
Theoretical Computer Science 411 (2010) 3587–3600

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Deadline scheduling and power management for speed
bounded processorsI

Xin Han a,1, Tak-Wah Lam b, Lap-Kei Lee c,∗, Isaac K.K. To d,2, Prudence W.H. Wong d,2
a School of Software, Dalian University of Technology, Dalian, China
b Department of Computer Science, University of Hong Kong, Hong Kong
cMax-Planck-Institut für Informatik, 66123 Saarbrücken, Germany
d Department of Computer Science, University of Liverpool, United Kingdom

a r t i c l e i n f o

Article history:
Received 28 January 2010
Accepted 24 May 2010
Communicated by D.-Z. Du

Keywords:
Online algorithms
Competitive analysis
Deadline scheduling
Speed scaling
Sleep management
Energy saving

a b s t r a c t

In this paper we consider online deadline scheduling on a processor that can manage its
energy usage by scaling the speed dynamically or entering a sleep state. A new online
scheduling algorithm called SOA is presented. Assuming speed can be scaled arbitrarily
high (the infinite speed model), SOA can complete all jobs with reduced energy usage,
improving the competitive ratio for energy from 22α−2αα + 2α−1 + 2 (Irani et al. (2007)
[17]) toαα+2,whereα is the constant involved in the speed-to-power function, commonly
believed to be 2 or 3. More importantly, SOA is the first algorithm that works well even if
the processor has a fixed maximum speed and the system is overloaded. In this case, SOA
is 4-competitive for throughput and (αα+α24α+2)-competitive for energy. Note that the
throughput ratio cannot be better than 4 even if energy is not a concern.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Speed scaling and deadline feasibility.
Energy efficiency has become a major issue in the design of microprocessors, especially for battery-operated devices. A

modern technology named dynamic speed scaling [11,15,23,24] enables a processor to vary the speed dynamically. Running
a job slower reduces energy usage, but it takes longer and may affect performance. In the past few years, a lot of effort has
been devoted to revisiting online job schedulingwith speed scaling and energy usage taken into consideration. The challenge
arises from the conflicting objectives of providing good ‘‘quality of service’’ (QoS) and conserving energy. In themodel being
considered, a processor, when running at speed s, consumes energy at the rate of sα , where α is typically 2 [22] or 3 (the
cube-root rule [11]). These studies first focused on the infinite speed model (e.g., [25,7,8]) where the processor speed can be
scaled arbitrarily high, and have recently shifted to the more realistic bounded speed model (e.g., [4,12,19]) which imposes a
bound T on the maximum allowable speed.
Deadline feasibility is a commonly used QoS measure for job scheduling. In the online setting, we assume that jobs

with sizes and deadlines can arrive at unpredictable times. These jobs are to be run on a processor. Note that preemption

I A preliminary version of this paper has appeared in the Proceedings of the 9th Workshop on Models and Algorithms for Planning and Scheduling
Problems.
∗ Corresponding author. Tel.: +49 681 9323 5111; fax: +49 681 9325 199.
E-mail addresses: hanxin.mail@gmail.com (X. Han), twlam@cs.hku.hk (T.-W. Lam), lklee@mpi-inf.mpg.de (L.-K. Lee), isaacto@liverpool.ac.uk

(I.K.K. To), pwong@liverpool.ac.uk (P.W.H. Wong).
1 X. Han is partially supported by the Fundamental Research Funds for the Central Universities.
2 I.K.K. To and P.W.H. Wong are partially supported by EPSRC Grant EP/E028276/1.

0304-3975/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2010.05.035

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:hanxin.mail@gmail.com
mailto:twlam@cs.hku.hk
mailto:lklee@mpi-inf.mpg.de
mailto:isaacto@liverpool.ac.uk
mailto:pwong@liverpool.ac.uk
http://dx.doi.org/10.1016/j.tcs.2010.05.035

3588 X. Han et al. / Theoretical Computer Science 411 (2010) 3587–3600

is allowed and has no penalty. When scheduling jobs, the primary concern is the throughput, i.e., the total size of jobs
completed entirely by their deadlines. When energy is also a concern, we want to achieve the maximum throughput while
using the minimum amount of energy.
The theoretical study of energy-efficient algorithms for deadline scheduling was pioneered by Yao et al. [25]. They

considered the infinite speed model, which makes it feasible to complete all jobs by their deadlines. The only concern is
the energy usage. Yao et al. [25] gave a simple online speed scaling algorithm called AVR that is 2α−1αα-competitive for
energy, and proposed another algorithm called OA (Optimal Available). Bansal et al. [7] eventually showed that OA is αα-
competitive; they also gave a 2(α/(α−1))αeα-competitive algorithm (which is called BKP and is better than OA if α is larger
than 5). Recently, the result was improved by the algorithm qOA [6] with the competitive ratio 4α/(2

√
eα). Albers et al. [2]

have also considered this problem in the multiprocessor setting.
When the maximum processor speed is bounded, it is not always possible to complete all jobs and it is no longer

trivial how to select the jobs so as to strike a balance between throughput and energy. Chan et al. [12] were the first to
study the bounded speed model. They proposed a job selection algorithm FSA which, when coupled with the speed scaling
algorithm OAT (OA capped at T), is 14-competitive for throughput and (αα + α24α)-competitive for energy. Later, Bansal
et al. [4] proposed amore aggressive job selection algorithm Slow-D, improving the throughput ratio to 4, whilemaintaining
the same energy ratio. Note that no algorithm can be better than 4-competitive for throughput even if energy is not a
concern [9].
The study of online speed scaling and energy-efficient scheduling has been extended to other QoSmeasures. In particular,

the problem of minimizing flow time and energy has attracted a lot of attention [1,8,4,21,13,5,20,14].

Sleepmanagement plus speed scaling. In older dayswhen the speed scaling technologywas not available, energy reduction
was mainly achieved by allowing a processor to enter a low-power sleep state, yet waking up requires extra energy. In the
(embedded system) literature, there are different energy-efficient strategies for bringing a processor to sleep during a period
of zero load [10]. This online problem is usually referred to as dynamic power management, in which the input comprises the
start time and finish time of the zero-load period (the latter is known onlywhen the period ends). There are some interesting
results with competitive analysis (e.g., [3,16,18]). The problem assumes the processor is in either the awake state or the sleep
state. The awake state always requires a static power σ > 0. Only when the processor is in the sleep state is the energy
usage zero, yet a wake-up back to the awake state requires ω > 0 energy.
It is natural to extend the model of energy-efficient scheduling to allow a processor to exploit both speed scaling and

the sleep state. To be precise, we assume that, in the awake state, a processor running at speed s ≥ 0 consumes energy
at the rate sα + σ , where σ > 0 is the static power and sα is the dynamic power.3 In this case, job scheduling involves
three components: (i) determine when to sleep and wake up; (ii) when not sleeping, determine which job to run; and (iii)
determine at what speed to run a job. In contrast to the dynamic power management problem, here the length of the sleep
period is part of the optimization (instead of the input). Adding a sleep state changes the nature of speed scaling. Without
a sleep state, running a job slower is a natural way to save energy. With a sleep state, one can also save energy by working
faster to allow a longer sleep period. It is not trivial how to strike a balance. Notice that AVR, OA, BKP, and qOA no longer
perform well, and their competitive ratios can be made arbitrarily large.
Irani et al. [17] were the first to study deadline scheduling that exploits both speed scaling and sleep management.

Under the infinite speed model, they proposed a sleep management algorithm called Procrastinator to work with AVR
or any speed scaling algorithms that are ‘‘additive’’ and ‘‘monotone’’ (see [17] for definitions). The resulting algorithm can
complete all jobs and is (22α−2αα + 2α−1 + 2)-competitive for energy.4 Unfortunately, OA, BKP and qOA are not additive;
otherwise Procrastinator could yield a better ratio. Furthermore, Procrastinator does not work for the bounded speed
model as it requires extra speed to catch up with the optimal offline algorithm. It was indeed an open problem whether
there exists an algorithm that can exploit sleep management and bounded speed scaling effectively and has constant
competitive ratios for both throughput and energy [12]. On the other hand, the problem seems easier when one switches
the context to flow time scheduling; recently, Lam et al. [19] gave a sleepmanagement algorithm that fits well with existing
speed scaling algorithms using a speed bounded processor, yielding a competitive algorithm for minimizing flow time plus
energy.

Our contribution. In this paper, we present an online algorithm SOA that can exploit speed scaling and a sleep state to
support energy-efficient deadline scheduling. SOA can be considered as the sleep-aware version of the existing speed scaling
algorithm OA [25]. SOA improves the previous result on the infinite speed model and is the first competitive algorithm for
the bounded speed model (Table 1 gives a summary).

