
Nonclairvoyant Sleep Management and Flow-time
Scheduling on Multiple Processors

Sze-Hang Chan
Department of Computer Science

University of Hong Kong
shchan@cs.hku.hk

Tak-Wah Lam
∗

Department of Computer Science
University of Hong Kong
twlam@cs.hku.hk

Lap-Kei Lee
†

Department of Computer Science
University of Hong Kong

lklee@cs.hku.hk

Jianqiao Zhu
Department of Computer Sciences
University of Wisconsin-Madison

jianqiao@cs.wisc.edu

ABSTRACT
In large data centers, managing the availability of servers
is often non-trivial, especially when the workload is un-
predictable. Using too many servers would waste energy,
while using too few would affect the performance. A re-
cent theoretical study, which assumes the clairvoyant model
where job size is known at arrival time, has successfully inte-
grated sleep-and-wakeup management into multi-processor
job scheduling and obtained a competitive tradeoff between
flow time and energy [6]. This paper extends the study
to the nonclairvoyant model where the size of a job is not
known until the job is finished. We give a new online algo-
rithm SATA which is, for any ε > 0, (1 + ε)-speed O(1

ε2
)-

competitive for the objective of minimizing the sum of flow
time and energy.

SATA also gives a new nonclairvoyant result for the clas-
sic setting where all processors are always on and the con-
cern is flow time only. In this case, the previous work of
Chekuri et al. [7] and Chadha et al. [8] has revealed that ran-
dom dispatching can give a non-migratory algorithm that
is (1 + ε)-speed O(1

ε3
)-competitive, and any deterministic

non-migratory algorithm is Ω(m
s
)-competitive using s-speed

processors [7], where m is the number of processors. SATA,
which is a deterministic algorithm migrating each job at
most four times on average, has a competitive ratio of O(1

ε2
).

The number of migrations used by SATA is optimal up to
a constant factor as we can extend the above lower bound
result.

∗The research was supported by HKU-SPF 201109176197.
†Part of the work was done when working in MADALGO,
Aarhus University, Denmark.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM or the author must be honored. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance Attributes;
F.2.0 [Analysis of Algorithms and Problem Complex-
ity]: General

Keywords
Online scheduling; competitive analysis; sleep management;
flow time; job migration

1. INTRODUCTION
Energy consumption is a major concern for large-scale

data centers. Very often data centers are running more
servers than necessary and wasting a lot of energy. When
a processor is on, the power consumption is divided into
dynamic power and static power ; the former is consumed
only when the processor is processing a job, while the latter
is consumed constantly (due to leakage current) even when
the machine is idle. For example, an Intel Xeon E5320 server
requires 150W of power when idling and 240W when work-
ing [11]. The static power consumption is cut off only when a
processor is put to sleep. From the energy viewpoint, a data
center should let the servers sleep whenever they are idle; yet
waking up the servers later requires extra energy, and it is
energy inefficient to frequently switch servers on and off. It
is nontrivial how to determine dynamically the appropriate
number of working servers so as to strike a balance between
energy usage and quality of service (QoS), especially when
the workload is unpredictable. The past few years have wit-
nessed a number of theoretical results on revisiting different
scheduling problems to consider sleep management, QoS and
energy consumption together (e.g., [6,14–16,18], see the sur-
vey [1]).

Multi-processor flow-time scheduling. A well-studied
QoS measurement for job scheduling is the total flow time.
The flow time (or simply the flow) of a job is the length of the
duration from its arrival until its completion. We consider
the online setting where jobs arrive at unpredictable times.
There are m > 1 identical processors. Jobs are sequential
(i.e., each can be executed on at most one processor at a
time) and preemptive in nature. Flow-time scheduling on

261

SPAA’13, July 23–25, 2013, Montréal, Québec, Canada.
Copyright 2013 ACM 978-1-4503-1572-2/13/07 ...$15.00.

multiple processors is hard; competitive online algorithms
can exist only when extra resource is given [17].

• For the clairvoyant model where job size is known
at release time, it is known that both migratory and
non-migratory algorithms can be (1 + ε)-speed O(1

ε
)-

competitive for flow time [3,10].1

• From the viewpoint of operating systems, it is more
natural to consider the nonclairvoyant model where
the size of a job is not known until the job is finished.
To minimize flow time on multi-processors, extra speed
is not too useful if migration is not allowed; Chekuri
et al. [7] showed that any deterministic non-migratory
online algorithm that dispatches jobs at arrival times
is Ω(m

s
)-competitive when using s-speed processors.

They also showed a randomized non-migratory algo-
rithm that dispatches jobs randomly and is (1 + ε)-
speed O(1

ε4
log 1

ε
)-competitive. Chadha et al. [8] im-

proved the analysis of random dispatching and the
competitive ratio to O(1

ε3
). The recent work of Gupta

et al. [13] on the other hand implies a determinis-
tic migratory algorithm that is (1 + ε)-speed O(1

ε4
)-

competitive; this algorithm migrates jobs after every
infinitesimal time interval and requires unbounded num-
ber of migrations. Such migratory algorithm makes
sense for multi-processors on a single chip, but may
not be practical for a cluster of servers.

Sleep management and energy. We assume that a
processor has two possible states, awake or sleep. When a
processor is awake, it can process a job with energy con-
sumed at the rate ν + σ, where ν > 0 is the dynamic power
and σ > 0 is the static power. An awake processor can be
idle, requiring only the static power σ. A processor can enter
a sleep state to reduce its power consumption to zero, but
a wake-up operation requires extra energy ω > 0. A sched-
uler has to determine when and which processors should be
put to sleep or waken up, and how the jobs are scheduled on
the awake processors. Following the literature on optimizing
flow time and energy, we consider the objective of minimiz-
ing the sum of flow time and energy (or in general, a linear
combination of flow and energy)2 [2]. Under the clairvoyant
model, Chan et al. [6] have given a non-migratory algorithm
that is (1+ ε)-speed O(1

ε
)-competitive for flow time plus en-

ergy. They also showed that without faster processors, even
a migratory algorithm is Ω(m)-competitive.

Our contribution. Our main result is a nonclairvoy-
ant algorithm called SATA (Scheduling with Arrival-Time-
Alignment) for job scheduling with sleep management. SATA
is a deterministic algorithm and (1+ε)-speedO(1

ε2
)-competitive

for the objective of minimizing flow time plus energy.
SATA also gives a new nonclairvoyant result for the classic

setting where all processors are always on and the objective

1An online algorithm A is said to be s-speed c-competitive
if A’s performance is at most c times the optimal offline
algorithm OPT’s performance when A is given processors s
times faster than OPT’s processors.
2From an economic point of view, both energy and flow time
can be measured in terms of money and it can be assumed
that users are willing to spend a certain units of energy for
one unit of flow time; thus it makes sense to consider a linear
combination of flow time and energy. By scaling the units of
energy and time, we can assume they have the same relative
weighting.

is to minimize flow time only. In this case, SATA is (1 + ε)-
speed 8(1 + 1

ε
)2-competitive. It is interesting to compare

SATA with existing nonclairvoyant algorithms. SATA is
a deterministic migratory algorithm that guarantees each
job being migrated at most 4 times on average. It has
a better competitive ratio than the previous randomized
non-migratory algorithm [8] and deterministic unbounded-
migratory algorithm [13]. We also extend the lower bound
result in [7] to show that if a job is allowed to migrate at
most c times on average for any real c < 1, any deterministic
nonclairvoyant s-speed algorithm for s ≥ 1 has a competi-
tive ratio Ω(min(m

s
, 1√

cs
)). This lower bound holds even if

jobs can be dispatched at any time.
Remarks on speed scaling. Another model for study-

ing energy saving is the speed scaling model, in which a
processor can dynamically scale its speed, and the power
increases with the speed s according to a given power func-
tion P (s). Online algorithms for minimizing flow time plus
energy under the speed scaling model (without sleep man-
agement) have been studied extensively (e.g., [2,4,5,12,13],
see [1] for a survey). In particular, the nonclairvoyant speed-
scaling algorithm by Gupta et al. [13] is (1+ε)-speed O(1

ε5
)-

competitive. This algorithm requires unbounded number of
migrations. We can extend SATA to support speed scaling
(instead of sleep management) using some standard tech-
niques [5,12]; the resulting algorithm is (1+ ε)-speed O(1

ε3
)-

competitive for flow plus energy and migrates each job at
most 4 times on average. It is worth-mentioning that SATA
assumes each processor to have the same speed-to-power
function, while Gupta et al.’s algorithm [13] allows proces-
sors to be all different.

