
Scheduling for Weighted Flow Time and Energy
with Rejection Penalty∗

Sze-Hang Chan1, Tak-Wah Lam2, and Lap-Kei Lee3

1,2 Department of Computer Science, University of Hong Kong, Hong Kong.
{shchan, twlam}@cs.hku.hk

3 Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany.
lklee@mpi-inf.mpg.de

Abstract
This paper revisits the online problem of flow-time scheduling on a single processor when jobs
can be rejected at some penalty [4]. The user cost of a job is defined as the weighted flow time
of the job plus the penalty if it is rejected before completion. For jobs with arbitrary weights
and arbitrary penalties, Bansal et al. [4] gave an online algorithm that is O((logW + logC)2)-
competitive for minimizing the total user cost when using a slightly faster processor, whereW and
C are the max-min ratios of job weights and job penalties, respectively. In this paper we improve
this result with a new algorithm that can achieve a constant competitive ratio independent of
W and C when using a slightly faster processor. Note that the above results assume a processor
running at a fixed speed. This paper shows more interesting results on extending the above
study to the dynamic speed scaling model, where the processor can vary the speed dynamically
and the rate of energy consumption is a cubic or any increasing function of speed. A scheduling
algorithm has to control job admission and determine the order and speed of job execution. This
paper studies the tradeoff between the above-mentioned user cost and energy, and it shows two
O(1)-competitive algorithms and a lower bound result on minimizing the user cost plus energy.
These algorithms can also be regarded as a generalization of the recent work on minimizing flow
time plus energy when all jobs must be completed (see the survey paper [1]).

1998 ACM Subject Classification F.2.2[ANALYSIS OF ALGORITHMS AND PROBLEMCOM-
PLEXITY] Nonnumerical Algorithms and Problems—Sequencing and scheduling

Keywords and phrases Online scheduling, weighted flow time, rejection penalty, speed scaling

Digital Object Identifier 10.4230/LIPIcs.STACS.2011.392

1 Introduction

It is not uncommon that a server rejects some jobs (in particular, low-priority jobs) during
peak load, yet it is non-trivial how to strike a balance between the cost due to longer response
time and the cost of rejecting some jobs. Bansal et al. [4] initiated the study of flow-time
scheduling on a single processor when jobs can be rejected at some penalty. Specifically, jobs
are released online with arbitrary sizes, weights and penalties. Consider a schedule which
may reject some jobs before completion, each job defines a user cost equal to its weighted
flow time plus the penalty if it is rejected, where the flow time is the time elapsed since a
job is released until it is completed or rejected. In this penalty model, the scheduler aims at
minimizing the total user cost of all jobs.

∗ This research was mainly done when the first two authors were visiting MPI, whose hospitality was
greatly appreciated.

© S.H. Chan, T.W. Lam and L.K. Lee;
licensed under Creative Commons License NC-ND

28th Symposium on Theoretical Aspects of Computer Science (STACS’11).
Editors: Thomas Schwentick, Christoph Dürr; pp. 392–403

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2011.392
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

S.H. Chan, T.W. Lam and L.K. Lee 393

Assuming jobs have uniform penalty and unit weight, Bansal et al. [4] gave an online
algorithm that is 2-competitive for minimizing the total user cost. For jobs with arbitrary
penalties and arbitrary weights, they give a resource augmentation result which achieves a
competitive ratio of O((logW + logC)2) when using a slightly faster processor (precisely,
(1 + ε)-speed processor for any ε > 0), where W is the max-min ratio of job weights and C is
the max-min ratio of job penalties. They also show a lower bound of Ω(max(n 1

4 , C
1
2)) without

using a faster processor, where n is the number of jobs in the job sequence. Note that for the
special case when each job has infinite penalty, no jobs would be rejected and the problem
reduces to the classic problem of minimizing weighted flow time only. In this case, Becchetti
et al. [8] showed a better resource augmentation result, achieving O(1)-competitiveness for
weighted flow time when using (1 + ε)-speed processor.

In this paper, we extend the results on rejection penalty [4] in two different directions.
First of all, we improve the upper bound result on arbitrary penalties and arbitrary weights.
Our online algorithm is constant competitive when using a (1 + ε)-speed processor, where the
constant does not depend on W and C. In other words, for the special case when jobs must
be all completed (with infinite penalty), our new algorithm has a comparable performance
(but with a larger constant) as Becchetti et al’s algorithm [8].

All the above results assume the processor running at a fixed speed. The main results
in this paper are on extending the above study of rejection penalty to the dynamic speed
scaling model [15] and taking energy into consideration. Specifically, it is assumed that
the processor can vary its speed dynamically between 0 and some maximum speed T , and
the power P increases with the speed s according to a certain function, say, P (s) = s3. In
this setting, a scheduling algorithm has to control job admission and determine the order
and speed of job execution, and we are interested to measure the user cost as well as the
total energy usage. Note that minimizing user cost and minimizing energy are orthogonal
objectives. In this paper, we consider the problem of minimizing a linear combination of
the user cost and energy, or simply the user cost plus energy. This problem can also be
considered as a generalization of the existing work on minimizing weighted flow time plus
energy where job rejection is not allowed [2, 9, 6, 13, 7, 3] (see related work below).

Speed scaling results. For jobs with uniform penalty and unit weight, we give a 6-
competitive algorithm for minimizing the user cost plus energy. This algorithm ensures that
the penalty of rejected jobs is always at most the flow time plus energy incurred thus far.
Intuitively, it maintains a good balance between the flow time plus energy and the penalty.
Next, we consider jobs with arbitrary penalties. We show a lower bound result illustrating
the problem of minimizing the user cost plus energy being fundamentally more difficult than
that of flow time plus energy. Specifically, we assume that P (s) = sα for some α > 1 and jobs
have unit weight, and we show that any online algorithm has a competitive ratio of Ω(α1/2−ε)
where ε is arbitrarily small, even if the maximum speed T is unbounded. This lower bound
implies that the competitive ratio must grow with the steepness of the power function (α),
while the problem of minimizing flow time plus energy admits a 2-competitive algorithm for
any arbitrary power function [7, 3]. We turn to resource augmentation and consider giving
the online algorithm a more energy-efficient processor which, using the power P (s), can run
at speed (1 + ε)s for some ε > 0. We call such a processor a (1 + ε)-speedup processor, based
on which we devise an online algorithm for the arbitrary-penalty and arbitrary-weight setting.
For any power function P (s), our new algorithm is O(1)-competitive for minimizing the user
cost plus energy when using a (1 + ε)-speedup processor. This algorithm, unlike the first one,
rejects jobs only at their arrival time and therefore never wastes energy on rejected jobs.