• In the infinite speed model, SOA completes all jobs and is max{αα + 2, 4}-competitive for energy, improving the ratio of
Irani et al. [17]. Note that αα + 2 > 4 if α ≥ 2.
• The major contribution of SOA is on the bounded speed model. We show that SOA capped at the maximum speed T can
support the job selection strategy Slow-D [4] to give the first online algorithm that is 4-competitive for throughput and
(αα + α24α + 2)-competitive for energy.

3 Static power is dissipated due to leakage current and is independent of the processor speed, and dynamic power is due to dynamic switching loss and
increases with the speed.
4 In general, using a c-competitive speed scaling algorithm, Procrastinatorwould yield a ratio of 2α−1c + 2α−1 + 2.

X. Han et al. / Theoretical Computer Science 411 (2010) 3587–3600 3589

Table 1
Competitive ratios for throughput and energy when scheduling on a processor
that exploits both speed scaling and sleep management.

Infinite speed model Bounded speed model

Throughput 1 4 [this paper]

Energy usage 22α−2αα + 2α−1 + 2 [17]
max{αα + 2, 4} [this paper] αα + α24α + 2 [this paper]

An interesting feature of Procrastinator is thatwhen jobs are releasedwhile the processor is in the sleep state, execution
of these jobs is delayed to prolong the sleep period until the amount of work accumulates to a certain level. To compensate
for the delay, extra speed on top of the speed recommended by the speed scaling algorithm (e.g., AVR) is needed to execute
these delayed jobs. This approach, however, is difficult to use in the bounded speedmodel.We cannot increase the processor
speed above T to catch up with the delayed jobs. If we simply cap the speed of Procrastinator at T , it would not be fast
enough to support any reasonable job selection strategy like FSA or Slow-D, and the throughput ratio is unbounded.
Our new algorithm SOA is based on OA. It does not avoid delaying job execution when the processor is idle. But it does

not rely on extra speed to run the delayed jobs and can be used in the bounded speed model. An important observation is
that we can treat the delayed jobs as if they were just released at the moment when the processor wakes up, and count on a
more complicated analysis to prove that this is indeed enough to achieve a sufficiently large throughput. As we do not have
to rely on extra speed to run the delayed jobs, the speed of SOA only increases modestly even during ‘‘busy’’ periods and
SOA remains O(1)-competitive for energy.

2. Preliminaries

The input is a job sequence arriving online. We denote the release time, work requirement (or size) and deadline of a
job J as r(J),w(J) and d(J), respectively. We schedule the jobs on a single processor. Preemption is allowed; a preempted job
can resume at the point of preemption. The throughput is defined as the total work of the jobs completed by their deadlines.
To ease our discussion, we assume that an algorithm will not process a job after missing its deadline, and whenever we say
that a job is completed, it always means being completed by the deadline.

Speed and power. At any time, a processor is in either a sleep state or an awake state. When a processor is in a sleep state,
the speed is zero and the power is zero. When a processor is in an awake state, it can vary its speed in [0, T], where T is the
fixed maximum speed; the rate of energy consumption is modeled as sα + σ , where s is the current speed, and α > 1 and
σ > 0 are constants. We call sα the dynamic power and σ the static power . A state transition requires energy; without loss
of generality, we assume a transition from the sleep state to the awake state requires an amount of ω > 0 of energy, and
the reverse takes zero energy. We assume that a state transition takes no time. It is useful to distinguish two awake state
types: idle states with zero speed, andworking states with positive speed. Note that idle state consumes energy. Initially the
processor is in a sleep state.
Consider any schedule. The energy usage E is divided into three parts: W denotes the wake-up energy due to wake-up

transitions (the total number of wake-ups multiplied by ω), Ei is the idling energy (static power consumption in the idle
state), and Ew is the working energy (static and dynamic power consumption in the working state).

Deadlines, density and feasibility. Consider a sequence of jobs with deadlines. We want to maximize the throughput, i.e.,
the sumofw(J) over all jobs J that can be completed by its deadline d(J). At time t , letw(t, t ′), for any t ′ > t , be the remaining
work of jobs arriving at or before t and with deadlines in (t, t ′]. We define the density ρ(t, t ′) to be w(t, t ′)/(t ′ − t), and
the highest density ρ to be maxt ′>t ρ(t, t ′). Intuitively, ρ is a lower bound on the average speed required to complete all jobs
by deadlines. The algorithm OA always uses the speed ρ of the current time to run the job with the earliest deadline (EDF
strategy). For any schedule S, we use S(t) to denote the speed used at time t .
In the bounded speed model, at any time t , we say that a set of jobs is feasible if at time t , all remaining work of these

jobs can be completed by their deadlines by running the processor at speed T starting at t (and using, say, the EDF strategy
to select the current job for running).

Critical speed. If a job J is run to completion using speed s, the energy usage is P(s)w(J)/s, where P(s) = sα+σ . When the
deadline is not a constraint, the energy usage is minimized at the speed s satisfying P(s) = s×P ′(s), i.e., s = (σ/(α−1))1/α .
We call this speed the critical speed scrit. In the following, we assume scrit ≤ T . The case when scrit > T is not interesting as
the competitive ratio shown in this paper can be easily achieved by running the processor at speed T whenever it is awake
(this will minimize the working energy as defined above).

3. SOA, Sleep-aware Optimal Available

In this section, we describe the online algorithm SOA, which dynamically determines the processor speed, as well as
when to sleep and wake up. In the infinite speed model, SOA (coupled with EDF) can complete all jobs. In the bounded

3590 X. Han et al. / Theoretical Computer Science 411 (2010) 3587–3600

speed model, we cap the speed of SOA at the maximum speed T ; this is sufficient to support the job selection algorithm
Slow-D [4] giving a 4-competitive algorithm for throughput. The difficult part is the analysis of the energy of SOA, especially
in the bounded speed model, which is detailed in Section 4.

3.1. SOA in the infinite speed model

Without a sleep state, a scheduler, to save energy, would run a job as slow as its deadline allows. When a sleep state
is allowed, we want to create longer idle periods and let the processor sleep more. One possible way is to postpone job
execution during idle time, and work faster later. This idea was first used by Procrastinator [17], which relies on extra
speed to catch up with the delayed jobs. To save energy, as well as to make the above idea work in the bounded speed
model, we observe that the extra speed is indeed not necessary and SOA only mildly increases the maximum speed and
energy usage even during the ‘‘busy’’ periods.
At any time t , SOA determines the processor speed by making reference to the currently highest density ρ (i.e.,

maxt ′>t w(t, t ′)/(t ′ − t)). SOA prefers to extend an idle (or sleep) period when the highest density ρ is small. If ρ is small
after the processor has idled for ω/σ time units, then the processor switches to the sleep state. Later when ρ is big enough,
SOA is forced to set a high speed to avoid missing any deadline. On the other hand, for the working state, it is simple to
determine the next transition. The processor keeps on working as long as there are unfinished jobs; otherwise it switches
to the idle state. Note that in the infinite speed model, we target completing all jobs and we use EDF to pick the current job
for execution. Details are given in Algorithm 1.
For simplicity, the algorithm is written assuming that the scheduling algorithm is continuously running. In practice, we

can rewrite the algorithm such that the execution is driven by discrete events like job release, job completion and wake-up.
Recall that scrit denotes the critical speed.

Algorithm 1 SOA, Sleep-aware Optimal Available
Consider any time t . Let ρ be the highest density at time t .

In the working state: If ρ > 0, keep working on the job with the earliest deadline (EDF) at speed max{ρ, scrit}; otherwise
(i.e., for ρ = 0) switch to the idle state.

In the idle state: Let t ′ ≤ t be the last time in the working state (t ′ = 0 if undefined). If ρ ≥ scrit, switch to the working
state; otherwise if (t − t ′)σ = ω, switch to the sleep state.

In the sleep state: If ρ ≥ scrit, switch to the working state.

The following theorem is immediate from the definition of SOA.

Theorem 1. In the infinite speed model, SOA (coupled with EDF) can complete all jobs.
As jobs arrive over time, the speed determined by SOA, as a function of time, can be quite complex. Yet the structure is

much simpler when no more jobs arrive. At any time t , let SOAt denote the planned schedule of SOA, i.e., the schedule that
SOA would produce if no more jobs arrive after time t . An example is depicted in Fig. 1. By definition, SOAt satisfies the
following properties.

Property 2. Consider the period of time starting from t.
(i) SOAt increases its speed at most once. This is possible only if SOAt is in an idle or sleep state at t, and increases the speed from 0
to scrit at some time after t.

(ii) SOAt decreases its speed only at deadlines of jobs, or when all jobs are completed.

