�, and J�; it is noteworthy that their

migratory schedu1les are always denoted by S, S0, Sþ, S�,
and S�, respectively, and their nonmigratory schedules are

denoted by N , N 0, Nþ, N�, and N�, respectively.

Lemma 13. Given a migratory schedule S for J , we can construct

two migratory schedules S� for J� and S� for J� in such a

way that �GðS�Þþ �GðS�Þ�2� �GðSÞþ1:322dlogPþ2epðJþÞ.
Both S� and S� use no more than twice the maximum

speed of S.

The next transformation is the most nontrivial, it

converts a migratory schedule for J� to a trivially non-

migratory schedule.

Theorem 14. Given a migratory m-processor schedule S� for

J�, we can construct a trivially nonmigratory schedule N� for

J� such that �GðN �Þ � �GðS�Þ þ 2dlogP þ 1epðJ�Þ. Further-

more, max-speedðN �Þ � max-speedðS�Þ.

Recall that jobs in J� may have their release time moved

backward, and thus, we need another transformation of N�
to obtain a valid schedule for Jþ and then J .

Lemma 15. 1) Given a trivially nonmigratory schedule N� of J�,
we can construct a CRR-dispatching schedule Nþ for Jþ such
that �GðNþÞ � �GðN �Þ þ 1:322dlogP þ 1epðJþÞ. Moreover,
max-speedðNþÞ � max-speedðN �Þ. 2) Together with a
migratory schedule S� for J�, we can construct a CRR-
dispatching schedule N for J 0 and J , such that
�GðN Þ � �GðNþÞ þ �GðS�Þ þ 1:322dlogP þ 1epðJ 0Þ. More-

over, max-speedðN Þ is at most maxfmax-speedðNþÞ;
max-speedðS�Þg.

With the above lemmas and theorem, we can prove the
main result on eliminating migration, i.e., Theorem 9 (first
stated in Section 3).

Proof of Theorem 9. Given a migratory schedule S of J ,
we can apply Lemma 13, Theorem 14, and Lemma 15
to obtain a CRR-dispatching schedule N for J 0 and J
such that

�GðN Þ � �GðNþÞ þ �GðS�Þ þ 1:322dlogP þ 1epðJ 0Þ
� �GðN �Þ þ 1:322dlogP þ 1epðJþÞ þ �GðS�Þ
þ 1:322dlogP þ 1epðJ 0Þ

� �GðS�Þ þ 2dlogP þ 1epðJ�Þ
þ 1:322dlogP þ 1epðJþÞ þ �GðS�Þ
þ 1:322dlogP þ 1epðJ 0Þ

� 2� �GðSÞ þ 2dlogP þ 1epðJ�Þ
þ ð2:644dlogPe þ 3:966ÞpðJþÞ
þ 1:322dlogP þ 1epðJ 0Þ:

Note that pðJþÞ, pðJ�Þ, and pðJ 0Þ are at most 2pðJÞ.
By Lemma 1, pðJÞ � �GðSÞ. Thus , �GðN Þ � ð2� þ
11:932dlogPe þ 14:576Þ �GðSÞ. Furthermore, the maximum
speed is at most double of the maximum speed of the
optimal migratory schedule. Thus, Theorem 9.1 holds.

Suppose that all jobs in J are of power-of-2 size. Then,
we can prove Lemma 13 without doubling the maximum
speed and increasing the energy usage by a factor of 2�,
that is, �GðS�Þ þ �GðS�Þ � �GðSÞ þ 1:322dlogP þ 2epðJþÞ.
Furthermore, pðJþÞ ¼ pðJ�Þ � pðJ 0Þ ¼ pðJÞ. Thus, we
could improve the upper bound of �GðN Þ to
ð5:966dlogPe þ 7:288Þ �GðSÞ, and the maximum speed
remains the same. Thus, Theorem 9.2 holds. tu

5 ELIMINATING MIGRATION IN A MULTIPROCESSOR

SCHEDULE OF PARALLEL JOBS

In this section, we prove Theorem 14 (of Section 4) that
transforms a migratory schedule S� of an m-parallel job set
J� to a trivially non-migratory schedule N� for J� with a
moderate increase in flowtime plus energy. Let K denote
the number of distinct job sizes in J�, i.e., K ¼ dlogP þ 1e.

