
Symposium on Theoretical Aspects of Computer Science year (city), pp. numbers
www.stacs-conf.org

CONTINUOUS MONITORING OF DISTRIBUTED DATA STREAMS

OVER A TIME-BASED SLIDING WINDOW

HO-LEUNG CHAN 1 AND TAK-WAH LAM 1 AND LAP-KEI LEE 2 AND HING-FUNG TING 1

1 Department of Computer Science, University of Hong Kong, Hong Kong
E-mail address: {hlchan,twlam,hfting}@cs.hku.hk

2 Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany
E-mail address: lklee@mpi-inf.mpg.de

Abstract. The past decade has witnessed many interesting algorithms for maintaining
statistics over a data stream. This paper initiates a theoretical study of algorithms for
monitoring distributed data streams over a time-based sliding window (which contains a
variable number of items and possibly out-of-order items). The concern is how to mini-
mize the communication between individual streams and the root, while allowing the root,
at any time, to be able to report the global statistics of all streams within a given error
bound. This paper presents communication-efficient algorithms for three classical statis-
tics, namely, basic counting, frequent items and quantiles. The worst-case communication
cost over a window is O(k

ε
log εN

k
) bits for basic counting and O(k

ε
log N

k
) words for the

remainings, where k is the number of distributed data streams, N is the total number of
items in the streams that arrive or expire in the window, and ε < 1 is the desired error
bound. Matching and nearly matching lower bounds are also obtained.

1. Introduction

The problems studied in this paper are best illustrated by the following puzzle. John
and Mary work in different laboratories and communicate by telephone only. In a forever-
running experiment, John records which devices have an exceptional signal in every 10
seconds. To adjust her devices, Mary at any time needs to keep track of the number of
exceptional signals generated by each device of John in the last one hour. John can call
Mary every 10 seconds to report the exceptional signals, yet this requires too many calls in
an hour and the total message size per hour is linear to the total number N of exceptional
signals in an hour. Mary’s devices actually allow some small error. Can the number of
calls and message size be reduced to o(N), or even poly-log N if a small error (say, 0.1%) is

1998 ACM Subject Classification: F.2.2 [Analysis of algorithms and problem complexity]: Nonnumerical
algorithms and problems.

Key words and phrases: Algorithms, distributed data streams, communication efficiency, frequent items.
T.W. Lam is partially supported by the GRF Grant HKU-713909E; H.F. Ting is partially supported by

the GRF Grant HKU-716307E.

c© H.L. Chan, T.W. Lam, L.K. Lee, and H.F. Ting
CC© Creative Commons Attribution-NoDerivs License

2 H.L. CHAN, T.W. LAM, L.K. LEE, AND H.F. TING

allowed? It is important to note that the input is given online and Mary needs to know the
answers continuously; this makes our problem different from those in other similar classical
models, such as the Simultaneous Communication Complexity model [4], in which all inputs
are given in advance and the parties need to compute an answer only once.

Motivation. The above problem appears in data stream applications, e.g., network
monitoring or stock analysis. In the last decade, algorithms for continuous monitoring of a
single massive data stream gained a lot of attention (see [1,26] for a survey), and the main
challenge has been how to represent the massive data using limited space, while allowing
certain statistics (e.g., item counts, quantiles) to be computed with sufficient accuracy.

The space-accuracy tradeoff for representing a single stream has gradually been un-
derstood over the years (e.g., [2, 15, 18, 19]). Recently, motivated by large scale networks,
the database community is enthusiastic about communication-efficient algorithms for con-
tinuous monitoring of multiple, distributed data streams. In such applications, we have
k ≥ 1 remote sites each monitoring a data stream, and there is a root (or coordinator)
responsible for computing some global statistics. A remote site needs to maintain cer-
tain statistics itself, and has to communicate with the root often enough so that the root
can compute, at any time, the statistics of the union of all data streams within a certain
error. The objective is to minimize the communication. The communication aspects of
data streams introduce several challenging theoretical questions such as what is the opti-
mal communication-accuracy tradeoff for maintaining a particular statistic, and whether
two-way communication is inherently more efficient than one-way communication.

Data stream models and ε-approximate queries. The data stream at each remote
site is a sequence of items from a totally ordered set U . Each item is associated with an
integral time-stamp recording its arrival time. Each remote site has limited space and hence
it can only maintain the required statistics approximately. The statistics can be based on
the whole data stream [2, 15, 18, 19] or only the recent items [3, 14, 22]. Recent items can
be modeled by two types of sliding windows [5, 13]. Let W be the window size, which is
a positive integer. The count-based sliding window includes the last W items in the data
stream, while the time-based sliding window includes items whose time-stamps are within
the last W time units. The latter assumes that zero or more items can arrive at a time.
Items in a sliding window will expire and are more difficult to handle than in the whole
data stream. For example, counting the frequency of a certain item in the whole stream
can be done easily by maintaining a single counter, yet the same problem requires space
Θ(1

ε
log2(εW)) bits for a count-based sliding window even if we allow a relative error of at

most ε [13, 16]. In fact, the whole data stream model can be viewed as a special case of
the sliding window model with window size being infinite. Also, a count-based window is a
special case of a time-based window in which exactly one item arrives at a time. This paper
focuses on time-based window, and the algorithms are applicable to the other two models.