An implication of Property 2(i) and (ii) is that after t , SOAt is either a falling staircase-like function (see SOA3 and SOA4 in
Fig. 1) or a function with a single step of value scrit (see SOA0 and SOA1 in Fig. 1).

3.2. Slow-D(SOA) in the bounded speed model

In the bounded speed model, it may not be possible to finish all jobs. Two strategies are needed, one for selecting jobs
and one for determining the speed. To determine the speed, we simply cap the speed at T . That is, at any time t , we keep a
simulated SOA schedule and the processor runs at the speed min{SOA(t), T }. We denote this speed function as SOAT(t).
In [4], which assumes no sleep state, the job selection algorithm Slow-D together with the speed function OA (capped
at T) is proven to be 4-competitive for throughput. With the sleep state, we substitute OA by SOA and call the resulting
algorithm Slow-D(SOA). We will describe the details and analyze the throughput of Slow-D(SOA) in Section 5. The proof
that Slow-D(SOA) remains 4-competitive for throughput is similar to that in [4].
The analysis of the energy usage of Slow-D(SOA) is more challenging and we give the details in Section 4. Note that we

will analyze the energy usage of the speed function SOAT(t), without knowing the details of Slow-D. To ease our analysis
we define SOAT to be an imaginary schedule which at time t , processes the same job as is chosen by SOA (instead of Slow-D)
at the speed SOAT(t). Jobs may not be scheduled to completion in the schedule SOAT.

X. Han et al. / Theoretical Computer Science 411 (2010) 3587–3600 3591

Fig. 1. An example showing how SOAt changes as jobs are released. The jobs are shown on the left as rectangles. The release time and deadline of a job are
the left and right edge of the rectangle, and the size is represented by its area. The SOAt are shown on the right, the thick vertical line is the current time.
Here scrit = 2.

4. Energy consumption of Slow-D(SOA)

In this section, we show that SOAT, and thus Slow-D(SOA), is (αα + α24α + 2)-competitive for energy in the bounded
speedmodel, against the optimal offline algorithmOPT that achieves themaximum throughput; and SOA ismax{αα+2, 4}-
competitive for energy in the infinite speed model (Theorem 14 in Section 4.2.5).
Recall that the energy usage E is divided into three types: the wake-up energy W , the idle energy Ei due to the static

power σ during idle state, and the working energy Ew due to static and dynamic power during working state (we use a
superscript ∗ for OPT, e.g., E∗). In Section 4.1, we show that the idle energy and wake-up energy contribute only a small
factor when compared with the energy used by the optimal offline algorithm. In Section 4.2, we give the detailed analysis
of the working energy using potential functions.

4.1. Idle energy and wake-up energy

As observed by Irani et al. [17], the idle energy and wake-up energy of Procrastinator contribute only a small factor
when compared with the energy used by OPT. Note that their proof assumes that ω = 1. In this section, we show that SOA
has a similar property for arbitrary ω (Lemma 4) and the corresponding factor is smaller than that of Procrastinator. We
define an idle interval and a sleep interval as a maximal time period when the processor is in the idle state and the sleep
state, respectively. We first show that in a schedule following the idle and sleep strategy like SOA, there cannot be many
idle intervals that overlap with a sleep interval of OPT.

Lemma 3. Consider a schedule using the same idle and sleep strategy as SOA. (i) Suppose I is an idle interval lying completely in
a sleep interval S of OPT. Then there is no idle interval after I overlapping with S. (ii) There is no idle interval of SOA overlapping
with the first sleep interval of OPT.

Proof. (i) Consider any two consecutive idle intervals I1 = [x1, y1) and I2 = [x2, y2) in SOA, and the first job J run after
I1 (with earliest deadline). Since SOA switches to the idle state only when ρ = 0, any job run after I1, including J , must
arrive after x1. At time y1, the processor speed is set as ρ implying that the processor will keep busy at least until d(J).
In other words, x2 ≥ d(J). If I1 lies completely in a sleep interval S of OPT, then OPT cannot be sleeping entirely during
[x1, x2); otherwise, we can improve OPT by completing J as well to achieve higher throughput, contradicting the optimality.
Therefore, I2 does not overlap with S.
(ii) Since the processor is in a sleep state initially for both SOA and OPT, the statement follows for the same argument. �

With the above lemma, we now show that it suffices to focus on the working energy.

Lemma 4. If the working energy of an algorithm using the same idle and sleep strategy as SOA is at most c times that of OPT,
then its total energy is at mostmax{c + 2, 4} times that of OPT.

Proof. Suppose in OPT there arem sleep intervals and a total of x time units of idle state, i.e., E∗ = E∗w+(m−1)ω+xσ (note
that the processor is in a sleep state initially and finally). Consider the cost of SOA. To account forW , each idle interval with
a transition to a sleep state pays for the wake-up cost ω of the previous wake-up. We bound the cost of an idle interval in
two ways. Firstly, the cost is at most 2ω: ω to keep the processor awake for at most ω/σ time units, and ω for the wake-up

3592 X. Han et al. / Theoretical Computer Science 411 (2010) 3587–3600

(in the case where it transits to sleep state eventually). Secondly, the cost of any idle interval of length yi is at most 2yiσ :
yiσ if yi < ω/σ , and yiσ + ω = 2yiσ if yi = ω/σ .
To relate to OPT, we distinguish idle intervals of two types: intervals that overlap with some sleep interval in OPT and

intervals that do not. The number of intervals of the first type is at most 2(m − 1) (by Lemma 3) costing a total of at most
4(m− 1)ω. Suppose y is the total length of the intervals of the second type. During these intervals, OPT must have spent at
least yσ to keep the processor awake, i.e., E∗w + xσ ≥ yσ , where x is the total length of idle periods in OPT, so the total cost
of these intervals is at most 2(E∗w + xσ). Considering all idle intervals,W + Ei ≤ 4(m− 1)ω + 2E

∗
w + 2xσ .

Combining with Ew ≤ cE∗w, we have E ≤ (c + 2)E
∗
w + 4(m− 1)ω + 4xσ ≤ max{c + 2, 4}E

∗. �

4.2. Working energy and potential analysis

We now compare the working energy Ew of SOAT and E∗w of OPT (recall that SOAT is the imaginary schedule which at
time t , processes the same job as SOA at the speed SOAT(t) = min{SOA(t), T }). The analysis follows the framework of the
amortization and potential analysis of OAT [12] (OA capped at T).
At any time t , let Ew(t) and E∗w(t) be the corresponding values of Ew and E

∗
w incurred up to t . We will define two potential

functions φ(t) and β(t), which are functions of time satisfying the following conditions: (i) φ(0) = β(0) = 0 and at a time
te after all job deadlines, φ(te) = 0 and β(te) is small; and (ii) the following inequality holds at any time t:

Ew(t)+ φ(t)− β(t) ≤ ααE∗w(t) . (1)

We can then apply the inequality at te to obtain Ew ≤ ααE∗w + β(te).
The two potential functions φ(t) and β(t) to be defined in Section 4.2.1 are continuous functions except at some discrete

times. To prove Inequality (1), we follow the framework in [12] to consider how the potential functions change in two
different scenarios, namely, at the arrival time of jobs and at any other time. For the former, we show that φ − β can
never increase (Lemma 12 in Section 4.2.4). For the latter, we show that the rate of change of various functions satisfies the
following bound (Lemma 7 in Section 4.2.2):

dEw(t)
dt
+
dφ(t)
dt
−
dβ(t)
dt
≤ αα

dE∗w(t)
dt

. (2)

Then in Section 4.2.5, we consider the simple boundary cases and complete the proof of Inequality (1) and the overall energy
competitive analysis of SOAT and Slow-D(SOA).

4.2.1. Potential functions
Belowwe show how to extend the analysis in [12] to the setting with the sleep state. Roughly speaking, φ(t) denotes the

difference of the unfinished work of SOAT and OPT ‘‘weighted’’ by a special function to make it compatible with the energy,
and β(t) denotes the weighted amount of work that SOAT has processed for jobs that OPT does not complete (note that OPT
may complete only a subset of jobs). The potential functions φ and β give different weights to work. For β , work is weighted
by a simple multiplier α2Tα−1. For φ, the weight is more complicated and not uniform; it is based on a notion called critical
intervals, which is used in [12]. To handle the presence of idle and sleep periods, we use a new definition of critical intervals.
To define φ and β , we first define jobs of two types depending on whether OPT completes the jobs.