The transformation consists of two steps. Each step
preserves the total fractional flowtime plus energy. The first
step makes use of an “averaging” technique to determine
the speed and to distribute the workload among the
processors, this results in a nonmigratory and indeed
trivially nonmigratory schedule N�1. The second step
attempts to locally “tidy up” the schedule of each
individual processor in N�1 so that the total flowtime of
the resulting scheduleN� does not exceed its total fractional
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flowtime too much (precisely, by at most 2KpðJ�Þ). Then,
Theorem 14 follows. Details are given as follows:

Step 1: speed averaging. The speed function of the new
schedule N�1 is determined as follows: At any time, every
processor in N�1 runs at the average speed of all processors
of S�. That is, if the processors in S� are at speed
s1; s2; . . . ; sm, respectively, then every processor in N�1 runs
at speed

Pm
i¼1 si=m. Note that the “total” speed of S� and

N�1 are the same. Since the energy function s� is convex, the
rate of energy consumption of N�1 (i.e., mð

Pm
i¼1 si=mÞ

�) is at
most that of S� (i.e.,

Pm
i¼1 s

�
i ).

Work averaging. Next, we describe how N�1 selects jobs
for execution. In S�, jobs in a batch may have different
progress. To ease our discussion, we divide S� into
consecutive time intervals at the moment when a batch of
jobs is released or has just been completed. Let I be such a
time interval. Within I , suppose S� has worked on some
jobs of a batch B for a total of u units (note that the work
done on each job of B may vary), then N�1 would schedule
each processor to work on u=m units of a different job of B
in parallel. Note that the total work done on B is still u
(though the progress of individual jobs might differ from
S�). S� might have worked on several batches within I ; at
any time within I , N�1 uses the smallest-job-size-first (SJF)
strategy to select the next batch for execution.

Analysis. At any time in an interval I , the SJF strategy
ensures that N�1 gives priority to jobs that would give the
biggest decrease of fractional weight; thus, N�1 has a total
fractional weight no more than that of S�. At the end of I ,
N�1, and S� have performed the same amount of work for
each batch, and they have the same total fractional weight.
Applying the same argument to every time interval of S�,
we conclude that at any time, the total fractional weight in
N�1 is no more than that of S�. Thus, the total fractional
flowtime of N�1 is also no more than that of S�.

Step 2 (tidying). We further transform N�1 to N� to
reduce the total flowtime. Recall that N�1 has an identical
schedule for all processors. The changes made in Step 2 are
local to each processor, and all processors undergo the same
changes.

a. Critical speed. We ensure that at any time, N�1
executes a job j at speed at least its critical speed
(recall that this critical speed property can be
enforced by invoking the transformation stated in
Lemma 3 to each processor).

b. Minimizing partially processed jobs. Next, we
want to ensure that in each processor, there is at
most one partially processed job of each size. To
obtain such a schedule, we consider all jobs of a
particular size each time and shuffle these jobs using
the “earliest release time first” strategy. The speed
used at any time is not changed, so after shuffling, a
job may be executed faster or slower.

c. Eliminating unnecessary idle time. Finally, we
want to “compact” the schedule of each processor
so that it is never idle when there are unfinished
jobs. To do so, we consider all the jobs executed in
a processor in the order of release time. For each
job j, we move its schedule as close as possible to
its release time, filling out all the idle time. Note

that we do not change the speed and the total time
to execute j.

Analysis. Denote the schedule produced by Step 2 asN�.
By Lemma 3, Step 2.a does not increase the total fractional
flowtime plus energy. Steps 2.b and 2.c do not change the
energy usage. Furthermore, in Step 2.b, shuffling jobs of
the same size among themselves does not alter the total
fractional weight of these jobs. Thus, the total fractional
flowtime is preserved. Step 2.c could only decrease the total
fractional flowtime. Thus, N� does not increase the total
fractional flowtime plus energy.

Next, we consider the total flowtime. Note that Step 2.a
produces a schedule that runs a job at speed no less than its
critical speed. Therefore, by Lemma 7, its total execution
time is at most 2pðJ�Þ. Steps 2.b and 2.c do not change the
total execution time; we conclude that XðN �Þ � 2pðJ�Þ.
Applying Lemma 6 to N�, �F ðN �Þ � F ðN �Þ þ 2KpðJ�Þ.
Hence, �GðN �Þ � GðN �Þ þ 2KpðJ�Þ. Since N� preserves the
total fractional flowtime plus energy of S� and the fractional
flowtime is always upper bounded by flowtime, we have
GðN �Þ � GðS�Þ � �GðS�Þ, and �GðN �Þ � �GðS�Þ þ 2KpðJ�Þ.
Theorem 14 is proved.