It is natural to consider a more general energy-saving
model that exploits both speed scaling and sleep manage-
ment. It is open how to adapt SATA or find another non-
clairvoyant algorithm for this model. If clairvoyance is al-
lowed, Chan et al. [6] have already given a non-migratory
competitive algorithm that can exploit both sleep manage-
ment and speed scaling for energy saving.

A glimpse of SATA. SATA processes a portion of the
latest-arrived jobs (an idea from the parallel-job-algorithm3

LAPS [9]), and runs k of them on each processor. The pa-
rameter k changes over time. We consider sequential jobs
which can be executed on at most one processor at a time, so
we may need to redistribute the jobs via migrations when-
ever the set of active jobs changes. This may appear to re-
quire a lot of migrations as each processor has to run exactly
k of the km latest arrived jobs. Nevertheless, we derived
a mechanism called the arrival-time-alignment property to
ensure SATA can maintain this even job distribution by mi-
grating at most two jobs when a job arrives or finishes. We
can then analyze the SATA’s competitiveness by a rather
standard technique of potential analysis on the total flow-
time incurred by SATA and the optimal algorithm OPT.

When processors can sleep, we extend SATA using two
simple concepts: (1) use total flow time to trigger the next
processor to wake up; and (2) use total idling energy to
determine when to put an idle processor to sleep. The non-
trivial part is extending the potential analysis. In our anal-
ysis we need to take into account the number of processors
available to OPT. Without sleep management, this number

3The workload of a parallel job can be shared by multi-
processors in parallel.

262

is always m. Our first attempt is to consider the number
of OPT’s awake processors at each time, yet this idea soon
proves to be over precise. Our major trick here is to divide
the time into intervals, each represents a cycle of SATA in
which jobs and processors keep increasing and then both
decrease to the bottom. A perhaps counter-intuitive idea
here is to use the maximum number of OPT’s awake pro-
cessors within the interval, which turns out to be a suffi-
ciently good estimate of OPT’s available processors. Note
that the potential analysis of the clairvoyant sleep manage-
ment given in [6] is processor-based; it exploits a potential
function that allows the best match-up of processors, then
it becomes feasible to account for the progress of each pair
of processors. However, such an approach only makes sense
for non-migratory schedules.

To minimize flow time and energy on processors with the
sleep state, SATA is (1 + ε)-speed 32(1 + 1

ε
)2-competitive

for flow time plus energy. We can extend the arrival-time-
alignment property such that a job is migrated at most
(lnm + 6) times on average. We need more migrations be-
cause SATA is always conservative and wakes up processors
gradually; thus SATA needs to redistribute jobs to the newly
awaken processor and this requires nonconstant number of
migrations.

Organization of paper. Section 2 presents the algo-
rithm SATA for minimizing flow time, and the lower bound
result is given in Appendix A. Section 3 considers the sleep
management model and extends SATA to minimize flow
time plus energy. Section 4 discusses the extension to the
speed scaling model.

2. SATAFOR NONCLAIRVOYANT FLOW-
TIME SCHEDULING

In this section, we assume that all m ≥ 2 processors are
always awake (and ready to work). Jobs are sequential in
nature (each can be processed by one processor at a time);
preemption and migration are allowed. The objective is to
minimize the total flow F , which is the sum over all jobs j of
the time elapsed since job j arrives and until it is completed.
It is useful to view the total flow as a quantity incurring at
a rate equal to the number of active jobs (jobs released but
not yet completed); i.e., F =

∫∞
0

n(t) dt where n(t) denotes
the number of active jobs at time t. Below is the main result.

Theorem 1. For any ε > 0, SATA is (1+ ε)-speed 8(1+
1
ε
)2-competitive for total flow time, and SATA migrates a

job at most 4 times on average.

At any time, let na be the number of active jobs of SATA.
If na < m, SATA processes each job on a different processor.
If na ≥ m, SATA, using the idea of LAPS, processes at least
�βna� jobs that have the latest arrival times, where β < 0.5
is a constant (defined to be ε

4(1+ε)
). Unlike LAPS, SATA ex-

ercises a tight control to require each of the m processors to
run exactly k jobs, where k ≥ 1 is the smallest integer such
that km ≥ �βna� (note that β < 0.5 and thus km ≤ na). In
other words, SATA needs a nonclairvoyant technique that
can evenly distribute the km latest-arrival jobs among the
processors without migrating the jobs too often. This tech-
nique is rooted at the following property of job distribution
when na ≥ m.

Arrival-time-alignment property. Let j1, j2, . . . , jna

be all the active jobs ordered in ascending order of arrival

times. Define the tail jobs Jtail = {jτ , . . . , jna} to be the
�βna� latest-arrival jobs (i.e., τ = na − �βna�+1). The fol-
lowing definitions are sensitive to the alignment width, de-
fined to be the number of available processors, which always
equals m in this section (Section 3 will consider arbitrary
width ma ≤ m and we need to replace m with ma in the
definitions). Define the aligned jobs, denoted Jaln , to be the
m jobs (if exist) that arrived just before the tail jobs, i.e.,
Jaln = {jmax(1,τ−m), . . . , jτ−1}. Finally, let x ∈ [0, m− 1] be
an integer such that �βna� + x is a multiple of m. We call
jτ−x, . . . , jτ−1 the boundary jobs, denoted Jbd , which must
all exist (because β < 0.5 and �βna� + x ≤ na). A bound-
ary job is also an aligned job. We say that the current job
distribution satisfies the arrival-time-alignment property if
the following conditions hold. Recall that k is the smallest
integer such that km ≥ �βna�.

• C1. Every aligned job is with a distinct processor.

• C2. Every processor hosting a boundary job must have
exactly k − 1 tail jobs.

• C3. Every other processor must have exactly k tail
jobs.

Figure 1 gives an example of these concepts. With the
arrival-time-alignment property, SATA can let each proces-
sor run the boundary job (if present) and all the tail jobs.
Over all processors, SATA is running x boundary jobs and
�βna� tail jobs, which together are the km latest-arrival jobs.

When na < m, SATA processes each job on a different
processor, and dispatches any new job to a processor with-
out jobs, so no job migration is needed when a job arrives or
is completed. Once na = m, there should be exactly one job
in each processor and the arrival-time-alignment property is
immediately satisfied with �βna� tail jobs and m − �βna�
boundary jobs. The arrival-time-alignment property will re-
main satisfied until a job arrives or is completed. Below
we show that at most 2 migrations are needed to maintain
the arrival-time-alignment property for each job arrival or
completion. Suppose a job arrives or is completed at time t.
Define M<t(j) or simply M(j) to be the processor hosting
job j just before time t (note that j may migrate to another
processor at t). Below na and x also refer to the numbers
just before t.

Dispatching and migration procedure due to job
arrival: When a new job jnew arrives, the number of active
jobs increases from na to na+1. By definition, the number of
tail jobs (i.e., |Jtail |) becomes �β(na +1)�, which is equal to
�βna�+1 or �βna�. To maintain the arrival-time-alignment
property, we dispatch jnew and migrate at most two jobs as
follows.

• Case 1: |Jtail | increases by 1 (i.e., �β(na+1)� = �βna�+
1). By definition, Jaln is unchanged (and C1 holds),
and |Jbd | becomes x − 1 (precisely, (x − 1) mod m).
If x ≥ 1, dispatch jnew to processor M(jτ−x); if x = 0,
dispatch jnew to M(jτ−m). Then C2 and C3 hold.