Type-0 and type-1 jobs. Note that OPT does not aim to complete all jobs. For the sake of analysis, we say that a job is
type-1 if OPT completes the job, and type-0 otherwise. We assume OPT does not run a type-0 job at any time. The work due
to type-0 jobs is called type-0 work and similarly we have type-1 work for type-1 jobs. Note that the online algorithm does
not know such a classification.
Neither SOAT nor OPT intend to complete all jobs. At any time t , the unfinished work no longer means the unfinished

work of all jobs. For OPT, we confine the unfinished work to type-1 jobs only. For SOAT, the unfinished work of SOAT at t
refers to the amount of work to be done after t in SOATt , the planned SOAT schedule calculated at t .
As mentioned earlier, φ(t) captures the difference in progress of SOAT and OPT while β(t) captures the work that SOAT

would process for type-0 jobs. Since SOATmay schedule jobs including type-0 jobs, thismakes it difficult to relate the energy
and remainingwork of SOAT and OPT. For example, when a type-0 job arrives, the unfinishedwork of OPT remains the same,
yet this job will boost the unfinished work of SOAT. This problem is resolved by the potential function β , discounting the
effect of type-0 jobs in the amortization analysis.

Potential function β(t).We first define β(t) to be α2Tα−1 times the type-0 work processed in SOATt (this includes the
type-0work that has already been processed and the unfinished type-0work yet to be processed in the planned schedule). It
has been shown in [12] that the amount of type-0 work that any algorithm (including OAT and SOAT) can process is at most
4 times the total work that OPT can complete (or equivalently, all type-1 work). This leads to the following upper bound on
β(te) imposed by the working energy of OPT (recall that te is the time after all job deadlines).

Lemma 5 ([12]). β(te) ≤ α24αE∗w(te).

X. Han et al. / Theoretical Computer Science 411 (2010) 3587–3600 3593

Potential function φ(t). The value φ(t) is essentially a weighted sum of the amount of unfinished work of each job J
in SOATt and in OPT. The weight is based on the notion of critical intervals (which was first introduced in [7] and refined
in [12] for analyzingOA andOAT, respectively). Previously, critical intervalswere defined on the basis of the property that the
planned schedule is a falling staircase-like function. Yet, to handle a sleep state, the definition of critical intervals becomes
not straightforward due to Property 2(i). Below we give a new definition of critical intervals and unfinished work. Consider
the current time t and the planned SOAT schedule calculated at t , SOATt .

• We define the function ρ̂(t ′) = max{SOATt(t ′), scrit} for t ′ > t . Note that ρ̂(t ′) is exactly SOATt(t ′) unless SOATt(t ′) = 0.
By Property 2(i) and (ii), after t , SOATt is either a falling staircase-like function or one with a single step of value scrit.
Taking the maximum with scrit ensures that ρ̂ is always a falling staircase-like function.
• Define a sequence of times as follows: Let c0 = t . For i ≥ 1, define ci such that (ci−1, ci] is themaximal time period where
ρ̂ does not change in value. Each interval (ci−1, ci] is called a critical interval. We use ρ̂i to denote the unchanged value of
ρ̂ in the interval (ci−1, ci]. Because of the staircase property, we have ρ̂1 > ρ̂2 > ρ̂3 > · · · .
• By definition, SOAT schedules jobs in accordance with SOA, but using a speed capped at T . Unlike SOA, SOAT does not
aim to complete every job. For any currently available job J , if the deadline d(J) is in the critical interval (ci−1, ci] and SOA
plans to schedule J for x time units, then SOATt is to process ρ̂i x units of work for J after time t . We define the unfinished
work of J under SOAT to be ρ̂i x.

The potential function φ(t) weights the unfinished work of the currently available jobs according to which critical
intervals their deadlines fall into. At time t , with respect to the critical interval (ci−1, ci],

• letwa(i) be the amount of unfinished work under SOAT for currently available jobs with deadlines in (ci−1, ci];
• letwo(i) be the amount of unfinished type-1 work under OPT for currently available jobs with deadlines in (ci−1, ci].

We apply the weight of αρ̂α−1i to the unfinished work with deadlines in (ci−1, ci] and define

φ(t) = α
∑
i≥1

ρ̂α−1i (wa(i)− αwo(i)).

The rest of this section is devoted to proving Inequality (1). As mentioned earlier, we consider the potential functions to
change between job arrivals and when jobs arrive.

4.2.2. Change of potential between job arrivals
Before we consider the change of the potential when no job is being released, we first state a fact about the critical speed

scrit.

Fact 6. [17] For any speed s, we have s
α
crit+σ

scrit
≤
sα+σ
s .

Let t0 be the current time. Assume that no job arrives at time t0. Let sa and so denote the speed of SOAT and OPT at t0,
respectively. We observe the changes of various components of Inequality (1) as follows.

• The rate of change of working energy dEw(t)dt and dE
∗
w(t)
dt depends on sa and so, respectively. The change in working energy

is sα + σ when running at speed s, and 0 when idling.
• As no job arrives at t0, the planned SOAT schedule does not change at t0, implying that the amount of type-0 work does
not change, so β(t) does not change, i.e., dβ(t)dt = 0 at t0.
• For φ(t), this also implies that the weight of a job does not change at t0.

If sa > 0 at time t0, SOAT is going to process a job with deadline in the first critical interval (as defined at time t0). In
other words,wa(1) is decreasing at the rate of sa, ρ̂1 = sa, and the weight of the running job is αsα−1a .
If so > 0 at time t0, the deadline of the job to be processed by OPT is not necessarily in the first critical interval.

Suppose it is in the k-th critical interval for some k ≥ 1. Thenwo(k) is decreasing at the rate of so and the absolute value
of theweight of the running job is α2ρ̂α−1k ≤ α2ρ̂α−11 because the function that determines theweights, ρ̂, is a decreasing
staircase-like function between job arrivals.

The following lemma shows that Inequality (1) cannot start being violated at t0.

Lemma 7. Let t0 be a time when no job arrives. Then at t0, dEw(t)dt +
dφ(t)
dt −

dβ(t)
dt ≤ α

α dE∗w(t)
dt .

Proof. As discussed before, dβ(t)dt = 0 at t0. We thus need to show that
dEw(t)
dt +

dφ(t)
dt − α

α dE∗w(t)
dt ≤ 0. We distinguish four

cases, depending on whether SOAT and OPT are working or not.

Case 1: sa > 0, so > 0. We have dEw(t)dt = s
α
a + σ and

dE∗w(t)
dt = s

α
o + σ . For φ(t), we have ρ̂1 = sa. The weight of the

running job in SOAT is αsα−1a , while the absolute value of the weight of the running job in OPT is no more than α2sα−1a . So

dφ(t)
dt
≤ −αsα−1a sa + α2sα−1a so,

3594 X. Han et al. / Theoretical Computer Science 411 (2010) 3587–3600

and
dEw(t)
dt
+
dφ(t)
dt
− αα

dE∗w(t)
dt

≤ (sαa + σ)− αs
α−1
a sa + α2sα−1a so − αα(sαo + σ)

≤ sαa − αs
α
a + α

2sα−1a so − ααsαo ,

which can be written as sαo f (z) where f (z) = (1 − α)zα + α2zα−1 − αα , and z = sa/so. By simple differentiation, f (z) is
maximized at f (α) = 0, so the above expression is never positive.

Case 2: sa > 0, so = 0. We have dEw(t)dt = s
α
a + σ and

dE∗w(t)
dt = 0. For φ(t), the weight of the running job in SOAT is αs

α−1
a ,

while there is no change in the terms involving OPT. So

dφ(t)
dt
= −αsα−1a sa,

and
dEw(t)
dt
+
dφ(t)
dt
− αα

dE∗w(t)
dt
= (sαa + σ)− αs

α−1
a sa = σ − (α − 1)sαa .

Note that sa ≥ scrit. Since scrit = (σ/(α − 1))1/α , sαa ≥ σ/(α − 1), and

dEw(t)
dt
+
dφ(t)
dt
− αα

dE∗w(t)
dt
≤ σ − σ = 0.

Case 3: sa = 0, so > 0. We have dEw(t)dt = 0 and
dE∗w(t)
dt = s

α
o + σ . With Fact 6 and scrit = (σ/(α − 1))1/α , this implies

dE∗w(t)
dt ≥ so

sαcrit+σ
scrit

= αsα−1crit so. For φ(t), we have ρ̂1 = scrit and wa(1) is not changing. There is no change in the terms

involving SOAT, while the absolute value of the weight of the running job in OPT is at most α2sα−1crit . So

dφ(t)
dt
≤ α2sα−1crit so,

and
dEw(t)
dt
+
dφ(t)
dt
− αα

dE∗w(t)
dt
≤ α2sα−1crit so − α

ααsα−1crit so ≤ 0.