We study algorithms that enable the root to answer three types of classical ε-approximate
queries, defined as follows. Let 0 < ε < 1. For any stream σ, let cj,σ and cσ be the count
of item j and all items whose timestamps are in the current window, respectively. Denote
cj =

∑

σ cj,σ and c =
∑

σ cσ as the total count of item j and all items in all the data
streams, respectively.

• Basic Counting. Return an estimate ĉ on the total count c such that |ĉ − c| ≤ εc.
(Note that this query can be generalized to count data items of a fixed subset X ⊆ U ;
the literature often refers to the special case with U = {0, 1} and X = {1}.)

CONTINUOUS MONITORING OF DISTRIBUTED DATA STREAMS OVER SLIDING WINDOW 3

• Frequent Items. Given any 0 < φ < 1, return a set F ⊆ U which includes all items
j with cj ≥ φc and possibly some items j′ with cj′ ≥ φc − εc.

• Quantiles. Given any 0 < φ < 1, return an item whose rank is in
[

φc− εc, φc + εc
]

among the c items in the current sliding window.

As in most previous works, we need to answer the following type of ε-approximate queries
in order to answer queries on frequent items.

• Approximate Counting. Given any item j, return an estimate ĉj such that |ĉj−cj | ≤
εc. (Note that this query gives estimate for any item, not just the frequent items.
Also, the error bound is in term of c, which may be much larger than cj .)

We need an algorithm to determine when and how the remote sites communicate with
the root so that the root can answer the queries at any time. The objective is to minimize
the worst-case communication cost within a window of W time units.

Previous works. Recently, the database literature has a flurry of results on continuous
monitoring of distributed data streams, e.g. [6, 8, 9, 12,17,20,24,25,27, 28]. The algorithms
studied can be classified into two types: one-way algorithms only allow messages sent from
each remote site to the root, and two-way algorithms allow bi-directional communication
between the root and each site. One-way algorithms are often very simple as a remote
site has little information and all it can do is to update the root when its local statistics
deviate significantly from those previously sent. On the other hand, most two-way algo-
rithms are complicated and often involve non-trivial heuristics. It is commonly believed
in the database community that two-way algorithms are more efficient; however, for most
existing two-way algorithms, their worst-case communication costs are still waiting for rig-
orous mathematical analysis, and existing works often rely on experimental results when
evaluating the communication cost.

The literature contains several results on the mathematical analysis of the worst-case
performance of one-way algorithms. They are all for the whole data stream setting. Ker-
alapura et al. [21] studied the thresholded-count problem, which leads to an algorithm for
basic counting with communication cost O(k

ε
log N

k
) words, where k and N are the number

of streams and the number of items in these streams, respectively. Cormode et al. [9] gave
an algorithm for quantiles with communication cost O(k

ε2 log N
k

) words per stream. They
also showed how to handle frequent items via a reduction to quantiles, so the communication
cost remains the same. More recently, Yi and Zhang [29] have reduced the communication
cost for frequent items to O(k

ε
log N

k
) words, and quantile to O(k

ε
log2(1

ε
) log N

k
) words, using

some two-way algorithms; these are the only analyses for two-way algorithms so far.
There have been attempts to devise heuristics to extend some whole-data-stream al-

gorithms to sliding windows, yet not much has been known about their worst-case perfor-
mance. For example, Cormode et al. [9] have extended their algorithms for quantiles and
frequent items to sliding windows. They believed that the communication cost would only
have a mild increase, but no supporting analysis has been given. The analysis of sliding-
window algorithms is more difficult because the expiry of items destroys some monotonic
property that is important to the analysis for whole data stream. In fact, finding sliding-
window algorithms with efficient worst-case communication has been posed as an open
problem in the latest work of Yi and Zhang [29].

Our results. This paper gives the first mathematical analysis of the communication
cost in the sliding window model. We derive lower bounds on the worst-case communication
cost of any two-way algorithm (and hence any one-way algorithm) for answering the four

4 H.L. CHAN, T.W. LAM, L.K. LEE, AND H.F. TING

Basic Counting Approximate Counting/ Quantiles
(bits) Frequent items (words) (words)

Whole data O(k

ε
log N

k
) words [21] O(k

ε
log N

k
) [29] O(k

ε
log2(1

ε
) log N

k
) [29]

stream Θ(k

ε
log εN

k
) bits Ω(k

ε
log εN

k
) [29, 30]

Sliding window Θ(k

ε
log εN

k
)

O(k

ε
log N

k
) O(k

ε2 log N

k
)

Ω(k

ε
log εN

k
)

Sliding window
O((W

W−τ
)k

ε
log εN

k
) O((W

W−τ
)k

ε
log N

k
) O((W

W−τ
) k

ε2 log N

k
)

& out-of-order Ω(max{ W

W−τ
, k

ε
log εN

k
}) Ω(max{ W

W−τ
, k

ε
log εN

k
})

Table 1: Bounds on the communication costs. Note that the bounds are stated in bits for
basic counting, and in words for the other problems.

types of ε-approximate queries. These lower bounds hold even when each remote site has
unlimited space to maintain the local statistics exactly. More interestingly, we analyze some
common-sense algorithms that use one-way communication only and prove that their com-
munication costs match or nearly match the corresponding lower bounds. In our algorithms,
each remote site only needs to maintain some Θ(ε)-approximate statistics for its local data,
which actually adds more complication to the problem. These results demonstrate optimal
or near optimal communication-accuracy tradeoffs for supporting these queries over the
sliding window. Our work reveals that two-way algorithms could not be much better than
one-way algorithms in the worst case.