• Case 2: |Jtail | does not increase (i.e., �β(na + 1)� =
�βna�). Jaln becomes {jτ−m+1, . . . , jτ}, and jτ re-
places jτ−m as an aligned job, and jτ also replaces
jτ−x as a boundary job. To maintain C1, we migrate
jτ to processor M(jτ−m) as the new aligned job there.
To maintain C2 and C3, we migrate an arbitrary tail
job from M(jτ−m) to M(jτ) (i.e., jτ ’s hosting proces-
sor before jnew arrives), and dispatch jnew to M(jτ−x).

263

Figure 1: Arrival-time-alignment property

Migration procedure due to job completion: SATA
only executes boundary or tail jobs. When a job jold is com-
pleted, the number of active jobs becomes na − 1. We focus
on the case na − 1 ≥ m (otherwise we stop maintaining the
arrival-time-alignment property and each processor is cur-
rently hosting zero or one active job). By definition, |Jtail |
becomes �β(na − 1)�.

• Case 1: |Jtail | decreases by 1. By definition, |Jbd | be-
comes x+ 1 (precisely, (x+ 1) mod m).
(i) If jold is a tail job, Jaln is unchanged (and C1
holds), and jτ−x−1 becomes a boundary job. To main-
tain C2 and C3, we migrate an arbitrary tail job from
M(jτ−x−1) to M(jold).
(ii) If jold is an aligned job, we make jτ a new aligned
job and migrate jτ to M(jold). Then C1 holds. To
maintain C2 and C3, we migrate an arbitrary tail job
from M(jτ−x−1) to M(jτ).

• Case 2: |Jtail | does not decrease. In this case, jτ−m−1

(if exists) should become a new aligned job, and we
migrate jτ−m−1 to maintain C1, as follows. If jold
is a tail job, then jτ−1 becomes a tail job, and we
migrate jτ−m−1 to processor M(jτ−1). Otherwise, jold
is an aligned job, and we migrate jτ−m−1 to processor
M(jold). To maintain C2 and C3, we migrate a tail
job from M(jτ−x−1) to M(jold).

Lemma 2. When a job arrives or is completed, it takes
at most 2 migrations to maintain the arrival-time-alignment
property.

Algorithm SATA. We are ready to define SATA. Below
na denotes the current number of active jobs (just before a
job arrival or completion occurs). Whenever na ≥ m, SATA
maintains the arrival-time-alignment property.

Job arrival: When a job j arrives, if na < m, dispatch
j to a processor without jobs; otherwise, dispatch j and
migrate at most 2 jobs according to the job arrival procedure
described above.

Job completion: When a job is completed, if na ≤ m,
no migration is needed; otherwise, migrate at most 2 jobs
according to the job completion procedure described above.

Job scheduling:

• If na < m, each active job is processed on a different
processor;

• If na ≥ m, each processor shares its processing time
equally among all its tail jobs and its boundary job (if
present). Note that the m processors together are pro-
cessing km latest-arrival jobs, where k is the smallest
integer with km ≥ �βna�.

Analysis of flow time. To analyze the flow time of
SATA, we adapt the potential function analysis for LAPS [9].
The crux of the analysis is to define a suitable potential func-
tion Φ(t) that captures the difference of progress between
SATA and OPT. Let na(t) and no(t) be the number of ac-
tive jobs in SATA and OPT, respectively. At any time t, de-
note the active jobs in SATA as j1, j2, . . . , jna(t), arranged in
ascending order of release times. For each job ji, let qa(ji, t)
and qo(ji, t) be the remaining work of job j in SATA and
OPT, respectively, and let xi = max{qa(ji, t) − qo(ji, t), 0}
which is the amount of work of ji in SATA that is lagging
behind OPT. We say a job ji is lagging if xi > 0. We define
the potential function

Φ(t) =
2

ε
·
na(t)∑
i=1

max
(
1, i

m

) · xi .

The definition of Φ(t) is similar to that of LAPS [9]; yet we
give each job ji the coefficient max(1, i

m
) instead of simply i

as in [9]. This change is mainly because SATA is dealing
with sequential jobs, while LAPS is dealing with parallel
jobs that can be shared by multi-processors in parallel. Note
that when na < m, SATA cannot fully utilize all the m
processors as in LAPS. Furthermore, SATA is not running
exactly �βna(t)� jobs, the actual fraction varies over time
which further complicates the analysis. When t = 0, Φ(t) =
0. When a job arrives or is completed, Φ does not increase.
Let F (t) and F ∗(t) be the total flow incurred up to time t
in SATA and OPT, respectively.

In the rest of this section we prove the following running
condition, which relates the rate of increase of F (t) to that of
F ∗(t). Then Theorem 1 follows from integrating the running
condition over time.

Lemma 3. At any time t when there is no job arrival or

completion, dF (t)
dt

+ dΦ(t)
dt

≤ 8(1 + 1
ε
)2 · dF∗(t)

dt
.

Proof. Consider a particular time t with no job arrival
or completion by either SATA or OPT. For convenience,
we drop t from all the notations. We divide the analysis
into cases depending on na and m. In each case, dF

dt
= na

264

and dF∗
dt

= no. To bound the rate of change of Φ, we will
consider how Φ changes in an infinitesimal amount of time
(from t to t + dt). We may consider the rate of change of
Φ due to SATA and OPT separately, which are denoted by
dΦa
dt

and dΦo
dt

, respectively. Note that dΦ
dt

= dΦa
dt

+ dΦo
dt

. We

call the term max
(
1, i

m

)
in the potential Φ the coefficient of

job ji. We also define a ratio φ such that SATA is currently
processing φna lagging jobs.

Case 1: na < m. By definition, SATA is processing each
active job on a different processor at speed (1 + ε), while
OPT can process each job at speed at most 1. Therefore,
for any lagging job ji (i.e., xi > 0), xi is changing at rate
at most −(1 + ε) + 1 = −ε; for any non-lagging job ji′ ,
xi′ remains zero. We have dΦ

dt
≤ 2

ε
·∑i:xi>0 max

(
1, i

m

) ·
(−ε) = −2

∑
i:xi>0 1 = −2φna. There are na − φna non-

lagging active jobs, which must also be active in OPT, so
no ≥ na − φna. Then,

dF
dt

+ dΦ
dt

≤ na − 2φna ≤ no = dF∗
dt

≤
8(1 + 1

ε
)2 · dF∗

dt
.

Case 2: na ≥ m. In this case, SATA is processing km
(k ≥ 1) latest-arrival jobs. We use L to denote these jobs.
Since there are (km − φna) non-lagging jobs in L, which
must be active in OPT, we have no ≥ km−φna. Recall that
β = ε

4(1+ε)
. We further consider two subcases depending on

whether na ≤ 1
2β

m.

Case 2a: na ≤ 1
2β

m. In this case, k = 1, and thus SATA
is running each job in L on a different processor at speed
(1+ ε). Then, dΦa

dt
≤ 2

ε
·∑i∈L:xi>0 max(1, i

m
) · (−(1+ ε)) ≤

2
ε
· φna · (−(1 + ε)) = − φ

2β
na. OPT is processing at most

no jobs, each at speed 1. Since the coefficient of jna is the
largest among all ji’s, we have

dΦo
dt

≤ 2
ε
· na
m

·no ≤ 2
ε
· 1
2β

·no =
1
εβ
no. Thus,

dF
dt

+ dΦ
dt

≤ na − φ
2β

na +
1
εβ
no

≤ 1
2β

(km− φna) +
1
εβ
no (as na ≤ 1

2β
m and k = 1)

≤ 1
2β

no +
1
εβ
no ≤ 8(1 + 1

ε
)2 · dF∗

dt
.