6 ELIMINATING MIGRATION IN A MULTIPROCESSOR

SCHEDULE OF ARBITRARY JOBS

In this section, we show how to make use of the previous
result on parallel jobs to derive a way to eliminate migration
in a schedule for an arbitrary job set J . Recall that in
Section 4, we have defined the job sets J 0, Jþ, J�, and J�

from a given job set J . Two transformations will be
presented in this section: a forward transformation of a
migratory schedule for J to a migratory schedule for J�

(Section 6.1) and a backward transformation of a trivially
nonmigratory schedule for J� to a CRR-dispatching
schedule for J (Section 6.2).

6.1 Forward Transformation of Schedules: From J
to J�

In this section, we show how to transform a migratory
schedule S for J to a migratory schedule S� for J�. Recall
that a job j in J� has a bigger size ð2dlog pðjÞeÞ and an earlier
deadline ðr�ðjÞÞ, and the desired lemma is given as follows:

Lemma 13. Given a migratory schedule S for J , we can construct
two migratory schedules S� for J� and S� for J� in such a way
t h a t �GðS�Þ þ �GðS�Þ � 2� �GðSÞ þ 1:322dlogP þ 2epðJþÞ.
Both S� and S� use no more than twice the maximum
speed of S.

To construct S� from S, we makes use of two ideas:

. Speed up the schedule of each job j in S to counter
the increase of size.

. Advance the schedule of each job j in view of its new
release time r�ðjÞ.

Details are given as follows: Below, we assume that S
always schedules every processor to run at speed at least
the global critical speed (see Lemma 2).

Speed up the schedule. S naturally defines a schedule S0
for J 0 as follows: Whenever S runs a job j at speed s, S0 runs
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j at speed 2dlog pðjÞe

pðjÞ s. Note that the maximum speed is at most

doubled. Recall that J 0 ¼ Jþ [ J�. Restricting S0 with

respect to Jþ and J� gives two schedules Sþ and S�,

respectively. Note that EðSþÞ þ EðS�Þ � 2�EðSÞ, and
�F ðSþÞ þ �F ðS�Þ ¼ �F ðSÞ.
Sþ is also a valid schedule for J�, though it might induce

a larger total flowtime (because jobs in J� have earlier
release time). To limit the increase in flowtime, we modify
Sþ into a better schedule S� for J� as follows: Note that we
will not change the energy used, i.e., EðS�Þ ¼ EðSþÞ.

Advance the schedule. Tag the jobs in each group of Jþ

with unique integers from 0 to m� 1, 0 being the leader.
The schedule of all leaders are not modified. We modify Sþ
in rounds, one for a particular job size (say, from the
smallest to the largest). In each round, we consider groups
of jobs in the order of the release time. Consider the job j of
a particular group, which is tagged with i > 0. Let j0 be its
leader. To reduce the flowtime of j, we use the following
trick to advance the schedule of j using a single processor,
in particular, processor labeled i. Let t1 be the total amount
of time over all processors that Sþ executes j. Suppose that
between the (original) release times of j0 and j, i.e.,
½r�ðjÞ; rðjÞ� (recall that r�ðjÞ ¼ rðj0Þ), the current schedule
of processor i has a total of t2 � 0 units of idling time. If
t1 < t2, we move the schedule of j to processor i only,
occupying the earliest idle time starting from r�ðjÞ. The
speed function for processing j remains unchanged. If
t1 � t2, the schedule of j is left unmodified.

Analysis. The above modification guarantees that in the
new schedule, the job j, whose release time has been set to
r�ðjÞ, has only a moderate increase in waiting time,
precisely, at most the sum of execution time of processor i
during ½r�ðjÞ; rðjÞ� and XðjÞ. This is proved in Lemma 16,
which also shows that from Jþ to J�, the total increase of
waiting time (as well as flowtime) over all jobs is at most
dlogP þ 2eXðSþÞ. Since every processor run at speed at
least the global critical speed (Lemma 2), XðSþÞ �
ð�� 1Þ1=�pðJþÞ � 1:322dlogP þ 2epðJþÞ, and Lemma 13
follows.