Below we state the lower and upper bounds precisely. Recall that there are k remote
sites and the sliding window contains W time units. We prove that within any window,
the root and the remote sites need to communicate, in the worst case, Ω(k

ε
log εN

k
) bits

for basic counting and Ω(k
ε

log εN
k

) words for the other three queries, where N is the total

number of items arriving or expiring within that window.1 For upper bounds, our analysis
shows that basic counting requires O(k

ε
log εN

k
) bits within any window, and approximate

counting O(k
ε

log N
k

) words. The estimates given by approximate counting are sufficient
to find frequent items, hence the latter problem has the same communication cost. For
quantiles, it takes O(k

ε2 log N
k
) words. See the second row (sliding window) of Table 1 for a

summary.
As mentioned before, sliding-window algorithms can be applied to handle the special

case of whole data streams in which the window size W is infinite and N is the total number
of arrived items. The first row of Table 1 shows the results on whole data streams. Our
work has improved the communication cost for basic counting from O(k

ε
log N

k
) words [21] to

O(k
ε

log εN
k

) bits. For approximate counting and frequent items, our work implies a one-way

algorithm with communication cost of O(k
ε
log N

k
) words; this matches the performance of

the two-way algorithm by Yi and Zhang [29]. In their algorithm, the root regularly updates
every remote site about the global count of all items. In contrast, we use the idea that

1Note that the number of items arriving or expiring within window [t − W + 1, t] is no greater than the
number of items arriving within [t − 2W + 1, t].

CONTINUOUS MONITORING OF DISTRIBUTED DATA STREAMS OVER SLIDING WINDOW 5

items with small count could be “turned off” for further updating. As a remark, our upper
bound on quantiles is O(k

ε2 log N
k
) words which is weaker than that of [29].

Our algorithms can be readily applied to out-of-order streams [7, 10]. In an out-of-
order stream, each item is associated with an integral time-stamp recording its creation
time, which may be different from its arrival time. We say that the stream has tardiness

τ if any item with time-stamp t must arrive within τ time units from t, i.e., at any time
in [t, t + τ]. Without loss of generality, we assume that τ ∈ {0, 1, 2, . . . ,W − 1} (if an item
time-stamped at t arrives after t + W − 1, it has already expired and can be ignored). Note
that for any data stream with tardiness greater than zero, the items may not be arriving in
non-decreasing order of their time-stamps. Our previous discussion of data streams assumes
tardiness equal to 0, and such data streams are called in-order data streams. The previous
lower bounds for in-order streams are all valid in the out-of-order setting. In addition, we
obtain lower bounds related to τ , namely, Ω(W

W−τ
) bits for basic counting and Ω(W

W−τ
)

words for the other three problems. Regarding upper bounds, our algorithms when applied
to out-of-order streams with tardiness τ will just increase the communication cost by a
factor of W

W−τ
. The results are summarized in the last row of Table 1.

The idea for basic counting is relatively simple. As the root does not require an exact
total count, each data stream can communicate to the root only when its local count in-
creases or decreases by a certain ratio ε > 0; we call such a communication step an up or
down event, respectively. To answer the total count of all streams, the root simply sums up
all the individual counts it has received. It is easy to prove that this answer is within some
desired error bound. If each count is over the whole stream (i.e., window size = ∞ and N
is the total number of arrived items), the count is increasing and there is no down event. A
stream would have at most O(log1+ε N) up events and the communication cost is at most
that many words. However, the analysis becomes non-trivial in a sliding time window. Now
items can expire and down events can occur. An up event may be followed by some down
events and the count is no longer increasing. The tricky part is to find a new measure of
progress. We identify a “characteristic set” of each up event such that each up event must
increase the size of this set by a factor of at least 1 + ε, hence bounding the number of up
events to be O(log1+ε N). Down events are bounded using another characteristic set. Due
to space limitation, the details can only be given in the full paper.

Approximate counting of all possible items is much more complicated, which will be
covered in details in the rest of this paper. Assuming in-order streams, we derive and
analyze two algorithms for approximate counting in Section 2. In Section 3, we discuss
frequent items, quantiles, and finally out-of-order streams. The lower bound results are
relatively simple and omitted due to space limitation.

2. Approximate Counting of all items

This section presents algorithms for the streams to communicate to the root so that
the root at any time can approximate the count of each item. As a warm-up, we first
consider the simple algorithm in which a stream will inform the root whenever its count
of an item increases or decreases by a certain fraction of its total item count. We show
in Section 2.1 that within any window of W time units, each data stream σi (1 ≤ i ≤ k)
needs to send at most O((∆ + 1

ε
) log ni) words to the root, where ∆ is the number of

distinct items and ni is the number of items of σi that arrive or expire within the window.
Then, the total communication cost within this window is

∑

1≤i≤k(∆ + 1
ε
) log ni, which, by

6 H.L. CHAN, T.W. LAM, L.K. LEE, AND H.F. TING

Jensen’s inequality, is no greater than (∆ + 1
ε
)k log(

∑

1≤i≤k ni)/k = (∆ + 1
ε
)k log N

k
where

N =
∑

1≤i≤k ni. We then modify the algorithm so that a stream can “turn off” items whose
counts are too small, and we give a more complicated analysis to deal with the case when
many such items increase their counts rapidly (Section 2.2). The communication cost is
reduced to O(k

ε
log N

k
) words, independent of ∆.