Amortization and potential functions have become standard tool for analyzing algorithms

STACS’11

394 Scheduling for Weighted Flow Time and Energy with Rejection Penalty

for minimizing flow time plus energy (e.g., [9, 13, 7, 3]). When jobs can be rejected, the
online algorithm A and the optimal offline algorithm OPT may have completed two different
sets of jobs. This complicates the analysis. For the case of uniform penalty and unit weight,
the potential analysis only allows us to bound the flow time plus energy incurred by some
special active jobs in A in terms of the cost of OPT. For cost incurred by other active jobs,
our technique is an accounting argument to upper bound this cost of A by the total penalty
of OPT. For arbitrary penalty and arbitrary weight jobs, taking the advantage of the use of
speedup processor, we can directly incorporate the job penalty into the potential analysis
and the maximum speed constraint T into the potential function.

Related work on dynamic speed scaling. To reduce energy usage, major chip manu-
facturers like Intel and IBM are now producing processors that can support dynamic speed
scaling, which allows operating systems to manage the power by scaling the processor speed
dynamically. How to exploit speed scaling effectively has become an interesting problem for
the algorithmic community. Yao et al. [15] were the first to consider online job scheduling
that takes speed scaling and energy usage into consideration. They considered a model
where a processor can vary its speed s, and the energy is consumed at the rate sα for some
constant α > 1 (in CMOS based processors, α is believed to be 3 [5]). Running jobs slower
saves energy, yet it takes longer time. The challenge arises from the conflicting objectives
of optimizing energy usage and some quality of service such as flow time. To understand
their tradeoff, Albers and Fujiwara [2] initiated the study of minimizing a linear combination
of the total flow and energy. The intuition is that, from an economic viewpoint, users are
willing to pay a certain (say, ρ) units of energy to reduce one unit of flow time. By changing
the units of time and energy, one can further assume ρ = 1 and thus wants to minimize flow
plus energy. Following Albers and Fujiwara’s work, there is a chain of work on speed scaling
algorithms [2, 9, 6, 13, 7, 3], gradually improving the competitive ratios as well as dropping
the assumptions on the speed-to-power functions. Now the best known algorithms can work
for any arbitrary power function. For jobs with unit weight, a 2-competitive algorithm has
been obtained [3]. For arbitrary weight, a competitive ratio of O(1 + 1

ε) can be achieved
using a (1 + ε)-speedup processor [7, 11].

Power functions and notations. Throughout the paper, we assume P (0) = 0, and P
is defined, strictly increasing, strictly convex, continuous and differentiable at all speeds in
[0, T]; if T = ∞, the speed range is [0,∞) and for any speed x, there exists x′ such that
P (x)/x < P (s)/s for all s > x′ (otherwise the optimal speed scaling policy is to always run
at the infinite speed and an optimal schedule is not well-defined). We use Q to denote P−1.
Note that Q is strictly increasing and concave. E.g., if P (s) = sα, then Q(x) = x1/α. For
each job j, we use p(j), w(j) and v(j) to denote its work, weight and penalty.

Organization of the paper. The following discussion focuses on the results on the
dynamic speed scaling model only. Our improved result on minimizing the user cost alone on
a fixed-speed processor would be shown as a special case in Section 3. Section 2 considers jobs
with uniform penalty and unit weight and presents a 6-competitive algorithm for minimizing
the user cost plus energy. Section 3 gives the results on jobs with arbitrary penalties and
arbitrary weights. Finally, a lower bound result is given in Section 4.

2 Uniform Penalty and Unit Weight

This section considers jobs with the same penalty c > 0 and unit weight. We give an online
algorithm UPUW for minimizing flow plus penalty plus energy. The job rejection policy of
UPUW is similar to that in [4], but the involvement of speed scaling and energy complicates

S.H. Chan, T.W. Lam and L.K. Lee 395

the analysis and demands a potential function. Our main result is the following theorem.

I Theorem 1. Consider jobs with uniform penalty and unit weight. Algorithm UPUW is
6-competitive for minimizing flow plus penalty plus energy.

Algorithm UPUW. At time t, let na(t) and sa(t) be respectively the number of active
jobs (i.e., jobs that have been released but not yet finished) and the speed of UPUW. Recall
that Q is the inverse of the power function P . We set sa(t) = min(Q(na(t) + 1), T). UPUW
always runs the job with the smallest remaining work (SRPT) at speed sa(t) (ties are broken
by job ids). Let φ be a counter that counts the flow plus energy incurred until time t, i.e.,
φ(t) =

∫ t
0(na(x)+P (sa(x)))dx. Whenever φ crosses a multiple of c, UPUW rejects the active

job with the largest remaining work (if na(t) > 0).
To prove Theorem 1, we compare UPUW with the optimal offline schedule OPT. Consider

any job sequence. Let Ga be the total flow plus energy of UPUW and Ra be the total penalty
of UPUW, and similarly define Go and Ro for OPT. Let te be the time when all jobs are
completed or rejected by both UPUW and OPT. By definition of UPUW, Ga = φ(te) and
Ra ≤ Ga. Thus, we have

I Fact 2. The flow plus penalty plus energy of UPUW is Ga +Ra ≤ 2φ(te).

To upper bound φ(te), we define another counter ψ such that at any time t, ψ(t) ≥ φ(t).
Then it suffices to upper bound ψ(te) by the cost of OPT. We define ψ as follows: Initially,
ψ(0) = 0. Whenever OPT rejects a job at t, ψ increases by c. At other times, if ψ = φ, ψ
increases at the same rate as φ, else (i.e., ψ > φ), ψ stays the same.

Analysis framework. We will upper bound ψ(te) in terms of Go and Ro. Note that
ψ(t) is non-decreasing and increases in two cases: (Case 1) ψ increases by c whenever OPT
rejects a job, and (Case 2) ψ increases at the same rate as φ whenever ψ(t) = φ(t). The
increase due to Case 1 is bounded by Ro. To bound the increase due to Case 2, at any time t,
we define a special subset of active jobs, denoted B(t), as follows. Let k(t) = bψ(t)

c c − b
φ(t)
c c.