Lemma 16. The increase in flowtime caused by the transforma-
tion in Lemma 13, when transforming a migratory schedule Sþ
for Jþ to a schedule S� for J�, is at most dlogP þ 2eXðSþÞ.

Proof. Since the same speed is being used for all jobs,
XðS�Þ ¼ XðSþÞ. It remains to analyze the waiting time.
This is done by bounding the change in waiting time of
each modified job during each round. Let Sa and Sb be
the schedules before and after a round in the transforma-
tion. Obviously, there is no change in the waiting time for
leaders. Consider a job j tagged with i > 0, with a leader
j0. We claim that the increase in waiting time is at most
the sum of the execution time of j in Sa and the busy time
of processor i in schedule Sa during ½r�ðjÞ; rðjÞ�. This is
clear in the case where the scheduling of j is modified:
indeed, the waiting time of j in Sb is no more than latter
term. In case where the scheduling of j is unmodified, the
increase in waiting time is rðjÞ � r�ðjÞ, which is equal to
the amount of idle time plus busy time of processor i in
schedule Sa during ½r�ðjÞ; rðjÞ�. Since the scheduling of j
is not modified, the amount of idle time is at most the
execution time of j in Sa. Therefore, the claim holds.

Summing over all jobs concerned for the modification
from Sa to Sb for size 2k jobs, the increase in waiting time
is no more than the sum of XðSaÞ ¼ XðSþÞ andP

j is of size 2k XðjÞ. Summing over all the dlogP þ 1e
rounds, the waiting time is increased by no more than
dlogP þ 2eXðSþÞ. tu

6.2 Backward Transformation of Schedules: From
J� to Jþ and Then to J

Recall that J� is m-parallel. Suppose that we have used
Theorem 14 to obtain a trivially nonmigratory schedule N�
for J�. Below, we show how to transform N� to a CRR-
dispatching schedule Nþ for Jþ (Lemma 15.1). Then, it is
relatively easy to obtain a CRR-dispatching schedule for J 0,
as well as for J (Lemma 15.2). We first reiterate Lemma 15
of Section 4 before proving it.

Lemma 15. 1) Given a trivially nonmigratory scheduleN� of J�,
we can construct a CRR-dispatching schedule Nþ for Jþ such
that �GðNþÞ � �GðN �Þ þ 1:322dlogP þ 1epðJþÞ. Moreover,
max-speedðNþÞ � max-speedðN �Þ. 2) Together with a mi-
gratory scheduleS� forJ�, we can construct a CRR-dispatching
schedule N for J 0 and J , such that �GðN Þ � �GðNþÞ þ
�GðS�Þ þ 1:322dlogP þ 1epðJ 0Þ. Moreover, max-speedðN Þ

is at most maxfmax-speedðNþÞ; max-speedðS�Þg.

From J� to Jþ. Note that N� may not be a valid schedule
for Jþ, since a job j in J� has a release time r�ðjÞ earlier than
the release time rðjÞ in Jþ. We transform N� to move the
execution period of jobs so that the schedule becomes valid.
The changes made are local to each processor, and all
processors undergo the same changes. The following
discussion focuses on the schedule of a processor x in N�.
Without loss of generality, we assume that the jobs of the
same size are processed in the order of release time in Jþ.
Furthermore, by Lemma 2, the processor runs at a speed at
least the global critical speed.

Transformation. We focus on the schedule of a
particular processor x in N�. The transformation runs in
multiple rounds. Initially, R is the schedule of the processor
x in N�. In each round, R is modified with respect to the
jobs of a particular size. Recall that rðjÞ and r�ðjÞ denote the
release time of a job j in Jþ and J�, respectively. Let
j1; j2; . . . ; jn be the jobs of size p running in processor x,
where r�ðj1Þ � r�ðj2Þ � � � � � r�ðjnÞ. We observe that
r�ðjiÞ � rðjiÞ � r�ðjiþ1Þ; the latter inequality is due to the
fact that r�ðjiþ1Þ is actually the release time of the leader of
jiþ1 in Jþ, which is at least rðjiÞ. In other words, the period
where R schedules jiþ1 is a feasible period to schedule ji in
Jþ. The transformation first removes the scheduling of
j1; . . . ; jn from R. Then, for each ji from i ¼ 1 to n� 1, we
schedule ji to the first idle intervals of the schedule after
rðjiÞ using the same speeds of jiþ1 in R. Finally, we
schedule jn to the first idle intervals of the schedule after
rðjnÞ using the same speeds of j1 in R. The transformation is
repeated for each job size. The final schedule obtained for
all processors is Nþ.