Case 2b: na > 1
2β

m. In this case, each processor in SATA

is running k jobs, each at speed 1+ε
k

. Thus,

dΦa
dt

≤ 2
ε
·∑ji∈L:xi>0 max(1, i

m
) · −(1+ε)

k

≤ −2(1 + 1
ε
) · 1

k
·∑ji∈L:xi>0

i
m

≤ −2(1 + 1
ε
) · 1

k
· φna(

na−km
m

)

(since any ji ∈ L has i > na − km)

= −2(1 + 1
ε
) · φna(

na
km

− 1) = − φ
2β

na(
na
km

− 1) .

OPT hasm processors of speed 1, and the coefficient of jna

is the largest among all ji’s. We have dΦo
dt

≤ 2
ε
· na
m

·m ≤ 2
ε
na.

Hence,

dF
dt

+ dΦ
dt

≤ na − φ
2β

na(
na
km

− 1) + 2
ε
na

≤ na +
φ
2β

na − φ
2β

na(
na
km

) + 2
ε
na .

We now show that φ < 2β as follows. (1) If na ≤ 1
β
m,

then k = 1 and φna ≤ km = m. Since na > 1
2β

m, we

have φna ≤ m < 2βna and φ < 2β. (2) If na > 1
β
m, then

φna ≤ km < βna +m < 2βna and hence φ < 2β.
In conclusion,

dF
dt

+ dΦ
dt

≤ na + na − φ
2β

na(
na
km

) + 2
ε
na (since φ < 2β)

= 1
2β

na − φ
2β

na(
na
km

) = 1
2β

(km− φna) · (na
km

)

≤ 1
2β2 (km− φna) (as km ≥ �βna� ⇒ na

km
≤ 1

β
)

≤ 8(1 + 1
ε
)2 · no = 8(1 + 1

ε
)2 · dF∗

dt
.

3. SATA WITH SLEEP MANAGEMENT
This section considers scheduling in the sleep management

model. In this model, a processor is in either the awake state
or the sleep state. Only when it is awake, it can process a job
and the energy is consumed at the rate ν+σ, where ν > 0 is
the dynamic power and σ > 0 is the static power. An awake
processor can be idle (i.e., not processing any job) and only
requires the static power σ. A processor can enter the sleep
state to reduce the power to zero. Initially, all processors
are in the sleep state. Following the literature, we assume
that state transition is immediate but requires energy. A
wake-up from the sleep state requires ω units of energy, and
the reverse takes zero.

This section shows how to extend SATA to handle sleep
management of m ≥ 2 processors and job scheduling on a
variable number of processors. The aim is to minimize the
total flow time F plus energy E. Intuitively, SATA has to
maintain an appropriate number of awake processors and
strike a balance between flow time and energy. We assume
that SATA is using (1+ ε)-speed processors for ε > 0, which
are (1 + ε) times faster than the optimal offline algorithm
OPT while using the same power. Below is our main result.

Theorem 4. For any ε > 0, SATA is (1+ε)-speed 32(1+
1
ε
)2-competitive for flow plus energy, and SATA migrates a

job at most (lnm+ 6) times on average.

SATA uses two simple ideas to determine the appropriate
number of awake processors: (1) total flow for waking up
processors; and (2) total idling energy for putting processors
to sleep. More specifically, SATA maintains two (real-value)
counters Cf and Ce to keep track of the accumulated flow
and idling energy, respectively (see the algorithm below for
precise definition). We view them as two competing quanti-
ties: If Cf reaches ω first, we wake up a sleeping processor;
otherwise, when Ce reaches ω, we put one awake processor
to sleep. In either case, both counters are reset to 0 and the
process is restarted. The idea looks simple, yet the potential
analysis (of flow time plus energy) is more complicated than
before and triggers us to come up with new insight.

With proper sleep management, SATA can then handle
job dispatching, migrations and scheduling in the same way
as in the previous section, except that the decisions are made
with reference to ma, the current number of awake proces-
sors, instead of m, the maximum number of processors. Let
na denote the current number of active jobs. When na < ma,
SATA processes each job on a different awake processor, and
dispatches any new job to an awake processor without jobs.
In this case, SATA never migrates a job even if it wakes up
a processor or puts it to sleep.

When na ≥ ma, SATA schedules the kma latest-arrival
jobs evenly on the ma awake processors, where k is the
smallest integer such that kma ≥ �βna�. SATA maintains
the arrival-time-alignment property with alignment width
ma. This ensures that in each processor, the tail jobs and
the boundary job (if present) sum up to k. This prop-
erty remains satisfied over a maximal period in which ma

265

remains unchanged and there are at least ma active jobs.
Within this period, for each job arrival and completion,
SATA uses the procedures in Section 2 to maintain the
arrival-time-alignment property (with alignment width ma)
using at most 2 migrations.

Migration due to a wake-up: When SATA wakes up
a processor, the number of awake processors increases from
ma to ma+1. If na remains bigger than ma+1, the arrival-
time-alignment property must be restored with alignment
width ma +1. The wake-up does not change the active jobs
and tail jobs. Denote the active jobs as j1, · · · , jna , arranged
in ascending order of arrival times. Since alignment width
increases to ma + 1, we need one more aligned job, which
is job jτ−ma−1 (if exists) where τ = na − �βna� + 1. To
maintain C1, we send jτ−ma−1 to the new processor; to
maintain C2 and C3, we migrate ��βna�/(ma +1)� tail jobs
from existing awake processors to the new processor.

The migration due to a wake-up can involve a lot of jobs.
Nevertheless, a slightly tricky analysis shows that each job
on average can be migrated (lnm+2) times due to wake-up
operations (see Lemma 14 in Appendix B). On the other
hand, SATA is defined such that whenever na ≥ ma, SATA
is not allowed to put an idle processor to sleep (see the algo-
rithm below); thus, the number of awake processors and the
alignment width will not decrease and cause any migration.

Algorithm Extended SATA. Below we give the details
of extending SATA. Initially, all m processors are sleep-
ing. Whenever na ≥ ma, SATA maintains the arrival-time-
alignment property with alignment width ma. Recall that
σ and ω denote the static power and wake-up energy.

Wakeup a processor: When ma < m, increase Cf at rate
of na; when Cf = ω, wake up a sleeping processor, migrate
jobs according to the wake-up procedure described above,
and reset Cf = Ce = 0.
Put a processor to sleep: When na < ma, increase Ce at
rate of σ times the number of idle processors, i.e., σ(ma−na);
when Ce = ω, put an awake (idle) processor to sleep and
reset Cf = Ce = 0.

Job arrival: When a job j arrives, if na < ma, dispatch
j to a processor without jobs; otherwise, dispatch j and
migrate at most 2 jobs according to the job arrival procedure
described above.

Job completion: When a job is completed, if na ≤ ma,
no migration is needed; otherwise, migrate at most 2 jobs
according to the job completion procedure described above.

Job scheduling:

• If na < ma, each active job is processed on a different
awake processor;

• If na ≥ ma, each awake processor shares its processing
time equally among all its tail jobs and its boundary
job (if present); note that the ma processors together
are processing the kma latest-arrival jobs, where k is
the smallest integer with kma ≥ �βna�.

It remains to show the competitive ratio of SATA stated
in Theorem 4. Consider a schedule of SATA. We divide
SATA’s energy usage E into three parts: Ei is the idling
energy (static energy incurred by processors when they are
awake but idle), Ew the working energy (both dynamic and
static energy incurred by processors when they are working
on jobs), and U the wake-up energy. Denote F as SATA’s

flow, and define SATA’s total cost G = F + Ew + Ei + U .
These notations of cost and energy are used for OPT in the
same way, but marked with an asterisk. By the definition of
SATA, we can upper bound SATA’s energy by SATA’s flow
F and OPT’s working energy E∗

w.

Lemma 5. (i) U ≤ F ; (ii) Ei ≤ 2U ; (iii) Ew ≤ E∗
w.

Proof. (i) By definition, SATA wakes up a processor
when Cf accumulates ω units of total flow, so the number
of wake-ups times ω is at most the total flow F , i.e., U ≤ F .