Let B(t) be the set of the na(t) − k(t) active jobs in UPUW with the smallest remaining
work (B(t) = ∅ if na(t) < k(t)), and let ña(t) denote the size of B(t). Whenever ψ(t) = φ(t),
k(t) = 0. If ña(t) = 0, it implies na(t) ≤ 0, and φ(t) as well as ψ(t) do not increase. Thus,
the increase of ψ due to Case 2 is bounded by the flow plus energy incurred by UPUW during
times when ña(t) ≥ 1, which is upper bounded in Lemma 3. To prove Lemma 3, we follow
the analysis in [7, 3] but adapt the potential function to focus only on jobs in B(t) instead
of all active jobs in UPUW. Like [7, 3], the potential analysis requires an upper bound on
ña(t) − no(t) at any time t, where no(t) is the number of active jobs in OPT (Lemma 5).
Yet with job rejections, we need new technique to obtain such upper bound, which will be
proven via a mapping of jobs in B(t) to jobs in a schedule related to OPT (Lemma 6).

We first state Lemma 3 and show how this lemma leads to Theorem 1. For any time
interval I, let Ga[I] and Go[I] be the flow plus energy incurred during I by UPUW and
OPT, respectively.

I Lemma 3. For any time interval I = (t1, t2) such that ña(t1) = ña(t2) = 0 and ña(t) > 0
for any t ∈ I, Ga[I] ≤ 3 ·Go[I] + 2

∫
t∈Ik(t) dt.

Proof of Theorem 1. Let I1, I2, ..., Im be all the intervals in [0, te] such that for each Ii =
(t1, t2), ña(t1) = ña(t2) = 0 and ña(t) > 0 for any t ∈ Ii. Let S = I1 ∪ I2 ∪ · · · ∪ Im.
Recall that the increase due to Case 2 (in the analysis framework above) can only happen
when ña ≥ 1, i.e. only during S. Then, by Lemma 3, the increase of ψ due to Case 2
is at most

∫
t∈Sna(t) + P (sa(t)) dt =

∑m
i=1Ga[Ii] ≤

∑m
i=1

(
3 ·Go[Ii] + 2

∫
t∈Iik(t) dt

)
≤

3 ·Go + 2
∫
t∈Sk(t) dt.

STACS’11

396 Scheduling for Weighted Flow Time and Energy with Rejection Penalty

We now upper bound
∫
t∈Sk(t)dt. Whenever OPT rejects a job, ψ increases by c, and then

ψ stays the same until φ reaches ψ. Since φ(t) increases at the rate of na(t)+P (sa(t)), we have
Ro =

∫
t:ψ(t)>φ(t)na(t) +P (sa(t))dt. Note that k(t) = bψ(t)

c c− b
φ(t)
c c > 0 implies ψ(t) > φ(t).

Thus, Ro ≥
∫
t:k(t)>0na(t) +P (sa(t)) dt. At any time t ∈ S, ña(t) > 0 and hence k(t) < na(t).

Then
∫
t∈Sk(t) dt =

∫
t:t∈S∧k(t)>0k(t) dt <

∫
t:t∈S∧k(t)>0na(t) dt ≤

∫
t:k(t)>0na(t) dt < Ro.

Therefore, the increase of ψ due to Case 2 is at most 3Go + 2Ro. Adding up the increase
of ψ due to Case 1, i.e., Ro, gives ψ(te) ≤ 3Go + 3Ro. By Fact 2 and φ(te) ≤ ψ(te),
Ga +Ra ≤ 6(Go +Ro) and hence UPUW is 6-competitive. J

The rest of the section is devoted to proving Lemma 3. Before giving the potential
analysis, we state a property of set B(t) and show that at any time t, the size of B(t) is
no more than the number of active jobs in OPT by P (T)− 1 (Lemma 5). Without loss of
generality, we assume P (T) ≥ 1,1 and OPT rejects a job only at its arrival time.

I Property 4. At any time t, the set B(t) only changes upon various events as follows.

(i) If a job j arrives and OPT rejects j, then na − k remains the same, so either B does
not change or j replaces another job j′ with remaining work at least p(j) in B.

(ii) If a job j arrives and OPT admits j, na − k increases by 1, so either B remains empty,
or j is added to B, or another job j′ with remaining work at most p(j) is added to B.

(iii) If UPUW completes a job j, na − k decreases by 1, so either B remains empty or j
leaves B.

(iv) If UPUW rejects a job, then φ reaches a multiple of c, and na − k either remains the
same or decreases by 1. Thus, either B does not change or a job in B leaves B.

I Lemma 5. At any time t, ña(t)− no(t) + 1 ≤ P (T).

We now show Lemma 5. If ña(t) = 0, ña(t) = 0 ≤ P (T)− 1 (as P (T) ≥ 1). If sa(t) < T ,
then sa(t) = Q(na(t) + 1) < T and hence na(t) + 1 ≤ P (T), so ña(t) ≤ na(t) ≤ P (T)− 1.

It remains to consider that ña(t) ≥ 1 and sa(t) = T . Let t′ be the last time before t such
that ña(t′) = 0 or sa(t′) < T . By above, we can show that ña(t′) ≤ P (T)− 1. For any time
x ∈ (t′, t], ña(x) ≥ 1 and sa(x) = T . Let No(x) be the set of jobs arriving during (t′, x] that
are admitted by OPT. Suppose OPT has completed h jobs in No(t) in (t′, t]. Let S be the
schedule obtained by running SRPT at speed T during (t′, t] on jobs B(t′) ∪No(t). Since
SRPT maximizes the number of jobs completed by any time [14], S completes at least h
jobs during (t′, t]. As no(t) ≥ |No(t)| − h, the number of active jobs in S at t is at most
ña(t′) + |No(t)| − h ≤ P (T)− 1 + no(t).

We relate the schedule of UPUW with S. At any time x ∈ [t′, t], letB(x) = {j1, j2, · · · , jña(x)},
ordered in non-decreasing remaining work in UPUW; we always use job ids for tie-breaking.
We can show Lemma 6 below by induction on time [t′, t] over various events stated in
Property 4. Details will be given in the full paper. This lemma implies that at time t, the size
of B(t) is less than the number of active jobs in S, i.e., ña(t) ≤ P (T)− 1 + no(t), implying
Lemma 5.

I Lemma 6. At any time x ∈ (t′, t], there is a one-to-one mapping ρ : B(x)→ B(t′)∪No(x)
such that the remaining work of each ji ∈ B(x) in UPUW is at most that of ρ(ji) in S, and
ρ(j1), ρ(j2), · · · , ρ(jña(x)) are in non-decreasing order of remaining work in S.