As the transformation is local to each processor, Nþ
follows the wayN� dispatches jobs. Consider jobs inJþ in the
order of release time. Because N� is trivially nonmigratory,
Nþ dispatches every m jobs of the same size to different
processors. Thus, Nþ is a CRR-dispatching schedule.
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Analysis. In the transformation above, the maximum
speed and energy of Nþ remains the same as that of N�.
Nevertheless, the analysis of the flowtime is quite tricky.
The increase in flowtime is the increase in execution time
plus waiting time of all jobs. Consider a particular processor
and a particular job size p for which a schedule R is
transformed to R1. Execution time: The speed used by R1 for
the jobs is the same as that used by R, for a permutation of
the jobs. Thus, there is no change in total execution time for
all jobs involved. Waiting time: According to the way we
transform the execution period and speed of ji, one can
argue (by induction) that the start time (resp., completion
time) of ji in R1 is no later than the start time (resp.,
completion time) of jiþ1 in R (see Lemma 17). This property
enables us to show that from N� to Nþ, the increase of total
flowtime is at most dlogP þ 1eXðNþÞ (see Lemma 17),
which is at most 1:322dlogP þ 1epðJþÞ (by Lemma 2). Then,
Lemma 15.1 follows.

Lemma 17. The transformation in Lemma 15 transforms a
trivially nonmigratory schedule N� for J� to a nonmigratory
CRR-dispatching schedule Nþ for Jþ such that

F ðNþÞ � F ðN �Þ þ dlogP þ 1e XðNþÞ.
Proof. As mentioned before, it suffices to bound the waiting

time among all jobs. Due to the tidying step in the course
of constructing the trivially nonmigratory scheduleN� of
J�, we can assume that the jobs of the same size are
processed in the order of release time in Jþ. Consider a
round of the transformation that converts from schedule
R to R1 for a particular processor and a particular job
size p. Note that the waiting time of a job not of size p
does not change, so we focus on jobs of size p. Recall that
the transformation is done by first removing all jobs
j1; j2; . . . ; jn of size p from R. We use R0 to denote this
partial schedule. Let c�ðjÞ and cðjÞ denote the completion
time of job j in R and R1, respectively. We first observe
the following property about the start time and comple-
tion time of jobs ji in R and R1. tu

Proposition. For i ¼ 1; . . . ; n� 1, ji starts running (respec-

tively, is completed) in R1 at or before jiþ1 starts running
(respectively, is completed) in R.

The proposition can be proved by induction on i. Job ji starts
running in R1 at either 1) the first idle time in R0 at or after
cðji�1Þ or 2) the first idle time inR0 at or after rðjiÞ, whichever
larger. By induction, the time 1) is no later than the first idle
time inR0 at or after c�ðjiÞ. By our assumption that jobs of the
same size are scheduled in the order of release time, this is
the first time that R can process job jiþ1. Time 2) is no later
than the first idle time in R0 at or after r�ðjiþ1Þ (since
rðjiÞ � r�ðjiþ1Þ), which is obviously no later than the start
time of jiþ1. Therefore, the start time of ji in R1 is no later
than the start time of jiþ1 in R. Now, cðjiÞ � c�ðjiþ1Þ follows
immediately, since the speed function that R1 uses for ji is
copied from the speed function that R uses for jiþ1.

To bound the increase in waiting time among
j1; j2; . . . ; jn, we characterize such increase, i.e., times which
contribute to the waiting time of ji in R1 but not in R. They
can be times when one of the followings happen:

. R0 works on a job of size other than p when ji is
already completed in R but waiting in R1. In this
case, the time must be during ½c�ðjiÞ; cðjiÞ�.

. R0 is idle when ji�1 has already completed in R but
is running in R1. In this case, the time must be
during ½c�ðji�1Þ; cðji�1Þ�.

In both cases, these times contributed to the waiting time
are times when R1 is running; furthermore, by the
Proposition, such times do not overlap for different ji.
The increase in waiting time over all jobs is thus at most
XðR1Þ. Summing over all processors and all dlogP þ 1e
rounds, the lemma follows.