(ii) By definition, when SATA puts a processor to sleep,
Ce accumulates ω units of idling energy; when SATA wakes
up a processor, Ce accumulates at most ω units of idling
energy before being reset to 0. Any idling energy would have
been counted in Ce, so Ei is at most ω times the number
of wake-up and sleep events. Note that all processors are
asleep initially and after all jobs are completed. Thus, the
number of sleep events equals the number of wake-ups and
hence Ei ≤ 2U .

(iii) Any two algorithms using processors of the same
speed incur the same amount of working energy for complet-
ing all jobs. As SATA is using (1+ε)-speed processors, Ew is
indeed less than OPT’s working energy, i.e., Ew ≤ E∗

w.

The above lemma implies that SATA’s total cost G =
F + Ew + Ei + U ≤ 4F + E∗

w. The rest of this section is
devoted to analyzing the total flow F .

Intuitively, SATA’s flow cannot be directly bounded by
OPT’s total cost. SATA often wakes up fewer processors
than OPT and thus incurs more flow time. Such excess in
flow is not related to OPT. To quantify it, our first attempt
is to consider the flow incurred when SATA has fewer awake
processors than OPT, yet this idea soon proves to be over
precise. The number of awake processors in OPT can vary
frequently. If SATA wakes up processors too slowly, then
most of the excess in flow is incurred later when enough
jobs have been accumulated. By that time, OPT may have
less awake processors than SATA. Our major trick here is to
give up an accurate accounting of OPT’s number of proces-
sors. Instead we divide the time into some special intervals
called S-interval. Roughly speaking, each S-interval repre-
sents a cycle of SATA in which jobs and processors keep
increasing and then both decrease to the bottom. We use
the maximum number of OPT’s awake processors within
the interval, which is more well-behaved and turns out to
be a sufficiently good estimate of OPT’s resource within the
interval. We define lazy flow to be the flow incurred when
SATA has fewer awake processors than such maximum num-
ber of OPT’s processors (see precise definitions below).

S-intervals and lazy flow Fs. Let ma(t) and mo(t) be
the number of awake processors in SATA and OPT at time t
(after all wake-up and sleep events at time t), respectively.
We partition the timeline into intervals called S-intervals as
follows. Consider the sequence of wake-up and sleep events
in SATA. Each S-interval starts with the last sleep event
of the previous S-interval (except that the first starts at
time 0), followed by a sequence of wake-ups and and then a
maximal sequence of sleep events. By definition, two consec-
utive S-intervals overlap at one sleep event. For any time t
during an S-interval I , we define m∗

o(t) = maxt′∈I mo(t
′),

which is the maximum number of awake processors used by
OPT during I . At time t when two S-intervals overlap,
SATA puts exactly one awake processor to sleep (by defini-
tion, only one processor of SATA can sleep at a time), and

266

thus na(t) ≤ ma(t). We define lazy flow Fs to be the to-
tal flow incurred at the times t when ma(t) < m∗

o(t), i.e.,
Fs =

∫
t:ma(t)<m∗

o(t)
na(t) dt. Then, we can show Lemma 6

below, which involves two potential function analyses.

Lemma 6. (i) F ≤ 8(1 + 1
ε
)2F ∗ + (1 + 2

ε
)Fs; (ii) Fs ≤

2(E∗
w + E∗

i + U∗).

Lemma 6 implies that F ≤ 8(1 + 1
ε
)2F ∗ + 2(1 + 2

ε
)(E∗

w +

E∗
i +U∗). Together with Lemma 5, G ≤ 32(1+ 1

ε
)2F ∗+8(1+

2
ε
)(E∗

w+E∗
i +U∗)+E∗

w ≤ 32(1+ 1
ε
)2(F ∗+E∗

w+E∗
i +U∗) =

32(1 + 1
ε
)2G∗. Theorem 4 follows.

3.1 Potential Analysis of Total Flow F
To show Lemma 6(i), we extend the potential analysis in

Section 2 to allow SATA and OPT to use a variable number
of processors. The potential function Φ(t) of Section 2 is
modified so that the coefficient takes ma(t) and m∗

o(t) into
consideration. Recall that SATA’s active jobs are arranged
in ascending order of arrival times. For the i-th job ji, we
denote xi as the amount of work of ji in SATA that is lagging
behind OPT (see Section 2 for the definitions). The new
potential function is defined as follows:

Φ(t) =
2

ε
·
na(t)∑
i=1

max
(
1, i

max(ma(t),m∗
o(t))

)
· xi ,

where max
(
1, i

max(ma(t),m∗
o(t))

)
is called the coefficient of

job ji.
Initially, Φ(0) = 0. When a job arrives or is completed,

Φ does not increase. The way we integrate ma(t) and m∗
o(t)

into Φ(t) guarantees that when ma and m∗
o changes, Φ can-

not increase: When ma increases, the coefficient of any job
and thus Φ do not increase. When ma decreases to ma−1 or
when m∗

o changes, SATA puts one awake processor to sleep,
which implies na ≤ ma − 1. The coefficients of all the na

jobs remain exactly 1, so Φ does not change.
Let F (t) be the total flow F incurred up to time t by

SATA. Similarly, define F ∗(t) and Fs(t) for OPT’s total
flow F ∗ and SATA’s lazy flow Fs. It remains to show the
following running condition. Lemma 6(i) then follows from
integrating it over time.

Lemma 7. At any time t when there is no job arrival or

completion or change on ma(t) or m∗
o(t),

dF (t)
dt

+ dΦ(t)
dt

≤
8(1 + 1

ε
)2 · dF∗(t)

dt
+ (1 + 2

ε
) · dFs(t)

dt
.

Proof. At time t, let na(t) and no(t) be the number
of jobs of SATA and OPT, respectively. For convenience,
we drop t from all the notations. Note that dF

dt
= na and

dF∗
dt

= no. If ma < m∗
o,

dFs
dt

= na; otherwise, dFs
dt

= 0.
To bound the rate of change of Φ, we will consider how Φ
changes in an infinitesimal amount of time (from t to t+dt).
If na < ma, SATA processes each active job on a different
awake processor. Similarly as in the proof of Lemma 3,

we can show that dF (t)
dt

+ dΦ(t)
dt

≤ 8(1 + 1
ε
)2 · dF∗(t)

dt
. If

na ≥ ma ≥ m∗
o, max(ma,m

∗
o) = ma. The number of awake

processors in OPT is mo ≤ m∗
o, which is at most ma. Since

only the processing of OPT can increase Φ, the worst case
is that OPT is also using ma awake processors as SATA.
Then, similarly as in the proof of Lemma 3, we can show

that dF (t)
dt

+ dΦ(t)
dt

≤ 8(1 + 1
ε
)2 · dF∗(t)

dt
.

It remains to consider na ≥ ma and m∗
o > ma. In this

case, dFs
dt

= na. Since the processing of SATA can only

decrease Φ, it suffices to consider the change of Φ due to the
processing of OPT. (Case 1) na ≥ m∗

o: Since OPT has mo

awake processors of speed 1, and the coefficient of jna is the
largest among all ji’s, we have dΦ

dt
≤ 2

ε
max(1, na

max(ma,m∗
o)
) ·

mo = 2
ε

na
m∗

o
· mo ≤ 2

ε
na. (Case 2) na < m∗

o: For any ji,

its coefficient is max(1, i
max(ma,m∗

o)
) = 1. Since OPT can

process at most na jobs which are also active in SATA, and
the speed for each job is at most 1, we have dΦ

dt
≤ 2

ε
na.

In both cases, dF
dt

+ dΦ
dt

≤ na + 2
ε
na = (1 + 2

ε
) · dFs

dt
≤

8(1 + 1
ε
)2 · dF∗

dt
+ (1 + 2

ε
) · dFs

dt
.

3.2 Potential Analysis of Lazy Flow Fs

To prove Lemma 6(ii), we need another potential function
to analyze Fs. Intuitively, if m∗

o is large in some S-interval,
then OPT would have incurred more wake-up and static en-
ergy, and more lazy flow is incurred. We can relate the lazy
flow against those OPT’s energy. Yet OPT not necessarily
wakes up the processors in the same S-interval in which a
lot of lazy flow is incurred. Thus, we need the following po-
tential function Φ(t) to account for the extra energy spent
by OPT that has not yet been charged:

Φ(t) = ω ·max(mo(t)−ma(t), 0) .