Case 4: sa = 0, so = 0. In this case dEw(t)dt ,
dE∗w(t)
dt and dφ(t)dt are all 0, so

dEw(t)
dt +

dφ(t)
dt − α

α dE∗w(t)
dt = 0. �

4.2.3. Change of potential when a job arrives – simple cases
Let t0 be the current time. Assume that a job J arrives at time t0. The arrival of J immediately changes the schedules of

SOA and SOAT, the boundaries of critical intervals, unfinished work of SOAT and OPT, as well as β and φ. Yet, like [12,7], we
observe that the resulting change would be the same if the single job J was replaced by multiple jobs with the same arrival
time and deadline, and total work w(J). Then we can simulate the changes due to J by a sequence of such jobs so that each
of them leads to one of the following three possible changes to the planned SOAT schedule at t0. In Section 4.2.4, we show
how to simulate a job in general by a sequence of such jobs. In this section, we will show that the changes of these simple
cases are simple enough to analyze.

Simple Case A. One interval I of uniform speed≥ scrit increases the speed uniformly byw(J)/|I|.
Simple Case B. The schedule does not change at all, in which case SOAT runs at speed T at d(J).
Simple Case C. The interval of speed scrit is lengthened byw(J)/scrit and possibly moved forward.

We now assume that the change due to job J is one of the above simple cases.
Denote the changes in β and φ due to the arrival of J at t0 as∆β and∆φ, respectively. To show that Inequality (1) is not

violated by such an event, we show that∆φ−∆β ≤ 0 for each simple case. Just before J arrives, denote the critical intervals
as Ci = (ci−1, ci] and the unfinishedwork under SOAT and OPTwith deadlines in Ci aswa(i) andwo(i), respectively. Suppose
that d(J) falls into Cx. Note that J can be a type-1 job (i.e., OPT schedules J) or a type-0 job (i.e., OPT does not schedule J).

Lemma 8. Suppose a job J arrives at t0 leading to a change of Simple Case A. (i) If J is a type-1 job then ∆φ ≤ 0 and ∆β = 0.
(ii) If J is a type-0 job then∆φ ≤ α2Tα−1w(J) and∆β ≥ α2Tα−1w(J).

Proof. In this case, one intervalwith uniform speed before adding the job increases in speed uniformly. Suppose this interval
is (d1, d2] and the value of the ρ̂ function increases from ρ̂a to ρ̂b. The interval may be a critical interval in the planned SOAT
schedule ormay possibly be split from some critical interval.We denote the remainingworkwith deadlines in (d1, d2] under
SOAT and OPT by wa and wo, respectively. Then, ρ̂a = wa

d2−d1
and ρ̂b =

wa+w(J)
d2−d1

. Note that ρ̂b ≤ T . The scheduling of jobs
other than J is not affected in SOAT.

X. Han et al. / Theoretical Computer Science 411 (2010) 3587–3600 3595

(i) Suppose J is a type-1 job. The amount of type-0 work processed by SOAT does not change and thus∆β = 0. Consider
∆φ. J increases the unfinished work of OPT by exactly w(J). Since ρ̂b ≤ T , the increase of the unfinished work of SOAT
(during (d1, d2]) is also w(J). The term in φ for unfinished work of SOAT changes from αρ̂α−1a wa to αρ̂α−1b (wa + w(J)); the
term for unfinished work of OPT changes from−α2ρ̂α−1a wo to−α2ρ̂α−1b (wo + w(J)). Hence,

∆φ = αρ̂α−1b

(
(wa + w(J))− α(wo + w(J))

)
− αρ̂α−1a

(
wa − αwo

)
=

α

(d2 − d1)α−1

[
(wa + w(J))α−1

(
(wa + w(J))− α(wo + w(J))

)
− wα−1a

(
wa − αwo

)]
.

Bansal et al. [7] has shown that a general form of the above expression is non-positive:

For any q, r, z ≥ 0 and α ≥ 1, (q+ z)α−1(q+ z − α(r + z))− qα−1(q− αr) ≤ 0.

Thus, substituting q = wa, r = wo, and z = w(J), we conclude that∆φ ≤ 0.
(ii) Suppose J is a type-0 job. J increases the unfinished type-0 work of SOAT; the increase is exactly w(J) since ρ̂ ≤ T ,

i.e.,∆β = α2Tα−1w(J). Consider∆φ. Since J is a type-0 job, it does not increase the unfinished work of OPT. So the term in
φ for OPT changes from−α2ρ̂α−1a wo to−α2ρ̂α−1b wo.

∆φ = αρ̂α−1b

(
wa + w(J)− αwo

)
− αρ̂α−1a

(
wa − αwo

)
= αρ̂α−1b

(
(wa + w(J))− α(wo + w(J))

)
− αρ̂α−1a

(
wa − αwo

)
+ α2ρ̂α−1b w(J)

≤ α2ρ̂α−1b w(J) (see (i))

≤ α2Tα−1w(J). �

Lemma 9. Suppose a job J arrives at t0 leading to a change of Simple Case B. (i) If J is a type-1 job then∆φ = −α2Tα−1w(J) and
∆β ≥ −α2Tα−1w(J). (ii) If J is a type-0 job then∆φ = 0 and∆β ≥ 0.

Proof. In this case, the planned SOAT schedule does not change at all at t0, and the critical interval Cx = (cx−1, cx] in which
d(J) lies has ρ̂x = T . We first consider∆φ. There is no change in the values of ρ̂x, the weights in φ(t), or the amount of work
to be processed after t0 under SOAT (i.e.,wa(x)); thus the change is only due towo(x), which increases byw(J) if J is type-1.
So∆φ = −α2Tα−1w(J) if J is type-1, and∆φ = 0 if J is type-0.
Let us consider ∆β . Recall that SOAT is an imaginary schedule which at time t , processes the same job as SOA at the

speed SOAT(t) = min{SOA(t), T }. When J arrives, SOA and hence SOAT will schedule J in Cx and must reduce the time for
processing existing jobs in Cx so as to make room for J . Since SOAT cannot increase the speed beyond T during Cx, the work
of some existing jobs to be processed by SOAT during Cx has to be reduced. Some of the work reduced may be type-0; yet
the reduction of type-0 work is at most the work SOAT commits to J . If J is type-1, β may decrease by at most α2Tα−1w(J),
i.e.,∆β ≥ −α2Tα−1w(J). If J is type-0, J itself contributes to the type-0 work to compensate for any possible decrease of the
existing jobs, i.e.,∆β ≥ 0. �

Lemma 10. Suppose a job J arrives at t0 leading to a change of Simple Case C. (i) If J is a type-1 job then∆φ < 0 and∆β = 0.
(ii) If J is a type-0 job then∆φ ≤ α2Tα−1w(J) and∆β = α2Tα−1w(J).

Proof. In this case, the interval of speed scrit in the planned SOAT schedule is lengthened by w(J)/scrit and possibly moved
forward. There is no change in the value of ρ̂ but the unfinishedwork under SOAT increases byw(J). The scheduling of other
jobs is not affected. If J is a type-1 job, the amount of type-0 work under SOAT does not change and thus ∆β = 0. The
amount of unfinished work under both SOAT and OPT increases byw(J), so∆φ = αsα−1crit w(J)− α

2sα−1crit w(J) < 0.
If J is a type-0 job, the amount of type-0 work under SOAT increases by w(J) and ∆β = α2Tα−1w(J). The amount of

unfinished work under OPT does not change, so∆φ = αsα−1crit w(J) ≤ α
2Tα−1w(J). �

The corollary below follows immediately from Lemmas 8–10.

Corollary 11. When a job arrives at t0 leading to a change of one of the Simple Cases, we have∆φ −∆β ≤ 0.

4.2.4. Change of potential when a job arrives – the general case
In general, when a job J is released at time t , the schedule of SOA and SOAT may change radically. Nevertheless – and

this is similar to an observation in [7] – we can consider the change as a sequence of smaller changes. Roughly speaking, we
can imagine the size of J as increasing from 0 tow(J)while one of the previous Simple Cases holds up to a certain size, say
u. Then we simulate the arrival of J by the arrival of two jobs J1 and J2 where J1 has size u and J2 has size w(J) − u. Details
are given below. Consider SOATt , the planned SOAT schedule just before J arrives. Let Ci = (ci−1, ci] denote the i-th critical
interval with associated value ρ̂i. Note that J increases the density ρ(t, t ′) for t < d(J) ≤ t ′ but not necessarily SOATt(t ′) or
ρ̂(t ′). We consider two cases depending on whether SOATt is working at t .

3596 X. Han et al. / Theoretical Computer Science 411 (2010) 3587–3600

Case 1: SOATt is working at t. To define the value u ≤ w(J), we further consider three cases.
(a) If SOATt(d(J)) = T , which implies that SOATt runs at speed T from t to d(J), then J would not change the planned

schedule SOATt and we let u = w(J). (This leads to Simple Case B.)
(b) If scrit < SOATt(d(J)) < T , suppose d(J) lies in some critical interval Cx = (cx−1, cx]. By the definition of a critical

interval, ρ̂x−1 > ρ̂x. Let u ≤ w(J) be the smallest size such that one of the following events occurs.