2.1. A simple algorithm

Consider any stream σ. At any time t, let c(t) and cj(t) be the number of all items
and item j arriving at σ in [t−W + 1, t], respectively. Let λ < 1/11 be a positive constant
(which will be set to ε/11). We maintain two λ-approximate data structures [13, 23] at σ
locally, which can report estimates ĉ(t) and ĉj(t) for c(t) and cj(t), respectively, such that 2

(1 − λ/6)c(t) ≤ ĉ(t) ≤ (1 + λ/6)c(t); and cj(t) − λc(t) ≤ ĉj(t) ≤ cj(t) + λc(t).

Simple algorithm. At any time t, for any item j, let p < t be the last time
ĉj(p) is sent to the root. The stream sends the estimate 〈j, ĉj(t)〉 to the root if the
following event occurs.

• Up: ĉj(t) > ĉj(p) + 9λĉ(t).
• Down: ĉj(t) < ĉj(p) − 9λĉ(t).

Root’s perspective. At any time t, let rj,σ(t) be the last estimate received from a stream σ
for item j (at or before t). The root can estimate the total count of item j over all streams by
summing all rj,σ(t) received. More precisely, for any 0 < ε < 1, we set λ = ε/11 and let each
stream use the simple algorithm. Then for each stream σ, the approximate data structures
for ĉj(t) and ĉ(t) together with the simple algorithm guarantee that cj(t) − 11λc(t) ≤
rj,σ(t) ≤ cj(t) + 11λc(t). Summing rj,σ(t) over all streams would give the root an estimate
of the total count of item j within an error of ε of the total count of all items.

Communication Complexity. At any time t, we denote the reference window as [to, t],
where to = t − W + 1. Let n be the number of items of σ that arrive or expire in [to, t].
Assume that there are at most ∆ distinct items. We first show that a stream σ encounters
O((1

λ
+ ∆) log n) up events and sends O((1

λ
+ ∆) log n) words within [to, t]. The analysis of

down events is similar and will be detailed later. For any time t1 ≤ t2, it is useful to define
σ[t1,t2] (resp. σj,[t1,t2]) as the multi-set of all items (resp. item j only) arriving at σ within
[t1, t2], and |σ[t1,t2]| as the size of this multi-set.

Consider an up event Uj of some item j that occurs at time v ∈ [to, t]. Define the
previous event of Uj to be the latest event (up or down) of item j that occurs at time p < v.
We call p the previous-event time of Uj . The number of up events with previous-event
time before to is at most ∆. To upper bound the number of up events with previous-event
time p ≥ to is, however, non-trivial; below we call such an up event a follow-up (event).
Intuitively, a follow-up can be triggered by frequent arrivals of an item, or mainly the
relative decrease of the total count. This motivates us to classify follow-ups into two types
and analyze them differently. A follow-up Uj is said to be absolute if c(p) ≤ 6

5c(v), and
relative otherwise. Define Recent-items(Uj) to be the multi-set of item j’s that arrive after
the previous event of Uj, i.e., Recent-items(Uj) = σj,[p+1,v].

2The constant 6 in the inequality is arbitrary. It can be replaced with any number provided that other con-
stants in the algorithm and analysis (e.g., the constant 9 in definition of up events) are adjusted accordingly.

CONTINUOUS MONITORING OF DISTRIBUTED DATA STREAMS OVER SLIDING WINDOW 7

Absolute follow-ups. To obtain a tight bound of absolute follow-ups, we need a
characteristic-set argument that can consider the growth of different items together. Let
t1, t2, ..., tk be the times in [to, t] when some absolute follow-ups (of one or more items)
occur. Let xi be the number of items having an absolute follow-up at ti. Note that for all

i, xi ≤ min{1/(7λ),∆},3 and
∑k

i=1 xi is the number of absolute follow-ups in [to, t]. We
define the characteristic set Si at each ti as follows:

Si = the union of Recent-items(Uj) over all absolute follow-ups Uj occurring at t1, t2, . . . , ti.

Recall that n is the number of items of σ that arrive or expire in [t − W + 1, t].

Lemma 2.1. (i) For any 2 ≤ i ≤ k, |Si| > (1 + 6xiλ)|Si−1|. (ii) There are
∑k

i=1 xi =

O(1
λ

log n) absolute follow-ups within [to, t].

Proof. For (i), consider an absolute follow-up Uj of an item j, occurring at time ti with
previous-event time pi. Note that the increase in the count of item j from pi to ti must be
due to the recent items. We have

|Recent-items(Uj)| ≥ cj(ti) − cj(pi)

≥ ĉj(ti) − ĉj(pi) − λc(ti) − λc(pi) (by σ’s local data structures)

> 9λĉ(ti) − λc(ti) − λc(pi) (definition of an up event)

≥ (9λ(1 − λ
6) − λ − 6

5λ)c(ti) ≥ 6λc(ti) (Uj is absolute)

There are xi absolute follow-ups at ti, so |Si| > |Si−1| + xi (6λc(ti)). Since Si ⊆ σ[to,ti],
c(ti) ≥ |Si| ≥ |Si−1|. Therefore, we have |Si| > |Si−1| + 6xiλ|Si| ≥ (1 + 6xiλ)|Si−1|.