Let E∗
o be the total static energy incurred by processors

in OPT, i.e., when they are working or idle. Then, E∗
o ≤

E∗
w +E∗

i . We also assume that OPT pays ω units of energy
when putting a processor to sleep, and the total amount
is denoted by S∗. We have the same number of sleep and
wake-up events, so U∗ = S∗. We will compare SATA with
such OPT, and show the following lemma.

Lemma 8. During each S-interval I = [t1, t2], let ΔFs =
Fs(t2) − Fs(t1), and let ΔΦ, ΔU∗, ΔS∗ and ΔE∗

o similarly
for Φ, U∗, S∗ and E∗

o . Then, ΔFs +ΔΦ ≤ ΔU∗ +ΔS∗ +
2 ·ΔE∗

o .

Note that ma, mo and hence Φ start and end at 0. With
Lemma 8, we can use induction over the S-intervals to show
that Fs ≤ U∗ + S∗ + 2E∗

o , which implies Lemma 6(ii) that
Fs ≤ 2(E∗

w + E∗
i + U∗).

The rest of this section is devoted to proving Lemma 8.
Recall that for any time t ∈ I , m∗

o(t) is the maximum num-
ber of awake processors in OPT during I . Since m∗

o(t) is
fixed within I , we drop the parameter t. Similarly, we de-
fine m∗

a to be the maximum number of awake processor in
SATA during I . By definition of S-intervals, I contains a
sequence of wake-up events in SATA, followed by a sequence
of sleep events in SATA. We split I = [t1, t2] into two in-
tervals: the wake-up interval Iw starts at t1 and ends at the
last wake-up of SATA in I ; and the sleep interval Is starts
at the last wake-up of SATA in I and ends at t2. Thus,
ma increases from ma(t1) to m∗

a within Iw, and then de-
creases from m∗

a to ma(t2) within Is. We denote the lazy
flow Fs incurred within Iw and Is by ΔFs(Iw) and ΔFs(Is),
respectively. Note that ΔFs = ΔFs(Iw) + ΔFs(Is).

Consider the schedule of OPT. Let m−
o be the minimum

number of awake processors in OPT during I . Within I , mo

starts from mo(t1), reaches the maximum m∗
o and the min-

imum m−
o at different times, and finally ends up at mo(t2).

Therefore,

ΔU∗ ≥ (m∗
o −mo(t1)) · ω + (mo(t2)−m−

o) · ω and

ΔS∗ ≥ (m∗
o −m−

o) · ω .

267

To prove Lemma 8, it suffices to show that ΔFs(Iw)+ΔFs(Is)+
Φ(t2) ≤ (m∗

o −mo(t1)) ·ω+(mo(t2)−m−
o) ·ω+(m∗

o −m−
o) ·

ω + 2 ·ΔE∗
o + Φ(t1).

We relate ΔFs(Iw) to SATA’s wake-up energy incurred
within Iw. By considering the wake-ups of SATA and OPT,
the latter can be bounded by OPT’s wake-up energy and all
OPT’s energy stored in Φ at t1 (Lemma 9). We also relate
ΔFs(Is) to SATA’s idling energy incurred within Is. By
considering the sleep events of SATA and OPT, the latter
can be bounded by OPT’s sleeping energy and static energy
(Lemma 10). Finally, we show that OPT has enough wake-
up energy and static energy remaining to store back to Φ
(i.e., at least Φ(t2)) for the next S-interval (Lemma 11).

Lemma 9. ΔFs(Iw) ≤ (min(m∗
a,m

∗
o)−mo(t1))·ω+Φ(t1).

Proof. Recall that lazy flow is the flow incurred when
ma(t) < m∗

o. First, suppose ma(t1) < m∗
o. By definition of

SATA, at time t1 and at the end of Iw, both the counters Ce

and Cf are zero. When Cf has accumulated ω units of flow,
SATAwakes up a processor and resets Cf to zero. Therefore,
ΔFs(Iw) equals to the wake-up energy incurred by SATA
within Iw, i.e., (min(m∗

a, m
∗
o) − ma(t1)) · ω. The latter is

equal to (min(m∗
a,m

∗
o)−mo(t1)) ·ω+(mo(t1)−ma(t1)) ·ω ≤

(min(m∗
a,m

∗
o) − mo(t1)) · ω + max(mo(t1) − ma(t1), 0) · ω.

Therefore, ΔFs(Iw) ≤ (min(m∗
a, m

∗
o)−mo(t1)) · ω + Φ(t1).

Now, suppose ma(t1) ≥ m∗
o. Since ma increases from

ma(t1) to m∗
a within Iw, which are always at least m∗

o, we
have ΔFs(Iw) = 0. We consider two cases depending on
whether m∗

a ≥ mo(t1).
Case 1: m∗

a ≥ mo(t1). Since m∗
o ≥ mo(t1) and Φ is always

at least 0, we have

ΔFs(Iw) = 0 ≤ (min(m∗
a,m

∗
o)−mo(t1)) · ω + Φ(t1) .

Case 2: m∗
a < mo(t1). In this case, ma(t1) ≤ m∗

a <
mo(t1) ≤ m∗

o. Thus,

ΔFs(Iw) = 0 ≤ (min(m∗
a,m

∗
o)−ma(t1)) · ω

= (min(m∗
a,m

∗
o)−mo(t1) +mo(t1)−ma(t1)) · ω

= (min(m∗
a,m

∗
o)−mo(t1)) · ω + Φ(t1) .

Lemma 10. ΔFs(Is) ≤ (m∗
o −m−

o) · ω +ΔE∗
o .

Proof. If ma(t2) ≥ m∗
o, since ma decreases from m∗

a to
ma(t2) within Is, we have ΔFs(Is) = 0 ≤ (m∗

o − m−
o) ·

ω + ΔE∗
o . Now, suppose ma(t2) < m∗

o. By definition of
SATA, at the beginning of Is and at time t2, both the coun-
ters Ce and Cf are zero. Within Is, whenever SATA puts
a processor to sleep, Ce has accumulated ω units of idling
energy; Cf has accumulated less than ω units of flow; and
both Ce and Cf are reset to zero. Note also that if Ce is
accumulating idling energy when ma(t) ≤ m−

o , OPT would
have accumulated at least the same amount of static energy.
Therefore, we conclude that ΔFs(Is) < (min(m∗

a, m
∗
o) −

max(ma(t2),m
−
o)) · ω +ΔE∗

o ≤ (m∗
o −m−

o) · ω +ΔE∗
o .

Lemma 11. Φ(t2) ≤ (m∗
o −min(m∗

a,m
∗
o)) · ω+ (mo(t2)−

m−
o) · ω +ΔE∗

o .

Proof. If mo(t2) ≤ ma(t2), it is trivial that Φ(t2) =
max(mo(t2)−ma(t2), 0) ·ω = 0 ≤ (m∗

o −min(m∗
a,m

∗
o)) ·ω+

(mo(t2)−m−
o) · ω +ΔE∗

o .
Now, consider the case that mo(t2) > ma(t2) and we need

to bound Φ(t2) = (mo(t2) − ma(t2)) · ω. Note that within
Is, whenever SATA puts a processor to sleep, Ce has accu-
mulated ω units of idling energy; Cf has accumulated less

than ω units of flow; and both Ce and Cf are reset to zero.
Note also that if Ce is accumulating idling energy when
ma(t) ≤ m−

o , OPT would have accumulated at least the
same amount of static energy. Therefore, if m∗

a ≥ mo(t2),

(mo(t2)−ma(t2)) · ω
≤ (mo(t2)−max(ma(t2),m

−
o)) · ω +ΔE∗

o

≤ (mo(t2)−m−
o) · ω +ΔE∗

o

≤ (m∗
o −min(m∗

a,m
∗
o)) · ω + (mo(t2)−m−

o) · ω +ΔE∗
o .