1 If P (T) < 1, we use the algorithm in [4] for job selection, which is 2-competitive for flow plus penalty,
and always run at speed T . When the algorithm is running a job, the power is less than 1 and the
number of active jobs is at least 1, so the total energy usage is at most the total flow time and hence
this algorithm is 4-competitive.

S.H. Chan, T.W. Lam and L.K. Lee 397

We now give the potential analysis for proving Lemma 3. Recall that we are considering
an interval I = (t1, t2). Let Ga(t) and Go(t) be the flow plus energy incurred from time t1
up to time t by UPUW and OPT, respectively, for any t ∈ I. It suffices to define a potential
function Φ(t) for any time t ∈ I such that the following conditions hold: (i) Boundary
condition: At time t1 and t2, Φ = 0. (ii) Discrete-event condition: During I, when a job
arrives, or a job is completed by UPUW or OPT, or a job is rejected by UPUW, ∆Φ(t) ≤ 0.
(iii) Running condition: At any other time t ∈ I, dGa(t)

dt + dΦ(t)
dt ≤ 3 · dGo(t)

dt + 2k(t). Then,
Lemma 3 follows by integrating these conditions over I.

Potential function Φ(t). Consider any time t. Let ña(q, t) and no(q, t) be the number
of active jobs in B(t) and OPT, respectively, with remaining work at least q. Note that
ña(t) = ña(0, t) and no(t) = no(0, t). We will drop the parameter t from the notations when
t refers to the current time clearly. Let (·)+ = max(·, 0). We adapt the potential function
given in [7, 3] as follows:

Φ(t) = 3
∫ ∞

0

(ña(q,t)−no(q,t))+∑
i=1

P ′(Q(i))dq .

The boundary condition holds because at t1 and t2, ña = 0, so ña(q) = 0 for all q and
Φ = 0. We now check the discrete-event condition. Note that ña(x) ≥ 1 for any x ∈ (t1, t2).
When a job j arrives and is rejected by OPT, by Property 4(i), there are two cases: (Case
1) B does not change, then Φ does not change. (Case 2) j replaces another job j′ with
remaining work q′ ≥ p(j) in B. Then na(q) decreases by 1 for q ∈ [p(j), q′] and Φ does not
increase. When a job j arrives and is admitted by OPT, by Property 4(ii), a job j′ (which
may be j) with remaining work q′ ≤ p(j) is added to B. Then ña(q) increases by 1 for
q ∈ [0, q′] ⊆ [0, p(j)] and no(q) increases by 1 for q ∈ [0, p(j)]. Thus, ña(q)− no(q) does not
increase for all q and Φ does not increase. When a job is completed by UPUW or OPT,
ña(q) or no(q) changes only at the single point q = 0, which does not affect the integration
and hence Φ remains the same. Finally, when a job is rejected by UPUW, either B does
not change or a job in B leaves B. For the former case, Φ does not change. For the latter
case, let q′ be the remaining work of the job that leaves B. Then ña(q) decreases by 1 for
q ∈ [0, q′], and hence Φ does not increase.

It remains to check the running condition. Consider any time t ∈ (t1, t2) without job
arrival, completion and rejection. Let sa and so be the current speeds of UPUW and OPT,
respectively. To bound the rate of change of Φ, Lemma 7 below shows how Φ changes in an
infinitesimal amount of time (from t to t+ dt). Its proof is based on similar arguments as
in [7, 3] and will be given in the full paper.

I Lemma 7. Consider any time t without job arrival or completion and ña ≥ 1. If
ña < no, then dΦ

dt ≤ 0; if ña ≥ no, then either (i) dΦ
dt ≤ 3 · P ′(Q(ña − no))(−sa + so), or

(ii) dΦ
dt ≤ 3 · P ′(Q(ña − no + 1))(−sa + so) and no ≥ 1, or (iii) dΦ

dt = 0 and ña = no.

I Lemma 8. At any time in (t1, t2) without job arrival, completion and rejection, dGa
dt + dΦ

dt ≤
3 · dGo

dt + 2k.

Proof. Note that during (t1, t2), ña ≥ 1 and ña = na − k. Also, sa = min(Q(na + 1), T) and
hence dGa

dt = na + P (sa) ≤ 2na + 1 ≤ 2na + ña = 3ña + 2k. Similarly, dGo
dt = no + P (so).

If ña < no, by Lemma 7, dΦ
dt ≤ 0 and thus dGa

dt + dΦ
dt ≤ 3ña + 2k < 3no + 2k ≤ 3dGo

dt + 2k.
Otherwise, if ña ≥ no, we consider the three cases in Lemma 7, where we need the upper
bound on ña − no (Lemma 5).

Case (i): dΦ
dt ≤ 3P ′(Q(ña−no))(−sa + so). By a lemma given in [7] (stated as Lemma 9

below), dΦ
dt ≤ 3(−sa+Q(ña−no))P ′(Q(ña−no))+3P (so)−3(ña−no). If sa = T , by Lemma 5,

STACS’11

398 Scheduling for Weighted Flow Time and Energy with Rejection Penalty

sa = T ≥ Q(ña−no + 1) ≥ Q(ña−no); otherwise, sa = Q(na + 1) ≥ Q(ña + 1) ≥ Q(ña−no).
Thus, dΦ

dt ≤ 3(no +P (so))−3ña and hence dGa
dt + dΦ

dt ≤ 3ña +2k+ dΦ
dt ≤ 3(no +P (so))+2k =

3dGo
dt + 2k.
Case (ii): dΦ

dt ≤ 3P ′(Q(na − no + 1))(−sa + so) and no ≥ 1. By Lemma 9, dΦ
dt ≤

3(−sa +Q(ña−no + 1))P ′(Q(ña−no + 1)) + 3P (so)−3(ña−no + 1). If sa = T , by Lemma 5,
sa = T ≥ Q(ña − no + 1); otherwise, sa = Q(na + 1) ≥ Q(ña + 1) ≥ Q(ña − no + 1). Thus,
dΦ
dt ≤ 3(no+P (so))−3ña−3, and hence dGa

dt + dΦ
dt ≤ 3ña+2k+ dΦ

dt ≤ 3(no+P (so))+2k−3 ≤
3dGo

dt + 2k.
Case (iii): dΦ

dt = 0 and ña = no. Then dGa
dt + dΦ

dt ≤ 3ña+2k = 3no+2k ≤ 3dGo
dt +2k. J

Below is the lemma given in [7], which is used in the proof of Lemma 8.