For (ii), we note that n ≥ |Sk| >
∏k

i=2(1 + 6xiλ)|S1|, and |S1| ≥ 1. Thus,
∏k

i=2(1 +

6xiλ) < n, or equivalently, ln n >
∑k

i=2 ln(1 + 6xiλ). The latter is at least
∑k

i=2
6xiλ

1+6xiλ
≥

λ
∑k

i=2 xi. The last inequality follows from that xi ≤ 1/(7λ) for all i. Thus,
∑k

i=1 xi ≤

x1 + 1
λ

ln n = O(1
λ

log n).

Relative follow-ups. A relative follow-up occurs only when a lot of items expire,
and relative follow-ups of the same item cannot occur too frequently. Below we define
O(log n) time intervals and argue that no item can have two relative follow-ups within an
interval. For an item with time-stamp t1, we define the first expiry time to be t1 + W . At
any time u in [to, t], define Hu to be the set of all items whose first expiry time is within
[u + 1, t], i.e., Hu = σ[u−W+1,to−1]. |Hu| is non-increasing as u increases. Consider the
times to = u0 < u1 < u2 < · · · < uℓ ≤ t such that for i ≥ 1, ui is the first time such that
|Hui

| < 5
6 |Hui−1

|. For convenience, let uℓ+1 = t + 1. Note that |Hu0
| ≤ n and ℓ = O(log n).

Lemma 2.2. (i) Every item j has at most one relative follow-up Uj within each interval

[ui, ui+1 − 1]. (ii) There are at most O(∆ log n) relative follow-ups within [to, t].

Proof. For (i), assume Uj occurs at time v in [ui, ui+1 − 1], and its previous event occurs at

time p. By definition, c(p) > 6
5c(v). Thus,

|Hp| − |Hv| = |σ[p−W+1,v−W]| ≥ c(p) − c(v) > 1
5c(v) ≥ 1

5 |σ[v−W+1,to−1]| = 1
5 |Hv| ,

and |Hv| < 5
6 |Hp|. Since v < ui+1 and |Hv| ≥

5
6 |Hui

|, we have |Hp| > |Hui
| and p < ui.

For (ii), there are ∆ distinct items, so there are at most ∆ relative follow-ups within each
interval [ui, ui+1 − 1], and at most O(∆ log n) relative follow-ups within [to, t].

3If an up event of an item j occurs at time ti, then cj(ti) ≥ ĉj(ti) − λc(ti) > 9λĉ(ti) − λc(ti) ≥ 7λc(ti).
Thus the number of up events at time ti is at most c(ti)/(7λc(ti)) = 1/(7λ).

8 H.L. CHAN, T.W. LAM, L.K. LEE, AND H.F. TING

Down events. The analysis is symmetric to that of up events. The only non-trivial
thing is the definition of the characteristic set for bounding the absolute follow-downs Dj ,
which is defined in an opposite sense: Assume Dj occurs at time v and its previous event

occurs at p ≥ to. Dj is said to be absolute if c(p) ≤ 6
5c(v). Let Expire(Dj) be the multi-set

of item j’s whose first expiry time is within [p + 1, v]. I.e., Expire(Dj) = σj,[p−W+1,v−W].
It is perhaps a bit tricky that instead of defining the characteristic set of absolute

follow-downs at the time they occur, we consider the times of the corresponding previous

events of these follow-downs. Let p1, p2, ..., pk be the times in [to, t] such that there is at
least one event Ej (up or down) at pi which is the previous event of an absolute follow-down
Dj occurring after pi. Let yi be the number of such previous events at pi, and let AD(pi)
be the set of corresponding absolute follow-downs. Note that yi (unlike xi) only admits a
trivial upper bound of ∆. We define the characteristic set Ti for each pi as follows:

Ti = the union of Expire(Dj) over all Dj ∈ AD(pi), AD(pi+1), . . . , AD(pk).

Similar to Lemma 2.1, we can show that |Ti| > (1 + 5yiλ)|Ti+1|. Owing to a weaker bound

of individual yi, the number of absolute follow-downs, which equals
∑k

i=1 yi, is shown to be

O((1
λ

+ ∆) log n).

Combining the analyses on up and down events, and let λ = ε/11, we have the following.

Theorem 2.3. The simple algorithm sends at most O((1
ε

+ ∆) log n) words to the root

during window [t − W + 1, t].

2.2. The full algorithm

In this section, we extend the previous algorithm and give a new characteristic-set
analysis that is based on future events (instead of the past events) to show that each
stream’s communication cost per window can be reduced to O(1

ε
log n) words. Then, by

Jensen’s inequality again, we conclude that the total communication cost per window is
O(k

ε
log N

k
). Intuitively, when the estimate ĉj(t) of an item j is too small, say, less than

3λĉ(t), the algorithm treats this estimate as 0 and set the offj flag of j to be true. This

restricts the number of items with a positive estimate to O(1
λ
). Initially, the offj flag is true

for all items j. Given 0 < λ < ε/11, the stream communicates with the root as follows.

Algorithm AC. At any time t, for any item j, let p < t be the time the last
estimate of j, i.e., ĉj(p), is sent to the root. The stream sends the estimate of j to
the root if the following event occurs.

• Up: If ĉj(t) > ĉj(p) + 9λĉ(t), send 〈j, ĉj(t)〉 and set offj = false .
• Off: If offj = false and ĉj(t) < 3λĉ(t), reset ĉj(t) to 0, send 〈j, ĉj(t)〉

and set offj = true.
• Down: If offj = false and ĉj(t) < ĉj(p) − 9λĉ(t), send 〈j, ĉj(t)〉.