Similarly, if m∗
a < mo(t2), we have (m

∗
a−ma(t2))·ω ≤ (m∗

a−
max(ma(t2),m

−
o)) ·ω+ΔE∗

o . Thus, (mo(t2)−ma(t2)) ·ω =
(mo(t2) −m∗

a +m∗
a −ma(t2)) · ω ≤ (m∗

o −m∗
a) · ω + (m∗

a −
max(ma(t2),m

−
o)) ·ω+ΔE∗

o , which, by m∗
a < mo(t2), is less

than (m∗
o−min(m∗

a,m
∗
o)) ·ω+(mo(t2)−m−

o) ·ω+ΔE∗
o .

By Lemmas 9, 10 and 11, we obtain the desired inequality
ΔFs(Iw) +ΔFs(Is) +Φ(t2) ≤ (m∗

o −mo(t1)) ·ω+(mo(t2)−
m−

o) · ω + (m∗
o − m−

o) · ω + 2 ·ΔE∗
o + Φ(t1), which implies

ΔFs+ΔΦ ≤ ΔU∗+ΔS∗+2·ΔE∗
o . Thus Lemma 8 is proven.

4. SATA WITH SPEED SCALING
This section considers scheduling in the speed scaling model.

In this model, at any time t, each processor i ∈ [1, m]
can independently scale its speed si(t) ∈ [0, T], where T
is the maximum allowable speed, and the processor con-
sumes power at rate P (si(t)). Without loss of generality, we
can assume P (0) = 0, and P is defined, strictly increasing,
strictly convex, continuous and differentiable at all speeds
in [0, T]; if T = ∞, the speed range is [0,∞) and for any
speed x, there exists x′ such that P (x)/x < P (s)/s for all
s > x′ (otherwise the optimal speed scaling policy is to al-
ways run at the infinite speed and an optimal schedule is
not well-defined). We use Q(x) to denote min{P−1(x), T}.
Note that Q is monotonically increasing and concave. E.g.,
if P (s) = sα for some α > 1, then Q(x) = min{x1/α, T}.

This section shows how to extend SATA to the speed scal-
ing model. The objective is to minimize the total flow time
F plus energy E. Note that a (1 + ε)-speed processor for
any ε > 0 can run at speed (1 + ε)s when given power P (s).
The following theorem shows that the extended SATA is
(1 + ε)2-speed O(1

ε3
)-competitive.

Theorem 12. For any ε > 0, SATA is (1 + ε)2-speed
80(1 + 1

ε
)3-competitive for flow plus energy, and SATA mi-

grates a job at most 4 times on average.

SATA handles job dispatching, migrations and selection
in the same way as in Section 2. Let na be the current
number of active jobs. Whenever na ≥ m, SATA maintains
the arrival-time alignment property with alignment width
m. This ensures that each processor is processing exactly k
jobs, where k is the smallest integer such that km ≥ �βna�
where β = ε

4(1+ε)
. After each job arrival and completion,

SATA migrates up to 2 jobs to maintain the arrival-time-
alignment property. SATA handles speed scaling as follows:
At any time, each of the processors with active jobs works
at the same speed. The total power of the processors is
set to the number of active jobs na, except that when the
processor speed exceeds the maximum speed T , it is capped
at T . Below we give the details of extending SATA.

268

Job arrival: When a job j arrives, if na < m, dispatch j to
a processor without jobs; otherwise, dispatch j and migrate
at most 2 jobs according to the job arrival procedure in
Section 2.

Job completion: When a job is completed, if na ≤ m,
no migration is needed; otherwise, migrate at most 2 jobs
according to the job completion procedure in Section 2.

Job scheduling:

• If na < m, each active job is processed on a different
processor running at speed (1 + ε)Q(1);

• If na ≥ m, each processor runs at speed (1 + ε)Q(na
m
)

and shares its processing time equally among all its tail
jobs and its boundary job (if present). Note that the
m processors together are processing km latest-arrival
jobs, where k is the smallest integer with km ≥ �βna�.

Restricting offline algorithm. It remains to show the
competitive ratio of SATA stated in Theorem 12. We need
to compare SATA against the optimal offline algorithm. To
ease the analysis, we assume that OPT is the algorithm
GKP [12], which is (1 + ε)-speed 4(1 + 1

ε
)-competitive for

flow plus energy. GKP is clairvoyant and non-migratory
in nature, and it always dispatches a job to a processor at
release time. At any time t, GKP’s processor i ∈ [1, m] runs
at speed s∗i (t) = Q(n∗

i (t)), where n
∗
i (t) is the current number

of active jobs assigned to processor i. This implies that if
GKP has no(t) active jobs at time t, i.e., no(t) =

∑m
i=1 n

∗
i (t),

then the total speed over all processors of GKP is at most

m · Q(no(t)
m

) if no(t) ≥ m, and no(t) · Q(1) otherwise.4 To
show Theorem 12, it suffices to show that SATA is (1 + ε)-
speed 20(1 + 1

ε
)2-competitive against this restricted OPT.

Potential analysis of total flow F . The SATA’s en-
ergy usage E is at most its total flow F because, by the
definition of SATA, at any time, if na < m, the total power
of all processors is na ·P (Q(1)) ≤ na ·P (P−1(1)) = na; and if
na ≥ m, the total power of all processors is m ·P (Q(na

m
)) ≤

m · P (P−1(na
m
)) = na. Thus, it suffices to analyze SATA’s

flow time F . To this end, we adapt the potential function in
Section 2 by taking speed scaling into account. Recall that
SATA’s active jobs are arranged in ascending order of ar-
rival times. For the i-th job ji, we denote xi as the amount
of work of ji in SATA that is lagging behind OPT (see Sec-
tion 2 for the definitions). Recall that na(t) and no(t) are
the number of active jobs in SATA and OPT, respectively.
The new potential function is defined as follows:

Φ(t) =
2

ε
·
na(t)∑
i=1

max
(
1, i

m

)
Q(max

(
1, i

m

)
)
· xi ,

where max
(
1, i

m

)
/Q(max

(
1, i

m

)
) is called the coefficient of

job ji. In the full paper , we will prove the running condition
dF (t)
dt

+ dΦ(t)
dt

≤ 10(1+ 1
ε
)2 · dF∗(t)

dt
. Then Theorem 12 follows.

5. REFERENCES
[1] S. Albers. Energy-efficient algorithms.

Communications of the ACM, 53(5):86–96, 2010.

4By the concavity of Q, if no(t) ≥ m,
∑m

i=1 s
∗
i (t) =∑m

i=1 Q(n∗
i (t)) ≤ mQ(

∑m
i=1 n

∗
i (t)/m) = mQ(no(t)/m).

Otherwise, GKP can use at most no(t) processors, and sim-
ilarly,

∑m
i=1 s

∗
i (t) ≤ no(t)Q(no(t)/no(t)) = no(t)Q(1).

[2] S. Albers, and H. Fujiwara. Energy-efficient
algorithms for flow time minimization. ACM
Transactions on Algorithms, 3(4):49, 2007.

[3] N. Avrahami, and Y. Azar. Minimizing total flow time
and total completion time with immediate
dispatching. Algorithmica, 47(3):253–268, 2007.

[4] N. Bansal, H. L. Chan, and K. Pruhs. Speed scaling
with an arbitrary power function. In Proc. SODA,
pages 693–701, 2009.

[5] S. H. Chan, T. W. Lam, and L. K. Lee.
Non-clairvoyant speed scaling for weighted flow time.
In Proc. ESA, pages 23–35, 2010.

[6] S. H. Chan, T. W. Lam, L. K. Lee, C. M. Liu, and
H. F. Ting. Sleep management on multiple processors
for energy and flow time. In Proc. ICALP, pages
219–231, 2011.

[7] C. Chekuri, A. Goel, S. Khanna, and A. Kumar.
Multi-processor scheduling to minimize flow time with
ε resource augmentation. In Proc. STOC, pages
363–372, 2004.