From Jþ and J� to J 0 and J . Let us turn to the
modification of the schedule to accommodate the jobs in J�

and to handle the reduction in job size when scheduling J .
To construct N in Lemma 15.2, we simply insert each

job j 2 J� into the given schedule Nþ. By definition, j has
a release time later than jobs in Jþ of the same size and
would be dispatched by CRR after all these jobs. Suppose
CRR dispatches j to processor i. Then, we schedule j to
processor i during the first idle periods after j’s release
time using the speed function of j in S�. The total waiting
time of j is at most the total execution time of processor i.
After inserting all jobs in J�, we obtain a CRR-dispatching
schedule N 0 for J 0, with energy usage and maximum
speed preserved. Since at most dlogP þ 1e jobs in J� are
dispatched to each processor, the total increase in flowtime
is at most dlogP þ 1e times the total execution time of all
processors in N 0, which is at most 1:322dlogP þ 1epðJ 0Þ by
Lemma 2.
N 0 immediately implies a nonmigratory schedule N for

J with the same properties. N simply follows N 0 and is idle
whenever the job to schedule is already completed. Thus,
�GðN Þ � �GðN 0Þ.

7 LOWER BOUND

We show a lower bound for minimizing total flowtime plus
energy when there is a maximum speed. The bound holds
even if jobs are restricted to power-of-2 sizes, implying that
CRR-SB is optimal in this setting. We start with a lower
bound of �ðlogP Þ given by Leonardi and Raz [26] on the
competitive ratio of any migratory online algorithm for
flowtime scheduling on fixed-speed processors. Their proof
is based on power-of-2 sized jobs. This proof can be adapted
easily to show the following theorem:

Theorem 18. Any online (migratory) algorithm for minimizing
flowtime plus energy on multiple processors with a maximum
speed has a competitive ratio of �ðlogP Þ. This holds even if
jobs are restricted to have power-of-2 sizes.

Proof. Consider the case that T ¼ 1, which is greater than
the global critical speed when � > 2. Let us consider a
particular online algorithm. Let �Fa, Fa, and �Ga be the
flowtime, fractional flowtime, and flowtime plus energy
of the online algorithm, respectively. By the lower bound
result in [26], there is some constant c that for any online
algorithm (including the one which we are considering),
we can find some input J consisting of jobs of power-of-2
sizes, such that �Fa � ðc logP Þ �Fs, where �Fa is the flowtime
required by the online algorithm, and �Fs is the minimum
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total flowtime. Obviously, the minimum total flowtime is
achieved by running all processors at the maximum
speed 1. The energy consumption of such a schedule is
thus the time the processor is running, which is at most
�Fs. We thus have a schedule of J with �G � 2 �Fs, leading
to that the optimal algorithm have total flowtime plus
energy �Go � 2 �Fs. Together with the bound of �Fa, we
have �Ga � Fa � ðc logP Þ �Fs � ðc=2ÞðlogP Þ �Go, which com-
pletes the proof. tu

8 PRACTICAL CONSIDERATIONS

In this section, we show that our results can be applied to
other models such as more general power function, discrete
speed levels, and models with DVS adjustment overhead.

More general power function. So far, we assume a
simple power function P ðsÞ ¼ s�. Indeed, our results can be
extended for a more general power function P ðsÞ ¼ c�
s� þ �, where c > 0 and � � 0 is the static power consump-
tion. More precisely, we show that any k-competitive online
algorithm for power function P ðsÞ ¼ s� can be easily
extended for the power function P ðsÞ ¼ c� s� þ �, while
preserving k-competitiveness for flowtime plus energy.

Consider three power functions P1ðsÞ ¼ s�, P2ðsÞ ¼
c� s�, and P3ðsÞ ¼ c� s� þ �. We first note that the energy
consumption in the model with power function P2ðsÞ is
exactly c times the energy consumption in the model with
power function P1ðsÞ. Thus, to minimize the objective of
total flowtime plus � times the energy with P2ðsÞ, we can
instead minimize the objective of total flowtime plus c�
times the energy with P1ðsÞ, with exactly the same
competitive ratio.