It is straightforward to check that the root can answer the approximate counting query
for any item. We analyze the communication complexity of different events as follows.

Fact 1. At any time v, the number of items j with offj = false is at most 1
λ
.4

4For any item j, if offj = false, then ĉj(v) ≥ 3λĉ(v) and cj(v) ≥ ĉj(v)−λc(v) ≥ (3λ(1−λ)−λ)c(v) ≥ λc(v).

Thus the number of items j with offj = false is at most c(v)/λc(v) = 1

λ
.

CONTINUOUS MONITORING OF DISTRIBUTED DATA STREAMS OVER SLIDING WINDOW 9

Off events. Recall that we are considering the window [to, t], and n is the number of
items arriving or expiring within [to, t]. By Fact 1, just before to, there are at most 1

λ
items

with offj = false. Within [to, t], only an up event can set the off flag to false. Thus the

number of off events within [to, t] is bounded by 1
λ

plus the number of up events.

Up and Down events. The assumption of ∆ gives a trivial bound on those events
involving items with very small counts and in particular, those up events immediately
following the off events. Such up events are called poor-up events or simply poor-ups. Using
the off flag, we can easily adapt the analysis of the simple algorithm to bound all the
down and up events of the full algorithm, but except the poor-ups. The following simple
observations, derived from Fact 1, allow us to replace ∆ with 1/λ in the previous analysis
to obtain a tighter upper bound of O(1

λ
log n). Let v be any time in [to, t].

• There are at most 1/λ items whose first event after v is a down event.

• There are at most 1/λ non-poor-up events after v whose previous event is before v.

It remains to analyze the poor-ups. Consider a poor-up Uj at time v in [to, t]. By
definition, offj = false at time v. The trick of analyzing Uj ’s is to consider when the
corresponding items will be “off” again instead of what items constitute the up events.
Then a characteristic set argument can be formulated easily. Specifically, we first observe
that, by Fact 1, there are at most 1

λ
poor-ups whose off flags remain false up to time t.

Then it remains to consider those Uj whose off flags will be set to true at some time d ≤ t.
Below we refer to d as the first off time of Uj.

Poor-up with early off. Consider a poor-up Uj that occurs at time v in [to, t] and has
its first off time at d in [v + 1, t]. Let F-Expire(Uj) be all the item j whose first expiry time
is within [v + 1, d]. I.e., F-Expire(Uj) = σj,[v+1−W,d−W]. As an early off can be due to the
expiry of many copies of item j or the arrival of a lot of items, it is natural to divide the
poor-ups into two types: with an absolute off if c(d) ≤ 6

5c(v), and relative off otherwise. For
the case with absolute off, we consider the distinct times t1, t2, . . . , tk in [to, t] when such
poor-ups occur. Let xi be the number of such poor-ups at time ti. Note that xi ≤ 1/(7λ).
For each time ti, we define the characteristic set

Fi = the union of F-Expire(Uj) over all Uj occurring at ti, ti+1, . . . , tk.

Lemma 2.4. (i) For any 1 ≤ i ≤ k− 1, |Fi| > (1+ xiλ)|Fi+1|. (ii) Within [to, t], there are
∑k

i=1 xi = O(1
λ

log n) poor-ups each with an absolute off.

Proof. For (i), consider an item j and a poor-up Uj with an absolute off that occurs at time
ti and has its first off at time di. The decrease in cj must be due to expiry of item j.

|F-Expire(Uj)| ≥ cj(ti) − cj(di) ≥ ĉj(ti) − ĉj(di) − λc(ti) − λc(di)

> 9λĉ(ti) − 3λĉ(di) − λc(ti) − λc(di) (definition of up and off)

≥ (9λ(1 − λ
6) − λ)c(ti) − (3λ(1 + λ

6) + λ)c(di) ≥ 7λc(ti) − 5λc(di)

≥ (7 − 5(6
5))λc(ti) = λc(ti) (definition of absolute off)

Thus, |Fi| > |Fi+1| + xi (λc(ti)). Since Fi ⊆ σ[ti−W+1,t−W], |Fi| ≤ c(ti). Therefore, |Fi| >
|Fi+1| + xiλ|Fi| > (1 + xiλ)|Fi+1|. By (i), we can prove (ii) similarly to Lemma 2.1 (ii).

Analyzing poor-ups with a relative off is again based on an isolating argument. We
divide [to, t] into O(log n) intervals according to how fast the total item count starting
from to grow; specifically, we want two consecutive time boundaries ui−1 and ui to satisfy

10 H.L. CHAN, T.W. LAM, L.K. LEE, AND H.F. TING

|σ[to,ui]| > 6
5 |σ[to,ui−1]|. Then we show that for any poor-up within [ui−1, ui − 1], its relative

off, if exists, occurs at or after ui. Thus there are at most 1
λ

such poor-ups within each

interval and a total of O(1
λ

log n) within [to, t].

Lemma 2.5. (i) Consider a poor-up Uj with a relative off. Suppose it occurs at time v in

[to, t], and its first off time is at d in [v + 1, t]. Then |σ[to,d]| > 6
5 |σ[to,v]|. (ii) Within [to, t],

there are at most O(1
λ

log n) poor-ups each with a relative off.

Proof. For (i), by the definition of a relative off, c(d) > 6
5c(v). Thus, |σ[to,d]| − |σ[to,v]| =

|σ[v+1,d]| ≥ c(d) − c(v) > 1
6c(d) ≥ 1

6 |σ[to,d]|. This implies |σ[to,d]| > 6
5 |σ[to,v]|.