I Lemma 9. [7] Let P be a strictly increasing, strictly convex, continuous and differentiable
function. Let i, sa, so ≥ 0 be any real. Then, P ′(Q(i))(−sa + so) ≤ (−sa +Q(i))P ′(Q(i)) +
P (so)− i.

3 Arbitrary Penalty and Arbitrary Weight

This section considers jobs of arbitrary penalty and arbitrary weight in the following two
models. In the fixed-speed model, the processor always runs at speed 1 and energy is not a
concern. The objective is to minimize the user cost, i.e., total weighted flow plus penalty. In
the speed scaling model, the processor can scale its speed with an arbitrary power function
P (s) and maximum speed T . Then the objective is to minimize the user cost plus energy.

In the speed scaling model, we give an O((1+ 1
ε)2)-competitive algorithm for weighted flow

plus penalty plus energy, using (1 + ε)2-speedup processor for any ε > 0. In the fixed-speed
model, we give a (1 + ε)2-speed O((1 + 1

ε)
2)-competitive algorithm for weighted flow plus

penalty. This improves the (1 + ε)-speed O(1
ε (logW + logC)2)-competitive result in [4].

Fractional weighted flow. To obtain these results, we will first focus on the objective
of total fractional weighted flow, and then convert the result for (integral) weighted flow. At
any time t, the fractional weight of an active job j, denoted by w(j, t), is its weight times
its remaining fraction, i.e., w(j, t) = w(j) · q(j,t)p(j) , where q(j, t) is the remaining size of j at t.
Then the fractional weighted flow of job j is

∫∞
r(j)w(j, t)dt, and hence the total fractional

weighted flow is
∫∞

0 wa(t)dt, where wa(t) is the total fractional weight of active jobs at time t.
HDF and future cost. Under a fixed speed function, HDF (highest density first)

minimizes fractional weighted flow [8]. Our algorithm will always rejects a job at its arrival
time and processes the admitted jobs using HDF. Furthermore, at any time, the processor
always scales its speed according to the total fractional weight w of the active jobs, and
we denote this speed by s(w) (for fixed-speed processor, s(w) is a constant). Consider any
time t. Let wa(q, t) be the total fractional weight of active jobs with inverse density at least q.
Then we can define a future cost Φ̂a(t) to capture the total fractional weighted flow to serve
the current active jobs if no jobs arrive in the future [12]:

Φ̂a(t) =
∫ ∞
q=0

∫ wa(q,t)

x=0

x

s(x) dx dq .

Algorithm HDF-AC. We focus on the objective of fractional weighted flow and define
the algorithm HDF-AC that works for both the speed scaling and fixed-speed models. Let
ε > 0 be a constant. Consider any time t.

Job execution: Let wa(t) and sa(t) be the total fractional weight of active jobs and the
speed of HDF-AC. In the fixed-speed model, we use (1 + ε)-speed processor, so sa(t) = 1 + ε ;

S.H. Chan, T.W. Lam and L.K. Lee 399

in the speed scaling model, we use (1 + ε)-speedup processor and set sa(t) = (1 + ε) ·
min(Q(wa(t)), T). Then, HDF-AC runs the admitted jobs using HDF at speed sa(t).

Admission control: Let wa(q, t) be the total fractional weight of active jobs with inverse
density at least q. Let f(x) = x

min(Q(x),T) in the speed scaling model, and f(x) = x in the
fixed-speed model. Then the future cost at time t is

Φ̂a(t) = 1
1 + ε

·
∫ ∞
q=0

∫ wa(q,t)

x=0
f(x) dx dq .

When a job j arrives, let ∆Φ̂a(t) be the increase in Φ̂a(t) if j is admitted. More precisely, let
d(j) = p(j)/w(j) be the inverse density of j. Then ∆Φ̂a(t) = 1

1+ε ·
∫ d(j)
q=0

∫ wa(q,t)+w(j)
x=wa(q,t) f(x)dx dq.

HDF-AC discards j if v(j) ≤ ∆Φ̂a(t); otherwise, j is admitted.
Our main result is the following theorem.

I Theorem 10. Consider any ε > 0. (i) In the speed scaling model, HDF-AC is (8 + 12
ε)-

competitive for fractional weighted flow plus penalty plus energy, when using (1 + ε)-speedup
processor. (ii) In the fixed-speed model, HDF-AC is (3+ 6

ε)-competitive for fractional weighted
flow plus penalty, when using (1 + ε)-speed processor.

Though the objectives for Theorem 10 (i) and (ii) are different, we present an analysis
framework that works for both objectives. Let OPT be the optimal offline schedule for the
corresponding objective. Without loss of generality, we can assume that OPT rejects a job
at its arrival. Let wo(t) and so(t) be the total fractional weight of active jobs and the speed
of OPT. In the speed scaling model, the objective is fractional weighted flow plus penalty
plus energy. We further assume that OPT runs the BCP algorithm [7], i.e., at any time t,
OPT runs the admitted jobs using HDF at speed so(t) = min(Q(wo(t)), T). Since BCP is
2-competitive for fractional weighted flow plus energy [7], such assumption on OPT only
increases the competitive ratio by a factor of 2. In the fixed-speed model, the objective is
fractional weighted flow plus penalty. We further assume that OPT runs HDF at speed
so(t) = 1, since HDF minimizes fractional weighted flow [8].

Since OPT runs HDF, we can define its future cost similarly. At any time t, let wo(q, t)
be the total fractional weight of active jobs with inverse density at least q. Recall that
f(x) = x

min(Q(x),T) in the speed scaling model, and f(x) = x in the fixed-speed model. Then
the future cost of OPT at time t is

Φ̂o(t) =
∫ ∞
q=0

∫ wo(q,t)

x=0
f(x) dx dq .

Overview of analysis. Our analysis exploits amortization and potential functions. We
split the objective into two parts; R denotes the penalty and G denotes the fractional weighted
flow (plus energy). Let Ga(t) and Go(t) denote the objective G incurred up to time t by
HDF-AC and OPT, respectively. Define Ra(t) and Ro(t) similarly for the penalty R. To show
that HDF-AC is (c1+c2)-competitive for the objective G+R against OPT, it suffices to define
a potential function Φ(t) such that the following conditions hold: (i) Boundary condition:
Φ = 0 before any job is released and after all jobs are completed. (ii) Completion condition:
When a job is completed by HDF-AC or OPT, ∆Φ(t) ≤ 0. (iii) Arrival condition: When a
job arrives, ∆Ra(t)+∆Φ(t) ≤ c1 ·(∆Φ̂o(t)+∆Ro(t)), where ∆Φ̂o(t) is the change in the future
cost of OPT at time t. (iv) Running condition: At any other time, dGa(t)

dt + dΦ(t)
dt ≤ c2 ·

dGo(t)
dt .