• The density ρ(cx−1, cx) increases to ρ̂x−1, in which case the density increases uniformly by u/(cx − cx−1).
• The density ρ(cx−1, d(J)) increases to ρ̂x−1, in which case the density increases uniformly by u/(d(J)− cx−1).
• The density ρ(cx−1, d(J)) increases from below ρ(d(J), cx) to exactly ρ(d(J), cx), in which case the density of Cx increases
uniformly by u/(cx − cx−1).

If none of the above events occur, this implies that w(J) is small and in this case, J itself increases the density of Cx by
w(J)/(cx−cx−1) andwe set u = w(J). Taking theminimumvalue of u among these events ensures that the density increases
in exactly one interval I and the amount of increase is u/|I|. (This leads to Simple Case A.)
(c) If SOATt(d(J)) = scrit or 0, suppose I = (d1, d2] is the maximal interval where the speed of SOATt is scrit. This means

that the density of any interval starting from d1 is at most scrit. If there exists t1 such that d1 < d(J) ≤ t1 and ρ(d1, t1) = scrit,
without loss of generality, assume t1 is the largest such value. In this case, we define the value u as in Case (b) with the
interval I replaced by (d1, t1]. (This leads to Simple Case A.)
Otherwise, we let u ≤ w(J) be the largest size such that the density ρ(d1, t ′) remains at most scrit for all t ′ > d1. In this

case, the interval I is lengthened by u/scrit. (This leads to Simple Case C.)

Case 2: SOATt is idle at t. This means that SOATt contains a single interval I = (t1, t2], where t1 > t , with speed scrit and
at t , the density of any interval starting at t is less than scrit, i.e., ρ(t, t ′) < scrit for all t ′ > t . Let u ≤ w(J) be the largest size
such that the density ρ(t, t ′) remains at most scrit for all t ′ > t . Then the interval I is lengthened by u/scrit. Furthermore, I
may move forward to start earlier than t1; if the new interval moves to start as early at t , it means SOAT will start working
right after this job of size u arrives. (This leads to Simple Case C.)

Summary. Summarizing the two cases, we have defined a value u ≤ w(J) such that the arrival of J can be simulated
by the arrival of two jobs J1 and J2, with w(J1) = u and w(J2) = w(J) − u, both arriving at time t and having the same
deadline as J . Furthermore, J1 leads to Simple Case B for Case 1 (a), Simple Case A for Case 1 (b), Simple Case A or C for Case
1 (c), and Simple Case C for Case 2. We can repeat this process recursively for the job J2, until we use up all w(J) units of
the work of J . Then, the change in the SOAT schedule due to J is equivalent to a sequence of smaller changes, where each of
them corresponds to one of the simple cases. For each of the smaller changes in the sequence, the change in the potential
∆φ −∆β is non-positive. So the change in the potential∆φ −∆β due to J is non-positive.

Lemma 12. When a job arrives at t0, we have∆φ −∆β ≤ 0.

4.2.5. Competitiveness of Slow-D(SOA)
Using the above results, we can prove Inequality (1) formally in Lemma 13.

Lemma 13. At any time t, Ew(t)+ φ(t)− β(t) ≤ ααE∗w(t).

Proof. We prove the lemma by induction on time. Let t0 = 0 be the time before any job arrives. Obviously, φ(t0), β(t0),
Ew(t0), and E∗w(t0) all equal 0, and the lemma is true for t = t0. With respect to a job sequence, let t1, t2, . . . be the arrival
time of the jobs. Consider any i ≥ 1. Assume that the lemma is true at time ti−1. Then by Lemma 7, the lemma remains true
for all time before the job arrives at ti. Furthermore, by Lemma 12, when the job arrives at ti, φ(t) − β(t) cannot increase
and the lemma continues to hold at ti, completing the induction. �

Then we have the following theorem.

Theorem 14. (i) In the bounded speed model, Slow-D(SOA) is (αα + α24α + 2)-competitive for energy. (ii) In the infinite speed
model, SOA completes all the jobs and ismax{αα + 2, 4}-competitive for energy.

Proof. (i) Recall that te denotes the first timewhen all deadlines have passed. Lemma13 implies that Ew(te)+φ(te)−β(te) ≤
ααE∗w(te). As both OPT and SOAT have no more unfinished work at te, φ(te) = 0. By Lemma 5, β(te) ≤ α

24αE∗w(te). Hence,
Ew ≤ (αα+α24α)E∗w. With Lemma 4, Slow-D(SOA) is max{α

α
+α24α+2, 4}-competitive, i.e., (αα+α24α+2)-competitive.

(ii) In the infinite speed model, both SOA and OPT complete all jobs, so β(t) = 0 for all time t . The proof in the bounded
speed model would thus show that SOA is max{αα + 2, 4}-competitive in the infinite speed model. �

5. Throughput analysis of Slow-D(SOA)

For the sake of completeness, we describe the details of Slow-D(SOA) in Section 5.1 and then show how to extend the
analysis of [4] to analyze the throughput in Section 5.2.

X. Han et al. / Theoretical Computer Science 411 (2010) 3587–3600 3597

5.1. The algorithm Slow-D(SOA)

As mentioned in Section 3, for the bounded speed model, we simulate SOA running in the infinite speed model and at
any time t , Slow-D(SOA) works at the speed SOAT(t) = min{SOA(t), T }. Slow-D(SOA) also follows the state transition in
SOA. Note that unlike SOA, Slow-D(SOA)may not complete all the jobs; thus we need a careful job selection and execution
strategy. The strategy relies on a notion called down-time(t).

The notion of down-time(t). Consider a particular time t and SOAt , the planned SOA schedule at t (assuming nomore jobs
arrive).

We define down-time(t) to be the latest time t ′ that SOAt changes speed from above T to at most T (note that t ′ can
be before, at or after t). If there is no such transition, we set down-time(t) = −∞.

By the nature of SOA, down-time(t) is a monotonically non-decreasing function of t no matter how jobs arrive later.
At any time t , we classify all released jobs using down-time(t). A job J is said to be t-urgent if d(J) ≤ down-time(t), and

t-slack otherwise. A t-slack job may turn into a t ′-urgent job at a later time t ′ > t . On the other hand, a t-urgent job stays
urgent until it completes or is discarded since down-time(t) is monotonically non-decreasing.
Before we describe how Slow-D(SOA)makes use of down-time(t), we observe the following properties of SOA.

Fact 15. Consider the planned schedule SOAt .

(i) SOA(t) > T iff down-time(t) > t.
(ii) If SOA(t) > T , then during [t, down-time(t)), SOAt processes only t-urgent jobs. (This implies that SOA processes t-slack
jobs only if SOA(t) ≤ T .)

Slow-D(SOA).Wenowdescribe howSlow-D(SOA) admits and selects jobs to run. Two job queuesQwork andQwait are kept.
At any time t , the earliest deadline job in Qwork is processed at speed min{T , SOA(t)}. Qwork is always kept feasible at the
current time, and each job J enters Qwork whenever Qwork remains feasible (i.e., can be completed using speed T). Otherwise,
J enters Qwait, and waits until d(J)−w(J)/T , which is the latest time at which J is feasible. We say an LST (Latest Start Time)
interrupt occurs. A decision is then made to either discard J or move it to Qwork. A decision is also made to possibly expel
some jobs from Qwork to keep it feasible. An urgent period is a maximal time period when there is some urgent job in Qwork.
We recall the handling of LST interrupts in [4].

LST interrupt [4].Whenever a job J reaches its latest start time, i.e., t = d(J)−w(J)/T , it raises an LST interrupt. At an
LST interrupt, we either discard J or expel all t-urgent jobs in Qwork to make room for J as follows:
In the current urgent period,5 let J0 be the last job admitted from Qwait to Qwork (if no jobs have been admitted from

Qwait so far, let J0 be a dummy job of size zero admitted just before the current period starts). Consider all the jobs ever
admitted to Qwork that have become urgent after J0 has been admitted to Qwork, and let W denote the total original
size of these jobs. Ifw(J) > 2(w(J0)+W), all urgent jobs in Qwork are expelled and J is admitted to Qwork.

Note that whenever a job enters Qwait, the current time lies in an urgent period.