For (ii), consider the times to = u0 < u1 < u2 < · · · < uℓ ≤ t such that for i ≥ 1,
ui is the first time such that |σ[to,ui]| > 6

5 |σ[to,ui−1]|. For convenience, let uℓ+1 = t + 1.
Note that |σ[to,t]| ≤ n and ℓ = O(log n). Furthermore, for any time v ∈ [ui−1, ui − 1],

|σ[to,v]| ≤
6
5 |σ[to,ui−1]|. Therefore, by (i), for any poor-up of an item j within [ui−1, ui−1], its

relative off, if exists, occurs at or after ui, which implies at time ui−1, cj(ui−1) ≥ λc(ui−1).
Then within each interval [ui−1, ui−1], the number of such j as well as the number of poor-
ups with a relative off are at most 1

λ
. Within [to, t], there are ℓ = O(log n) intervals and

hence O(1
λ

log n) poor-ups each with a relative off.

Theorem 2.6. For approximate counting, each individual stream can use the algorithm AC

with λ = ε/11 and it sends at most O(1
ε
log n) words to the root within a window.

Memory usage of each remote site. Recall that we use two λ-approximate data
structures [13, 23] for the total item count and individual item counts, which respectively
require O(1

λ
log2(λn)) bits and O(1

λ
) words. Note that O(1

λ
log2(λn)) bits is equivalent to

O(1
λ

log(λn)) words. Furthermore, at any time, we only need to keep track of the last

estimate sent to the root of all item j with offj = false, which by Fact 1, requires O(1
λ
)

words. By setting λ = ε/11 (see Theorem 2.6), the total memory usage of a remote site is
O(1

λ
log(λn)) = O(1

ε
log(εn)) words.

3. Extensions

We extend the previous techniques to solve the problems of frequent items and quantiles
and handle out-of-order streams. Below BC refers to our algorithm for basic counting.

Frequent items. Using the algorithms BC and AC, the root can answer the ε-
approximate frequent items as follows. Each stream σ communicates with the root using
BC with error parameter ε/24 and AC with error parameter 11ε/24. At any time t, let
rσ(t) and rj,σ(t) be the latest estimates of the numbers of all items and item j, respectively,
received by the root from σ. To answer a query of frequent items with threshold φ ∈ (0, 1]
at time t, the root can return all items j with

∑

σ rj,σ(t) ≥ (φ − ε
2)

∑

σ rσ(t) as the set of
frequent items.

To see the correctness, let cσ(t) and cj,σ(t) be the number of all items and item j in σ
at time t, respectively. Algorithm BC guarantees |rσ(t) − cσ(t)| ≤ ε

24cσ(t), and algorithm

AC guarantees |rj,σ(t) − cj,σ(t)| ≤ 11ε
24 cσ(t). Therefore, if an item j is returned by the

root, then
∑

σ cj,σ(t) ≥
∑

σ rj,σ(t) − 11ε
24

∑

σ cσ(t) ≥ (φ − ε
2)

∑

σ rσ(t) − 11ε
24

∑

σ cσ(t) ≥

(φ − ε
2)(1 − ε

24)
∑

σ cσ(t) − 11ε
24

∑

σ cσ(t) ≥ (φ − ε
2 − φ ε

24 − 11ε
24)

∑

σ cσ(t) where the second
inequality comes from the definition of the algorithm. The last term above is at least

CONTINUOUS MONITORING OF DISTRIBUTED DATA STREAMS OVER SLIDING WINDOW 11

(φ − ε)
∑

σ cσ(t), so j is a frequent item. If an item j is not returned by the root, then
∑

σ rj,σ(t) < (φ − ε
2)

∑

σ rσ(t) and we can show similarly that
∑

σ cj,σ(t) < φ
∑

σ cσ(t).

Quantiles. We give an algorithm for ε-approximate quantiles queries. Let λ = ε/20.
For each stream, we keep track of the λ-approximate φ-quantiles for φ = 5λ, 10λ, 15λ, . . . , 1.
We update the root for all these φ-quantiles when one of the following two events occurs:
(i) for any k, the value of the (5kλ)-quantile is larger than the value of the (5(k + 1)λ)-
quantile last reported to the root, or (ii) for any k, the value of the (5kλ)-quantile is
smaller than the value of the (5(k−1)λ)-quantile last reported to the root. The stream also
communicates with the root using BC with error parameter λ. In the root’s perspective,
at any query time t, let φ ∈ (0, 1] be the query given and let rσ(t) be the last estimate
sent by σ for the number of all items. The root sorts the quantiles last reported by all
streams and for each stream σ, gives a weight of 5λrσ(t) to each quantile of σ. Then the
root returns the smallest item j in the sorted sequence such that the sum of weights for all
items no greater than j is at least ⌈φ

∑

σ rσ(t)⌉. Careful counting can show that j is an
ε-approximate φ-quantile. To bound the communication cost, let n be the number of items
of σ arriving or expiring during the window [t − W + 1, t]. We observe that when an event
occurs, many items have either arrived or expired after the previous event. Using similar
analysis as before, we can show that within a window, there are at most O(1

ε
log n) such

events and thus each stream sends O(1
ε2 log n) words. By Jensen’s inequality again, our

algorithm’s total communication cost per window is O(k
ε2 log N

k
) where N is the number of

items of the k streams that arrive or expire within the window. Note that the lower bound
of O(1

ε
log(εn)) words for approximate frequent items carries to approximate quantiles, as

we can answer approximate frequent items using approximate quantiles as follows. The
root poses ε-approximate φ-quantile queries for φ = ε, 2ε, . . . , 1. Given the threshold φ′

for frequent items, the root returns all items that repeatedly occur as φ′

ε
− 2 (or more)

consecutive quantiles, and these items are (4ε)-approximate frequent items.