To see the correctness, note that Ra(t) and Ro(t) changes discretely only at job arrivals,
and Ga(t) and Go(t) changes continuously at other times. Let te be the time when all jobs are
completed by both HDF-AC and OPT. Since the future cost Φ̂o(t) captures the fractional

STACS’11

400 Scheduling for Weighted Flow Time and Energy with Rejection Penalty

weighted flow incurred by OPT to serve the active jobs at t, we have
∫ te

0 ∆Φ̂o(t)dt ≤ Go(te).
Therefore, the correctness follows from integrating these conditions over time, which gives
Ga(te) +Ra(te) ≤ c1 · (

∫ te
0 ∆Φ̂o(t) dt+Ro(te)) + c2 ·Go(te) ≤ (c1 + c2) · (Go(te) +Ro(te)) .

Potential function. We now define a general form of Φ(t) that works for both objectives.
Consider any time t. Recall that f(x) = x

min(Q(x),T) in the speed scaling model, and f(x) = x

in the fixed-speed model. The potential function Φ is defined as

Φ(t) = 2
ε
·
∫ ∞
q=0

∫ (wa(q,t)−wo(q,t))+

x=0
f(x) dx dq .

The boundary and completion conditions hold obviously. We now check the arrival
condition. We drop the parameter t from all notations when it is clear that t refers to the
current time.

I Lemma 11. When a job j arrives, ∆Ra + ∆Φ ≤ (2 + 4
ε) · (∆Φ̂o + ∆Ro).

Proof. Let d(j) = p(j)/w(j) be the inverse density of job j. If HDF-AC admits this job,
then wa(q) increases by w(j) for q ∈ [0, d(j)]. Similarly, if OPT admits this job, then wo(q)
increases by w(j) for q ∈ [0, d(j)]. Now, we consider the following two cases.

Case 1: OPT admits j. In this case, ∆Ro = 0. If HDF-AC also admits j, then
wa(q) − wo(q) remains the same for all q, so ∆Φ = 0. Since ∆Φ̂o ≥ 0, ∆Ra + ∆Φ = 0 ≤
(2 + 4

ε) · (∆Φ̂o + ∆Ro).
Otherwise, HDF-AC rejects j. We analyze using techniques in [12]. Note that ∆Φ̂o =∫ d(j)

q=0
∫ wo(q)+w(j)
x=wo(q) f(x) dx dq. The change of Φ due to OPT is

−2
ε
·
∫ d(j)

q=0

∫ (wa(q)−wo(q))+

x=(wa(q)−wo(q)−w(j))+

f(x) dx dq .

Note that ∆Ra = v(j) ≤ 1
1+ε

∫ d(j)
q=0

∫ wa(q)+w(j)
x=wa(q) f(x) dx dq ≤ 2

ε

∫ d(j)
q=0

∫ wa(q)+w(j)
x=wa(q) f(x) dx dq, and

the change of Φ due to HDF-AC is zero. Thus,

∆Ra + ∆Φ ≤ 2
ε
·
∫ d(j)

q=0

(∫ wa(q)+w(j)

x=wa(q)
f(x) dx−

∫ (wa(q)−wo(q))+

x=(wa(q)−wo(q)−w(j))+

f(x) dx
)

dq .

It was shown in [12] that if the function f satisfies that f(0) ≥ 0 and f is increasing
and subadditive, i.e., for any a, b ≥ 0, f(a + b) ≤ f(a) + f(b), then

∫ wa(q)+w(j)
x=wa(q) f(x)dx −∫ (wa(q)−wo(q))+

x=(wa(q)−wo(q)−w(j))+
f(x)dx ≤ 2

∫ wo(q)+w(j)
x=wo(q) f(x) dx. In the fixed-speed model, f(x) = x

obviously satisfies these conditions. In the speed scaling model, f(x) = x
min(Q(x),T) . It was

also shown in [12] that x
Q(x) is increasing and subadditive. Clearly, f(x) is also increasing.

Consider any a, b ≥ 0. If a + b ≤ P (T), it follows directly that f(a + b) ≤ f(a) + f(b);
otherwise, f(a + b) = a+b

T ≤ a
min(Q(a),T) + b

min(Q(b),T) = f(a) + f(b). Therefore, in both
cases, we can apply the inequality to get that ∆Ra + ∆Φ ≤ 4

ε ·
∫ d(j)
q=0

∫ wo(q)+w(j)
x=wo(q) f(x)dx dq =

4
ε ·∆Φ̂o ≤ (2 + 4

ε) · (∆Φ̂o + ∆Ro).
Case 2: OPT rejects j. In this case, ∆Ro = v(j), ∆Φ̂o = 0, and the change of Φ due

to OPT is zero. Similarly, if HDF-AC admits j, then ∆Ra = 0 and the change of Φ due to
HDF-AC is

2
ε
·
∫ d(j)

q=0

∫ wa(q)+w(j)

x=wa(q)
f(x) dx dq ,

which is exactly 2(1 + 1
ε) times the increase of Φ̂a and is therefore at most 2(1 + 1

ε)v(j).
Otherwise, if HDF-AC also rejects j, ∆Ra = v(j) and the change of Φ due to HDF-AC is
zero. In both cases, ∆Ra + ∆Φ ≤ (2 + 2

ε) · v(j) ≤ (2 + 4
ε) · (∆Φ̂o + ∆Ro). J

S.H. Chan, T.W. Lam and L.K. Lee 401

It remains to show the running condition. Consider any time t without job arrival or
completion. Let sa and so be the current speeds of HDF-AC and OPT, respectively. To
bound the rate of change of Φ, Lemma 12 below shows how Φ changes in an infinitesimal
amount of time (from t to t+ dt). Its proof is based on similar arguments as in [7, 12] and
will be given in the full paper.

I Lemma 12. Consider any time without job arrival or completion. (i) If wa < wo, then
dΦ
dt ≤ 0. (ii) If wa > wo, then dΦ

dt ≤
2
ε · f(wa − wo) · (−sa + so). (iii) If wa = wo, then

dΦ
dt ≤

2
ε · f(wo) · so.

We are ready to show the running condition for the speed scaling model (Lemma 13) and
for the fixed-speed model (Lemma 14).

I Lemma 13. In the speed scaling model, at any time without job arrival or completion,
dGa
dt + dΦ

dt ≤ (2 + 2
ε) · dGo

dt .