Then, it is easy to see that any k-competitive online
algorithm for P2ðsÞ is also k-competitive for P3ðsÞ. During
any time period of length ‘, when we use P3ðsÞ instead of
P2ðsÞ, the energy usage of a schedule (both the online
schedule and the optimal one) increases by an additive term
�‘ due to the static power consumption. Thus, the energy
usage of the online algorithm remains at most k times the
optimal schedule. Since the total flowtime remains the
same, the online algorithm is k-competitive for P3ðsÞ.

Discrete speed levels. Our results in previous sections
assume a continuous setting where the processor can run
arbitrarily at any speed between 0 and the maximum
speed T . In the following, we consider a more realistic
discrete setting where the processor can only run at a fixed
number of discrete speed levels. Let 0 ¼ s0 < s1 < � � � <
sd ¼ T be the possible speeds of the processor.

We can easily extend any algorithm A that is
k-competitive for flowtime plus energy to another algorithm
Ad for the discrete setting and algorithm Ad is ð��kþ
1Þ-competitive for flowtime plus energy, where � is the
maximum ratio between two consecutive nonzero speeds
(e.g., if the speed levels are uniformly distributed between
½0; T �, then � ¼ 2). We modify the speed functions of
algorithm A to obtain algorithm Ad. Consider a particular
processor. At any time t, if algorithm A runs at a speed sðtÞ
in the continuous setting, algorithm Ad runs at the lowest
speed level si such that si � sðtÞ in the discrete setting.

First of all, the flowtime required by Ad is no more than
that required by A. We then consider energy consumption.

When the speed is rounded up to the next higher level,
either the speed is increased by a factor of at most �, or the
new speed is the slowest level s1. In the former, the energy
required increases by a factor of at most ��. In the latter, the
increase in energy consumption may be more. However, the
total power consumption during the time when the latter
case occurs is no larger than the total power consumption
required by the optimal algorithm to run these work in the
discrete setting, since the processor cannot run slower
either. Summarizing the two cases, the algorithm Ad is
ð��kþ 1Þ-competitive.

Theorem 19. Consider processors with discrete speed levels
0 ¼ s0 < s1 < � � � < sd ¼ T . Let � be the maximum ratio
between two consecutive nonzero speeds. For minimizing total
flowtime plus energy, we have the following:

. If an algorithm A is k-competitive using processors
with continuous speed in ½0; T �, then algorithm Ad is
ð��kþ 1Þ-competitive using processors with discrete
speed levels s0; s1; . . . ; sd.

. If in the continuous setting, an algorithm A is
k-competitive using processors with maximum speed
ð1þ �ÞT for some � > 0 (against an optimal migra-
tory schedule with maximum speed T ), then in the
discrete setting, algorithm Ad is ðmaxf�; ð1þ
�Þg�kþ 1Þ-competitive when using processors with
discrete speed levels s0; s1; . . . ; sd and one more speed
level sdþ1 ¼ ð1þ �ÞT (against an optimal migratory
schedule with speed levels s0; s1; . . . ; sd).

Models with DVS adjustment overhead. In real
systems, there are overheads to perform DVS adjustments.
A thorough study would also take into account such
overheads. On the other hand, various experimental results,
e.g., by Yuan and Qu [32], [37], showed that models with
DVS adjustment overheads have very similar energy saving
characteristic as an idealized model like the one we studied.
They also find that the time required for a voltage (and
hence speed) transition is also negligible as compared with
the job execution time. We thus expect our result, which
ignores the overheads to be useful in practice.

9 CONCLUSIONS AND FUTURE WORK

This paper extends the theoretical study of online schedul-
ing for minimizing flowtime plus energy to the multi-
processor setting. We present and analyze a simple
nonmigratory online algorithm that makes use of the
classified round-robin to dispatch jobs. Even in the worst
case (for any job distribution), its performance is within
OðlogP Þ times of the optimal migratory offline algorithm,
where P is the ratio of the maximum job size to the
minimum job size. Besides theoretical work, we believe this
work can also provide insights for future practical work.
The next step of this work would be to conduct experi-
mental study on our algorithm. Also, this paper focuses on
sequential jobs, while the problem for parallel jobs (i.e., jobs
that can run on the m processors simultaneously) can be
easily reduced to the case of single-processor scheduling.
Thus, an interesting open problem is to consider jobs with a
changing execution characteristics from fully parallelizable
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to completely sequential throughout their life spans. Note
that such a direction has been considered in traditional
flowtime scheduling [19].