5.2. Throughput analysis

We now analyze the throughput of Slow-D(SOA) and show that the competitive ratio is 4. Without loss of generality, we
assume that the job size of any job J satisfies w(J) ≤ (d(J) − r(J))T . Note that jobs with bigger size cannot be completed
by any algorithm including the optimal offline algorithm OPT. We introduce the following notation to aid the analysis. We
partition the job set J into three sets: Js contains jobs that are slack from release to completion, Jua contains jobs admitted
to Qwork at release time and becoming urgent at some time (perhaps at release), and Jur contains jobs not admitted to Qwork
at release and thus waiting in Qwait.
We attempt to show that Slow-D(SOA) completes all jobs in Js (Corollary 18) and at least a quarter of the amount of

jobs that the optimal offline algorithm can complete for Jua ∪Jur (Lemma 20). Therefore, Slow-D(SOA) is 4-competitive for
throughput.

Theorem 16. In the bounded speed model, Slow-D(SOA) is 4-competitive for throughput.

5.2.1. Throughput on Js
To analyze the throughput of Slow-D(SOA) on Js, we first show that as compared with SOA, Slow-D(SOA) does well for

slack jobs (Lemma 17).

Lemma 17. At any time t, Slow-D(SOA) does not lag behind SOA for any t-slack job.

5 As we shall see LST interrupts occur only during urgent periods.

3598 X. Han et al. / Theoretical Computer Science 411 (2010) 3587–3600

Proof. First, note that Slow-D(SOA) does not discard any t-slack job before time t; at any time t ′, only t ′-urgent jobs can
be discarded and these jobs will remain urgent after t ′. Now, consider the execution of slack jobs under SOA. By Fact 15(ii),
SOA works on a t-slack job only if SOA(t) ≤ T . By Fact 15(i), at any time t when SOA(t) ≤ T , all t-urgent jobs must have
passed a deadline;
thus, both SOA and Slow-D(SOA) can only work on t-slack jobs. By definition, Slow-D(SOA) uses the same speed as SOA

when SOA(t) ≤ T . Since both use EDF, Slow-D(SOA) cannot lag behind SOA on any t-slack job. �

Then the following corollaries directly follow.

Corollary 18. Slow-D(SOA) completes all jobs in Js.

Corollary 19. Consider any time t. If no more jobs arrive after t, all t-slack jobs in Qwork can be scheduled to completion using
only time aftermax{t, down-time(t)}.

Proof. By Fact 15(ii), if no more jobs arrive after t , SOA can complete all t-slack jobs using only time after
max{t, down-time(t)}. This together with Lemma 17 leads to the corollary. �

5.2.2. Throughput on Jur ∪ Jua
In this section, we show that Slow-D(SOA) completes enough jobs in Jur∪Jua. We first introduce the following notation.

For a job set L, let w(L) =
∑
J∈Lw(J) denote the total work of all jobs in L. The span of J , denoted span(J), is the interval

[r(J), d(J)]. Let span(L) denote the union of the spans of all jobs in L, and let |span(L)| be the total length of intervals
in span(L).
Consider each urgent period U = [S, E). Let join(U) be the total size of jobs in Jua that become urgent at some time in

U , J∗ be the latest deadline job in Jur that is released during U , and E ′ be max{d(J∗), E}. We denote [S, E ′) as secured(U).
In Lemma 22 (Section 5.2.3), we will show that the total size of urgent jobs completed by Slow-D(SOA) during U is at least
(join(U)+ |secured(U)| T)/4. With Lemma 22, we can then bound the amount of work completed for Jur ∪ Jua.

Lemma 20. Slow-D(SOA) completes at least (w(Jua)+ |span(Jur)| T)/4 work for jobs in Jua ∪ Jur.

Proof. Let C be the collection of all urgent periods. Using Lemma 22 which we derive next, we see that the total size
of urgent jobs completed by Slow-D over C is at least

∑
U∈C (join(U) + |secured(U)| T)/4. We reconcile these terms

with Jua and Jur. Since each job in Jua becomes urgent at some time,
∑
U∈C join(U) ≥ w(Jua). We claim that each

job J ∈ Jur is released during some urgent period U . The definition of secured(U) ensures that span(J) ⊆ secured(U);
thus |span(Jur)| ≤

∑
U∈C |secured(U)|. The lemma then arrives by combining the two inequalities.

To prove the claim, suppose on the contrary that some job J ∈ Jur is not released in an urgent period. Then at time
r(J), there is no r(J)-urgent job in Qwork. If J is r(J)-slack, then by Corollary 19, all (r(J)-slack) jobs in Qwork together with J
are feasible. If J is r(J)-urgent, J has deadline no later than down-time(t). We can complete J using time (t, down-time(t)]
and all (r(J)-slack) jobs in Qwork using time after down-time(t) (Corollary 19). Therefore, in both cases, J would enter Qwork
instead of Qwait, contradicting that J ∈ Jur. �

Combining Corollary 18 and Lemma 20, we are ready to prove Theorem 16.

Proof of Theorem 16. By Corollary 18 and Lemma 20, the throughput of Slow-D(SOA) is at least w(Js) + (w(Jua) +
|span(Jur)| T)/4. The throughput of OPT is OPT(J) ≤ w(Jua) + w(Js) + |span(Jur)| T , i.e., no more than 4 times that
of Slow-D(SOA). �

5.2.3. Throughput during an urgent period
It remains to analyze the throughput of Slow-D(SOA)during an urgent period. To analyze it, we need further investigation

of the properties of Qwait and Qwork.

Lemma 21. Consider the scheduling of Slow-D(SOA).

(i) Every job J ∈ Jur that is released during an urgent period U must raise an LST interrupt in U (whether it is admitted to Qwork
or not).

(ii)At any time t, Qwork is feasible.

Proof. (i) Suppose a job J enters Qwait. Adding J thus makes Qwork infeasible. As shown in the proof of Lemma 20, J must be
urgent. Since J is feasible by itself, Qwork contains some other urgent job at r(J), and r(J) is in an urgent period. There is more
than (d(J) − r(J))T − w(J) urgent work in Qwork at r(J); otherwise J can complete after all other urgent jobs and cannot
make Qwork infeasible. Some urgent jobs may be expelled later, but they are replaced by expelling jobs, which have total size
larger than the replaced jobs according to Slow-D(SOA). So the total amount of admitted urgent work can only increase.
Therefore, the urgent period cannot end before r(J) + d(J) − r(J) − w(J)/T = d(J) − w(J)/T , i.e., when the LST interrupt
for J occurs.
(ii) By Corollary 19 and the fact that all t-urgent jobs have deadlines of at most down-time(t), it suffices to show that at

any time t , the set of t-urgent jobs in Qwork is feasible. We prove the statement by induction on t . Let t0 be the time before
any job arrives. The statement is trivial for t = t0. Let t1, t2, . . . be all the times when a job is admitted to Qwork either at

X. Han et al. / Theoretical Computer Science 411 (2010) 3587–3600 3599

its release time or at its LST interrupt, and t1 < t2 < · · · . Consider any i ≥ 1. Assume the statement is true at ti−1. At any
time t < ti, if there are t-urgent jobs in Qwork, Slow-D(SOA) always runs them at speed T and thus all t-urgent jobs in Qwork
remain feasible. At time ti, if a job is admitted to Qwork at its release time, the feasibility check of Slow-D(SOA) guarantees
that all t-urgent jobs in Qwork are feasible. Otherwise, a job J is admitted to Qwork at its LST interrupt. Note that J must be an
urgent job; because by Corollary 19, we can conclude that the arrival of J makes the set of r(J)-urgent jobs in Qwork infeasible
at r(J) and hence J must be r(J)-urgent. Now, at time ti, all other ti-urgent jobs are expelled from Qwork and J becomes the
only ti-urgent job in Qwork. By the definition of LST interrupt, J is feasible at ti, which completes the proof. �

With the above lemma, we can now analyze the throughput of Slow-D(SOA) during an urgent period.

Lemma 22. The total size of urgent jobs completed by Slow-D(SOA) during an urgent period U = [S, E) is at least (join(U) +
|secured(U)| T)/4.

Proof. Let J1, J2, . . . , Jk be the k jobs in Qwait admitted successfully to Qwork during U at times L1 ≤ L2 ≤ · · · ≤ Lk, respectively.
For notational convenience, we let J0 and Jk+1 be jobs of size zero, admitted at L0 = S and Lk+1 = E respectively. We refine
the notation join as follows: For any 0 ≤ i ≤ k, let joini be the total size of jobs in Jua that become urgent between the
admittances of Ji and Ji+1 to Qwork. Note that join(U) =

∑k
i=0 joini.

We now show that the jobs admitted by LST interrupts are quite large.

Proposition J: For i = 0, 1, . . . , k,w(Ji) ≥
∑i−1
p=0 joinp + (Li − S) T .