Proof. Since sa = (1 + ε) min(Q(wa), T) ≤ (1 + ε)Q(wa) and HDF-AC is using a (1 +
ε)-speedup processor, P (sa) ≤ wa and dGa

dt ≤ 2wa. By the assumption of OPT, so =
min(Q(wo), T) and dGo

dt ≥ wo. We now consider the three cases stated in Lemma 12. Recall
that f(x) = x

min(Q(x),T) .
Case (i): wa < wo. By Lemma 12, dΦ

dt ≤ 0, so dGa
dt + dΦ

dt ≤ 2wa < 2wo ≤ (2 + 2
ε) · dGo

dt .
Case (ii): wa > wo. Note that Q is increasing. By Lemma 12, dΦ

dt ≤
2
ε ·

wa−wo
min(Q(wa−wo),T) (−(1+

ε) min(Q(wa), T) + min(Q(wo), T)) ≤ − 2
ε · (wa − wo) ε·min(Q(wa),T)

min(Q(wa−wo),T) ≤ 2wo − 2wa. Thus,
dGa
dt + dΦ

dt ≤ 2wa + 2wo − 2wa ≤ (2 + 2
ε) · dGo

dt .
Case (iii): wa = wo. By Lemma 12, dΦ

dt ≤
2
ε ·

wo
min(Q(wo),T) ·min(Q(wo), T) = 2

ε · wo. Thus,
dGa
dt + dΦ

dt ≤ 2wa + 2
ε · wo = (2 + 2

ε) · wo ≤ (2 + 2
ε) · dGo

dt . J

I Lemma 14. In the fixed-speed model, at any time without job arrival or completion,
dGa
dt + dΦ

dt ≤ (1 + 2
ε) · dGo

dt .

Proof. It suffices to show that wa + dΦ
dt ≤ (1 + 2

ε) · wo. Recall that sa = 1 + ε, so = 1 and
f(x) = x. We now consider the three cases stated in Lemma 12.
Case (i): wa < wo. By Lemma 12, dΦ

dt ≤ 0, so wa + dΦ
dt ≤ wa ≤ wo ≤ (1 + 2

ε) · wo.
Case (ii): wa > wo. By Lemma 12, dΦ

dt ≤
2
ε · (wa − wo) · (−(1 + ε) + 1) = 2wo − 2wa.

Therefore, wa + dΦ
dt ≤ wa + 2wo − 2wa ≤ wo ≤ (1 + 2

ε) · wo.
Case (iii): wa = wo. By Lemma 12, dΦ

dt ≤
2
ε · wo. Thus, wa + dΦ

dt ≤ wa + 2
ε · wo =

(1 + 2
ε) · wo. J

In the speed scaling model, by Lemmas 11 and 13, HDF-AC is (4+ 6
ε)-competitive against

OPT. Recall that OPT uses BCP and thus is 2-approximate. Therefore, Theorem 10 (i)
follows. In the fixed-speed model, by Lemmas 11 and 14, HDF-AC is (3 + 6

ε)-competitive
against OPT, which is the actual optimal schedule. Thus, Theorem 10 (ii) follows.

Online algorithm for integral weighted flow. We now convert the result of Theo-
rem 10 for the objective of (integral) weighted flow. Since HDF is (1 + ε)-speed (1 + 1

ε)-
competitive for weighted flow on a fixed speed processor [8] and the fractional weighted
flow of any schedule (including OPT) is always at most its (integral) weighted flow, we use
the following online algorithm HDF-AC∗: HDF-AC∗ keeps a simulated copy of HDF-AC on
the same job instance. It always follows the admission control of HDF-AC. At any time,
HDF-AC∗ runs at speed (1 + ε) faster than the simulated HDF-AC, but selects the job to
run using HDF on its own active jobs.

The following performance guarantee of HDF-AC∗ follows directly from Theorem 10.

STACS’11

402 Scheduling for Weighted Flow Time and Energy with Rejection Penalty

I Corollary 15. Consider any ε > 0. (i) In the speed scaling model, HDF-AC∗ is (1 +
1
ε)(8 + 12

ε)-competitive for weighted flow plus penalty plus energy, when using (1 + ε)2-speedup
processor. (ii) In the fixed-speed model, HDF-AC∗ is (1 + 1

ε)(3 + 6
ε)-competitive for weighted

flow plus penalty, when using (1 + ε)2-speed processor.

4 Lower Bound for Arbitrary Penalty Jobs

This section gives the lower bound result. Assuming P (s) = sα, we show that the competitive
ratio of any algorithm must grow with α, i.e., the steepness of the power function. This
implies that no O(1)-competitive algorithm exists for arbitrary power function.

I Theorem 16. Consider minimizing flow plus energy plus penalty. For power function
P (s) = sα, if T is unbounded, any algorithm is Ω(α1/2−ε)-competitive for any 0 < ε < 1

2 .

Proof. Let A be any algorithm and OFF be the offline adversary. Let k ≥ 1 be some constant
depending on α (to be defined later). At time 0, the adversary releases two streams of jobs,
namely Stream 1 and Stream 2. Stream 1 contains k2 jobs of size 1 and penalty k2, each
released at time i, where 0 ≤ i ≤ k2 − 1. Stream 2 contains k job of size k and penalty k5,
each released at time jk, where 0 ≤ j ≤ k − 1. The penalty of Stream 2 jobs is large enough
such that A is not competitive if any one of them is rejected. Therefore, A runs Stream 2
jobs one by one (in SRPT) in their arrival order. Depending on the number of Stream 2 jobs
remaining in A at time k2, the adversary may release Stream 3, which contains k4

δ job of
size δ = 1

k and penalty k5, each released at time k2 + iδ, where 0 ≤ i ≤ k4

δ − 1.
Case 1: At time k2, A has less than k

2 Stream 2 jobs remaining. In this case, the
adversary does not release Stream 3. OFF can always run at speed 1 and completes the
Stream 1 jobs one by one in [0, k2] and then completes the Stream 2 jobs one by one in
[k2, 2k2]. Thus, the total flow of OFF is at most k2 · 1 + k · (k2 + k) = O(k3). Since OFF
always consume power 1α = 1, which is at most the number of active jobs at that time,
the energy usage of OFF is at most its flow. As OFF does not reject any job, the flow plus
energy plus penalty of OFF is O(k3).