APPENDIX

GLOBAL CRITICAL SPEED AND CRITICAL SPEED

In this Appendix, we prove several lemmas about global
critical speed and critical speed.

Global critical speed. Albers and Fujiwara [1] observed
that when scheduling a single job j on a processor for
minimizing total flowtime plus energy, j should be
executed at the global critical speed, i.e., 1=ð�� 1Þ1=�.

Lemma 20 [1]. At any time after a job j has been run on a
processor for a while, suppose that we want to further execute j
for another x > 0 units of work and minimize the flowtime
plus energy incurred to this period. The optimal strategy is to
let the processor always run at the global critical speed.

Using Lemma 20, we prove Lemma 2 stated in Section 2.
We restate the lemma first and then give the proof.

Lemma 2. Given any m-processor schedule S for a job set J ,
we can construct an m-processor schedule S0 for J such that
S0 never runs a job at speed less than the global critical speed
and �GðS0Þ� �GðSÞ. Moreover, S0 needs migration if and
only if S does; and max-speedðS0Þ�maxfmax-speedðSÞ;
1=ð�� 1Þ1=�g.

Proof. Assume that there is a time interval I in S during
which a processor i is running a job j below the global
critical speed. If S needs migration, we transform S to a
migratory schedule S1 of J such that job j is always
scheduled in processor i. This can be done by swapping
the schedules of processor i and other processors for
different time intervals. If S does not need migration,
the job j is entirely scheduled in processor i and S1 is
simply S. In both cases, �GðS1Þ ¼ �GðSÞ.

We can then improve �GðS1Þ by modifying the
schedule of processor i as follows: Let x be the amount
of work of j processed during I on processor i. First, we
schedule this amount of work of j at the global critical
speed. Note that the time required is shortened. Then, we
move the remaining schedule of j backward to fill up the
time shortened. By Lemma 20, the flowtime plus energy
for j is preserved. Other jobs in J are left intact. To obtain
the schedule S0, we repeat this process to eliminate all
such intervals I. tu

Critical speed. We generalize the notion of global critical
speed to take fractional weight into consideration. We give
a nontrivial observation that when scheduling a single job j
on a processor for minimizing the fractional flowtime plus
energy, the processor should always keep up with its
critical speed ðq=ð�� 1ÞpðjÞÞ1=�, where q � pðjÞ denotes the
remaining work of job j at the time of concern. Note that the
critical speed of j changes over time.

Lemma 21. At any time after a job j has been run on a
processor for a while, suppose that we want to further execute
j for another x > 0 units of work and minimize the fractional
flowtime plus energy incurred to this period. The optimal

strategy is to let the processor always run at the critical

speed.

Proof. Let p ¼ pðjÞ, and let q � p be the remaining work of j.
We first consider the case to further process an
infinitesimal amount of work (i.e., x! 0). In this case,
we can assume that the speed s is constant. The time
required is t ¼ x=s, and the fractional flowtime plus
energy incurred, denoted by �G, is s�tþ ðq�x=2

p Þt. To find
the optimal speed (or equivalently, optimal time) to
minimize �G, we set d�G

dt ¼ 0. That means,

ð1� �Þ x
t

� ��
þ q � x=2

p
¼ 0;

or equivalently,

x

t
¼ q � x=2
ð�� 1Þp

� �1=�

:

Since x! 0, we have s ¼ x=t ¼ ðq=ð�� 1ÞpÞ1=�.
Next, we consider x being arbitrarily large. Consider a

schedule in which the processor is not running at the
critical speed after processing x0 < x units of work. Let
�q be an infinitesimal amount. From the discussion
above, we can change the speed to the critical speed to
obtain the optimal fractional flowtime plus energy for
processing the next �q units of work. Thus, we can
eventually obtain a schedule that always runs at the
critical speed. tu

We can then prove Lemma 3 stated in Section 2.

Lemma 3. Given any single-processor schedule N for a job

set J , we can construct another schedule N 0 for J such

that N 0 never runs a job at speed less than its critical

speed and GðN 0Þ � GðN Þ. Moreover, max-speedðN 0Þ �
maxfmax-speedðN Þ; 1=ð�� 1Þ1=�g.

Proof. The transformation uses Lemma 21 and the same
arguments in the proof of Lemma 2. tu
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