Out-of-order streams. All our algorithms can be extended to out-of-order stream
with a communication cost increased by a factor of W

W−τ
, as follows. Each stream uses

the data structures for out-of-order streams (e.g., [7, 10]) to maintain the local estimates.
Then each stream uses our communication algorithms for in-order streams. It is obvious the
root can answer the corresponding queries. For the communication cost, consider any time
interval P = [t−(W −τ)+1, t] of size W −τ . Items arriving in P must have time-stamps in
[t − W + 1, t]. Using the same arguments as before, we can show the same communication
cost of each algorithm, but only for a window of size W − τ instead of W . Equivalently, in
any window of size W , the communication cost is increased by a factor of O(W

W−τ
).

References

[1] C. Aggarwal. Data streams: models and algorithms. Springer, 2006.
[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency

moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.
[3] A. Arasu and G. Manku. Approximate counts and quantiles over sliding windows. In Proc.

PODS, pages 286–296, 2004.
[4] L. Babai, A. Gal, P. Kimmel, and S. Lokam. Communication compleixty of simultaneous mes-

sages. SIAM Journal on Computing, 33(1):137–166, 2004.
[5] B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window over streaming data.

In Proc. SODA, pages 633–634, 2002.

12 H.L. CHAN, T.W. LAM, L.K. LEE, AND H.F. TING

[6] B. Babcock and C. Olston. Distributed top-k monitoring. In Proc. SIGMOD, pages 28–39, 2003.
[7] C. Busch and S. Tirthapua. A deterministic algorithm for summarizing asynchronous streams

over a sliding window. In STACS, 2007.
[8] G. Cormode and M. Garofalakis. Sketching streams through the net: distributed approximate

query tracking. In Proc. VLDB, pages 13–24, 2005.
[9] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi. Holistic aggregates in a net-

worked world: distributed tracking of approximate quantiles. In Proc. SIGMOD, 25–36, 2005.
[10] G. Cormode, F. Korn, and S. Tirthapura. Time-decaying aggregates in out-of-order streams. In

Proc. PODS, pages 89–98, 2008.
[11] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for distributed functional monitoring.

In Proc. SODA, pages 1076–1085, 2008.
[12] A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi. Distributed set-expression cardinality

estimation. In Proc. VLDB, pages 312–323, 2004.
[13] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding

windows. SIAM Journal on Computing, 31(6):1794–1813, 2002.
[14] M. Datar and S. Muthukrishnan. Estimating rarity and similarity over data stream windows.

In Proc. ESA, pages 323–334, 2002.
[15] E. Demaine, A. Lopez-Ortiz, and J. Munro. Frequency estimation of internet packet streams

with limited space. In Proc. ESA, pages 348–360, 2002.
[16] P. Gibbons and S. Tirthapura. Distributed streams algorithms for sliding windows. In Proc.

SPAA, pages 63–72, 2002.
[17] M. Greenwald and S. Khanna. Power-conserving computation of order-statistics over sensor

networks. In Proc. PODS, pages 275–285, 2004.
[18] S. Guha, N. Koudas, and K. Shim. Data-streams and histograms. In Proc. STOC, pages 471–

475, 2001.
[19] P. Indyk. Stable distributions, pseudorandom generators, embeddings and data stream compu-

tation. In Proc. FOCS, pages 148–155, 2000.
[20] N. Jain, P. Yalagandula, M. Dahlin, and Y. Zhang. Insight: A distributed monitoring system

for tracking continuous queries. In Proc. SOSP, pages 1–7, 2005.
[21] R. Keralapura, G. Cormode, and J. Ramamirtham. Communication-efficient distributed moni-

toring of thresholded counts. In Proc. SIGMOD, pages 289–300, 2006.
[22] L. K. Lee and H. F. Ting. Maintaining significant stream statistics over sliding windows. In

Proc. SODA, pages 724–732, 2006.
[23] L. K. Lee and H. F. Ting. A simpler and more efficient deterministic scheme for finding frequent

items over sliding windows. In Proc. PODS, pages 290–297, 2006.
[24] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (recently) frequent items

in distributed data streams. In Proc. ICDE, pages 767–778, 2005.
[25] K. Mouratidis, S. Bakiras, and D. Papadias. Continuous monitoring of top-k queries over sliding

windows. In Proc. SIGMOD, pages 635–646, 2006.
[26] S. Muthukrishnan. Data streams: algorithms and applications. Now Publisher Inc., 2005.
[27] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over distributed data

streams. In Proc. SIGMOD, pages 563–574, 2003.
[28] I. Sharfman, A. Schuster, and D. Keren. A geometric approach to monitoring threshold functions

over distributed data streams. ACM TODS, 32(4), 2007.
[29] K. Yi and Q. Zhang. Optimal tracking of distributed heavy hitters and quantiles. In Proc.

PODS, pages 167–174, 2009.
[30] K. Yi and Q. Zhang. Private communication.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