Consider the schedule of A. If A rejects at least one Stream 2 jobs, the penalty of
A is at least k5. If A rejects more than k2

4 Stream 1 jobs, the penalty of A is at least
k2

4 · k
2 = Ω(k4). If A has at least k2

8 Stream 1 jobs remaining at time k2, the flow of these
jobs is at least

∑k2/8
i=1 i = Ω(k4). In all of the above three cases, the competitive ratio of A is

Ω(k). Otherwise, A does not reject any Stream 2 job, and A rejects at most k2

4 Stream 1
jobs, and there are less than k2

8 Stream 1 jobs remaining at time k2. Thus, during [0, k2], A
has completed at least k2 − k2

4 −
k2

8 = 5k2

8 Stream 1 jobs and at least k − k
2 = k

2 Stream 2
jobs. The work done of A during [0, k2] is at least 5k2

8 + k
2 · k = 9k2

8 . By the convexity of
the power function sα, running at a fixed speed minimizes the energy usage and thus the
energy usage of A is at least (9k2

8 /k2)α · k2 = (9
8)αk2. Thus, the competitive ratio of A is

Ω((9
8)α · 1

k).
Case 2: At time k2, A has at least k2 Stream 2 jobs remaining. In this case, the adversary

releases Stream 3. Similar to Stream 2, without loss of generality, A works on Stream 3 jobs
one by one (in SRPT). OFF can reject all Stream 1 jobs and then always run at speed 1 to
complete the Stream 2 jobs one by one in [0, k2] and then completes the Stream 3 jobs one
by one in [k2, k2 + k4]. Thus, the total penalty of OFF is k2 · k2 = k4 and total flow of OFF
is at most k · k + k4

δ · δ = k2 + k4 = O(k4). Since OFF always consume power 1α = 1, which
is at most the number of active jobs at that time, the energy usage of OFF is at most its
flow. Therefore, the flow plus energy plus penalty of OFF is O(k4).

S.H. Chan, T.W. Lam and L.K. Lee 403

Consider the schedule of A. If A rejects at least one Stream 2 or Stream 3 job, the penalty
of A is at least k5. If at time k2 + k4, A has at least k

4 Stream 2 jobs remaining, the flow
of these jobs is at least k

4 · k
4 = Ω(k5). If at time k2 + k4, A has at least k2

8δ Stream 3 jobs
remaining, the flow of these jobs is at least δ ·

∑k2/8δ
i=1 i = Ω(k

4

δ) = Ω(k5). In all of the above
three cases, the competitive ratio of A is Ω(k). Otherwise, A does not reject any Stream 2
and Stream 3 job, and at time k2 + k4, there are less than k

4 Stream 2 jobs and less than
k2

8δ Stream 3 jobs remaining. Thus, A has completed more than k
2 −

k
4 = k

4 Stream 2 jobs
and more than k4

δ −
k2

8δ Stream 3 jobs during [k2, k2 + k4]. Since A runs Stream 2 jobs and
Stream 3 jobs by SRPT, respectively, the total work done during [k2, k2 + k4] is at least
k
4 · k + (k

4

δ −
k2

8δ) · δ = k4 + k2

8 . Since running at a fixed speed minimizes the energy usage,
the energy usage of A is at least k4 · ((k4 + k2

8)/k4)α = Ω(k4 · (1 + 1
8k2)α) and hence A is

Ω((1 + 1
8k2)α)-competitive.

Therefore, A is Ω(min(k, (9
8)α(1

k), (1+ 1
8k2)α))-competitive. We set k = α

1
2−ε for 0 < ε < 1

2 .
Since (1+ 1

8y)y is increasing with y, the competitive ratio of A is Ω(min(α 1
2−ε, (9

8)α/α 1
2−ε, (1+

1
8α1−2ε)α1−2ε·α2ε)) = Ω(min(α 1

2−ε, (9
8)α/α 1

2−ε, (1 + 1
8)α2ε)) = Ω(α 1

2−ε). J

References
1 S. Albers. Energy-efficient algorithms. Communications of the ACM, 53(5):86–96, 2010.
2 S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time minimization. ACM

Transactions on Algorithms, 3(4):49, 2007.
3 L. Andrew, A. Wierman, and A. Tang. Optimal speed scaling under arbitrary power

functions. ACM SIGMETRICS Performance Evaluation Review, 37(2):39–41, 2009.
4 N. Bansal, A. Blum, S. Chawla, and K. Dhamdhere. Scheduling for flow-time with admis-

sion control. In Proc. ESA, pages 43–54, 2003.
5 D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva, A. Buyuktosunoglu,

J. D. Wellman, V. Zyuban, M. Gupta, and P. W. Cook. Power-aware microarchitecture:
Design and modeling challenges for next-generation microprocessors. IEEE Micro, 20(6):26–
44, 2000.

6 N. Bansal, H. L. Chan, T. W. Lam, and L. K. Lee. Scheduling for speed bounded processors.
In Proc. ICALP, pages 409–420, 2008.

7 N. Bansal, H. L. Chan, and K. Pruhs. Speed scaling with an arbitrary power function. In
Proc. SODA, pages 693–701, 2009.

8 L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela, and K. Pruhs. Online weighted flow
time and deadline scheduling. J. Discrete Algorithms, 4(3):339–352, 2006.

9 N. Bansal, K. Pruhs, and C. Stein. Speed scaling for weighted flow time. SIAM Journal
on Computing, 39(4):1294–1308, 2009.

10 H. L. Chan, J. Edmonds, T. W. Lam, L. K. Lee, A. Marchetti-Spaccamela, and K. Pruhs.
Nonclairvoyant speed scaling for flow and energy. In Proc. STACS, pages 255–264, 2009.

11 S. H. Chan, T. W. Lam, and L. K. Lee. Non-clairvoyant speed scaling for weighted flow
time. In Proc. ESA, pages 23–35, 2010.

12 A. Gupta, R. Krishnaswamy, and K. Pruhs. Scalably scheduling power-heterogeneous
processors. In Proc. ICALP, 312–323, 2010.

13 T. W. Lam, L. K. Lee, I. To, and P. Wong. Speed scaling functions for flow time scheduling
based on active job count. In Proc. ESA, pages 647–659, 2008.

14 L. Schrage. A proof of the optimality of the shortest remaining processing time discipline.
Operations Research, 16(3):687–690, 1968.

15 F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In Proc.
FOCS, pages 374–382, 1995.

STACS’11

	Introduction
	Uniform Penalty and Unit Weight
	Arbitrary Penalty and Arbitrary Weight
	Lower Bound for Arbitrary Penalty Jobs