We show this by induction. The base case i = 0 is trivial as both sides are zero. Assume that the proposition is true for
some i ≤ k− 1. For i+ 1,

i∑
p=0

joinp + (Li+1 − S) T =
i−1∑
p=0

joinp + joini + ((Li+1 − Li)+ (Li − S)) T

≤ w(Ji)+ joini + (Li+1 − Li) T (by induction)
≤ 2 (w(Ji)+ joini) < w(Ji+1)

The second last step follows since during [Li, Li+1], Slow-D(SOA) running at speed T has not exhausted all thew(Ji)+joini
urgent work that it can work on. The final step is the condition for Ji+1 to be admitted in Slow-D(SOA). So the proposition is
true for i = 0, 1, . . . , k.
Recall that J∗ is the latest deadline job in Jur that is released during U . We observe the following bounds ofw(J∗):

(d(J∗)− E) T ≤ w(J∗) ≤ 2 (w(Jk)+ joink).

The first inequality follows from Lemma 21(i) which says d(J∗)−w(J∗)/T ≤ E. For the second inequality, if J∗ is admitted to
Qwork, then J∗ = Ji for some i ≤ k; otherwise,w(J∗) ≤ 2 (w(Ji)+joini) for some i ≤ k. In both cases,w(J∗) ≤ 2 (w(Jk)+joink).
With this bound, we conclude the proof as follows:

k∑
p=0

joinp + |secured(U)| T =
k∑
p=0

joinp + (E − S) T +max{d(J
∗)− E, 0} T

≤

k∑
p=0

joinp + (Lk − S) T + (E − Lk) T + w(J
∗)

≤ w(Jk)+ joink + (E − Lk) T + w(J
∗) (Proposition J)

≤ w(Jk)+ joink + w(Jk)+ joink + w(J
∗) ≤ 4 (w(Jk)+ joink),

where the fourth line (E− Lk)T ≤ w(Jk)+ joink follows since during [Lk, E), Slow-D(SOA) has just enough time to complete
all thew(Jk)+ joink urgent work that it can work on.
Nownotice that by Lemma 21(ii), Slow-D(SOA) completes Jk and all jobs inQwork that become urgent after the admittance

of Jk and before E. Therefore the total size of urgent jobs completed by Slow-D(SOA) during U is at least w(Jk) + joink and
the lemma follows from the inequality in the last paragraph. �

References

[1] S. Albers, H. Fujiwara, Energy-efficient algorithms for flow time minimization, ACM Transactions on Algorithms 3 (4) (2007) 49.
[2] S. Albers, F. Muller, S. Schmelzer, Speed scaling on parallel processors, in: Proceedings of ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA, 2007, pp. 289–298.

[3] J. Augustine, S. Irani, C. Swany, Optimal power-down strategies, in: Proceedings of IEEE Symposium on Foundations of Computer Science, FOCS, 2004,
pp. 530–539.

[4] N. Bansal, H.L. Chan, T.W. Lam, L.K. Lee, Scheduling for speed bounded processors, in: Proceedings of International ColloquiumonAutomata, Languages
and Programming, ICALP, 2008, pp. 409–420.

3600 X. Han et al. / Theoretical Computer Science 411 (2010) 3587–3600

[5] N. Bansal, H.L. Chan, K. Pruhs, Speed scalingwith an arbitrary power function, in: Proceedings of ACM-SIAMSymposiumonDiscrete Algorithms, SODA,
2009, pp. 693–701.

[6] N. Bansal, H.L. Chan, K. Pruhs, D. Rogozhnikov-Katz, Improved bounds for speed scaling in devices obeying the cube-root rule, in: Proceedings of
International Colloquium on Automata, Languages and Programming, ICALP, 2009, pp. 144–155.

[7] N. Bansal, T. Kimbrel, K. Pruhs, Speed scaling to manage energy and temperature, Journal of the ACM 54 (1) (2007) 3.
[8] N. Bansal, K. Pruhs, C. Stein, Speed scaling for weighted flow time, in: Proceedings of ACM-SIAM Symposium on Discrete Algorithms, SODA, 2007, pp.
805–813.

[9] S.K. Baruah, G. Koren, B. Mishra, A. Raghunathan, L.E. Rosier, D. Shasha, On-line scheduling in the presence of overload, in: Proceedings of IEEE
Symposium on Foundations of Computer Science, FOCS, 1991, pp. 100–110.

[10] L. Benini, A. Bogliolo, G. de Micheli, A survey of design techniques for system-level dynamic power management, IEEE Transactions on VLSI Systems
8 (3) (2000) 299–316.

[11] D. Brooks, P. Bose, S. Schuster, H. Jacobson, P. Kudva, A. Buyuktosunoglu, J. Wellman, V. Zyuban, M. Gupta, P. Cook, Power-aware microarchitecture:
design and modeling challenges for next-generation microprocessors, IEEE Micro 20 (6) (2000) 26–44.

[12] H.L. Chan, W.T. Chan, T.W. Lam, L.K. Lee, K.S. Mak, P.W.H. Wong, Optimizing throughput and energy in online deadline scheduling, ACM Transactions
on Algorithms 6 (1) (2009) 10.

[13] H.L. Chan, J. Edmonds, T.W. Lam, L.K. Lee, A. Marchetti-Spaccamela, K. Pruhs, Nonclairvoyant speed scaling for flow and energy, in: Proceedings of
International Symposium on Theoretical Aspects of Computer Science, STACS, 2009, pp. 255–264.

[14] G. Greiner, T. Nonner, A. Souza, The bell is ringing in speed-scaled multiprocessor scheduling, in: Proceedings of ACM Symposium on Parallelism in
Algorithms and Architectures, SPAA, 2009, pp. 11–18.

[15] D. Grunwald, P. Levis, K.I. Farkas, C.B. Morrey, M. Neufeld, Policies for dynamic clock scheduling, in: Proceedings of Symposium on Operating Systems
Design and Implementation, OSDI, 2000, pp. 73–86.

[16] S. Irani, S. Shukla, R. Gupta, Online strategies for dynamic power management in systems with multiple power-saving states, ACM Transactions on
Embedded Computing Systems 2 (3) (2003) 325–346.

[17] S. Irani, S. Shukla, R. Gupta, Algorithms for power savings, ACM Transactions on Algorithms 3 (4) (2007) 41.
[18] A. Karlin, M. Manasse, L. McGeoch, S. Owicki, Competitive randomized algorithms for non-uniform problems, in: Proceedings of ACM-SIAM

Symposium on Discrete Algorithms, SODA, 1990, pp. 301–309.
[19] T.W. Lam, L.K. Lee, H.F. Ting, I.K.K. To, P.W.H. Wong, Sleep with guilt and work faster to minimize flow plus energy, in: Proceedings of International

Colloquium on Automata, Languages and Programming, ICALP, 2009, pp. 665–676.
[20] T.W. Lam, L.K. Lee, I.K.K. To, P.W.H.Wong, Improvedmulti-processor scheduling for flow time and energy. Journal of Scheduling (in press). Preliminary

version appeared in Proceedings of ACM Symposium on Parallelism in Algorithms and Architectures, pp. 256–264, 2008.
[21] T.W. Lam, L.K. Lee, I.K.K. To, P.W.H. Wong, Speed scaling functions for flow time scheduling based on active job count, in: Proceedings of European

Symposium on Algorithms, ESA, 2008, pp. 647–659.
[22] T. Mudge, Power: A first-class architectural design constraint, Computer 34 (4) (2001) 52–58.
[23] P. Pillai, K.G. Shin, Real-time dynamic voltage scaling for low-power embedded operating systems, in: Proceedings of Symposium on Operating

Systems Principles, SOSP, 2001, pp. 89–102.
[24] M. Weiser, B. Welch, A. Demers, S. Shenker, Scheduling for reduced CPU energy, in: Proceedings of Symposium on Operating Systems Design and

Implementation, OSDI, 1994, pp. 13–23.
[25] F. Yao, A. Demers, S. Shenker, A scheduling model for reduced CPU energy, in: Proceedings of IEEE Symposium on Foundations of Computer Science,

FOCS, 1995, pp. 374–382.

	Deadline scheduling and power management for speed bounded processors
	Introduction
	Preliminaries
	SOA, Sleep-aware Optimal Available
	SOA in the infinite speed model
	Slow-D(SOA) in the bounded speed model

	Energy consumption of Slow-D(SOA)
	Idle energy and wake-up energy
	Working energy and potential analysis
	Potential functions
	Change of potential between job arrivals
	Change of potential when a job arrives -- simple cases
	Change of potential when a job arrives -- the general case
	Competitiveness of Slow-D(SOA)

	Throughput analysis of Slow-D(SOA)
	The algorithm Slow-D(SOA)
	Throughput analysis
	Throughput on Js
	Throughput on Jurcup Jua
	Throughput during an urgent period

	References