[8] J. Chadha, N. Garg, A. Kumar, and V. Muralidhara.
A competitive algorithm for minimizing weighted flow
time on unrelated processors with speed
augmentation. In Proc. STOC, pages 679–684, 2009.

[9] J. Edmonds and K. Pruhs. Scalably scheduling
processes with arbitrary speedup curves. In Proc.
SODA, pages 685–692, 2009.

[10] K. Fox and B. Moseley. Online scheduling on identical
processors using SRPT. In Proc. SODA, pages
120–128, 2011.

[11] A.Gandhi, V.Gupta, M.Harchol-Balter, and
M.Kozuch. Optimality analysis of energy-performance
trade-off for server farm management. Performance
Evaluation, 67(11):1155–1171, 2010.

[12] A. Gupta, R. Krishnaswamy, and K. Pruhs. Scalably
scheduling power-heterogeneous processors. In Proc.
ICALP, pages 312–323, 2010.

[13] A. Gupta, S. Im, R. Krishnaswamy, B. Moseley, and
K. Pruhs. Scheduling heterogeneous processors isn’t as
easy as you think. In Proc. SODA, pages 1242–1253,
2012.

[14] S. Irani, S. Shukla, and R. K. Gupta. Algorithms for
power savings. ACM Transactions on Algorithms,
3(4):41, 2007.

[15] S. Khuller, J. Li, B. Saha. Energy efficient scheduling
via partial shutdown. In Proc. SODA, pages
1360–1372, 2010.

[16] T. W. Lam, L. K. Lee, H. F. Ting, I. To, and P. Wong.
Sleep with guilt and work faster to minimize flow plus
energy. In Proc. ICALP, pages 665–676, 2009.

[17] S. Leonardi, and D. Raz. Approximating total flow
time on parallel processors. Journal of Computer and
System Sciences, 73(6):875–891, 2007.

[18] J. Li and S. Khuller. Generalized processor activation
problems. In Proc. SODA, pages 80–94, 2011.

[19] R. Motwani, S. Phillips, and E. Torng. Nonclairvoyant
scheduling. Theor. Comput. Sci., 130(1):17–47, 1994.

[20] E. Torng and J. McCullough. SRPT optimally utilizes
faster processors to minimize flow time. ACM
Transactions on Algorithms, 5(1):1, 2008.

269

Appendix A: Lower Bound
In this appendix, we assume processors are always awake and
consider nonclairvoyant scheduling that minimizes the total
flow time. We give a lower bound result on deterministic
nonclairvoyant algorithms that allows a job to be migrated
c < 1 times on average. Below we do not assume that each
job is dispatched at its arrival time.

Theorem 13. If at most c < 1 migration is allowed per
job on average (or equivalently, the total number of migra-
tions is at most cn where n is the number of jobs), the
competitive ratio of any deterministic nonclairvoyant algo-
rithm, when using s-speed processors for s ≥ 1, is at least
1
16

min(m
s
, 1√

cs
) for minimizing total flow time.

Proof. Consider any nonclairvoyant online algorithm
Online that is using m s-speed processors, where s ≥ 1.
Let adv be the offline adversary that is using m 1-speed pro-
cessors. We will show that the competitive ratio of Online
is at least m

8sx
, where x = �√cm� if c > 0, and x = 1 if

c = 0. Then Theorem 13 follows (when c > 0, x = �√cm� ≤
max(2

√
cm, 1), and m

8sx
≥ m

8smax(2
√

cm,1)
≥ 1

16
min(m

s
, 1√

cs
);

when c = 0, x = 1 and m
8sx

≥ m
16s

= 1
16

min(m
s
, 1√

cs
)).

At time 0, adv releases n = m3 jobs {j1, j2, . . . , jm3}.
Define ε = 1

n2 . adv will determine the sizes of all jobs at
time 1. Consider Online’s schedule at time 1. Suppose
Online has processed q(ji) units of work for each job ji.

• Let U be the set of jobs ji that have q(ji) = 0, i.e.,
Online has not yet processed or dispatched them by
time 1.

• Let P be a set of x processors to which Online has
dispatched most jobs.

We divide the proof into two cases based on a threshold
2mx2, which can be smaller, equal to, or bigger than n de-
pending on the value of c.

Case 1. The total number of jobs in the x processors of
P is less than 2mx2. In this case, adv sets each job ji to
have size q(ji)+ ε. Since Online does not complete any job
before time 1, Online has total flow at least 1 ·n = n = m3.
Consider adv. adv can first process ε units of work for each
job on a single processor, and all jobs in U will be completed
by time n · ε = 1

n
. adv then simulates Online’s schedule

on the other jobs from time 0 to time 1 (but working s
times slower). Thus adv has total flow at most 1

n
· n + s ·

(n− |U |). Since the x processors of P are hosting most jobs
dispatched by Online, the total number of jobs that have
been dispatched by Online is at most min(2mx2 · m

x
, n) =

min(2m2x,n) ≤ 2m2x and thus n − |U | ≤ 2m2x. adv has
total flow at most 1

n
·n+s ·2m2x ≤ 8m2sx. The competitive

ratio of Online is at least m3

8m2sx
= m

8sx
.

Case 2. The total number of jobs in the x processors of P
is at least 2mx2. In this case, adv selects 2mx2 jobs that are
currently on P and set their size to sn. Note that s < sn. At
time 1, Online has processed any of these jobs for at most s
units of work, and none of them is completed. Since Online
can only migrate at most cn jobs in total, at least 2mx2−cn
jobs of size sn must be entirely run on the x processors in P .
To minimize the flow, a best way for Online is to process
these jobs evenly on the x processors. Note that x = 1 if
c = 0, and x = �√cm� if c > 0. Then, we have cn ≤ mx2

and 2mx2 − cn ≥ mx2. Therefore, the total flow incurred

by Online is at least x(1 + 2 + · · · + mx2

x
) · sn

s
≥ 1

2
m2x3n.

Consider adv. adv can first simulate Online’s schedule on
all jobs except those with size sn, so these jobs would have
been completed by time s(1 + n · ε) = s(1 + 1

n
). Then, adv

processes the 2mx2 jobs with size sn evenly onm processors.
The total flow of adv is at most s(1 + 1

n
) · n + m(1 + 2 +

· · ·+ 2mx2

m
) · sn ≤ 2sn+m · 3x4sn ≤ 4mx4sn (since m ≥ 2

and x ≥ 1). Therefore, the competitive ratio of Online is

at least
1
2
m2x3n

4mx4ns
= m

8sx
.

Appendix B: Migration Upper Bound (Section 3)
Lemma 14. Consider any sequence of wake-ups together

and all the migrations involved in maintaining the arrival-
time-alignment property. On average (over all jobs), a job
is migrated at most (lnm+ 2) times.

Proof. We consider each maximal sequence of consecu-
tive wake-ups in SATA. Let t1 be the time right after the
last sleep event before this wake-up sequence; if such sleep
event does not exist, let t1 = 0. Let t2 be the time right
after the last wake-ups in the wake-up sequence. We will
show that within the interval I = [t1, t2], on average (over
all jobs arriving in I), each job migrates at most lnm + 2
times. Considering all such intervals I together, the average
number of migrations per job is still at most lnm + 2, and
the lemma follows.

Consider the interval I = [t1, t2]. Suppose there are m0

awake processors at t1 and
 wake-ups within I . When SATA
makes the i-th wakeup, let ni be the current number of active
jobs. Note that on the i-th wake-up, the number of awake
processors becomes mi = m0 + i. If ni < mi, each job
is hosted by a different processor, and no job needs to be
migrated. Otherwise, we need to maintain the arrival-time-
alignment property. We migrate job jτ−m−1 (if exist) to
the newly awaken processor as a new aligned job, so that
property C1 holds. To maintain C2 and C3, we need to
migrate ��βni�/mi� tail jobs from existing awake processors
to the newly awaken processor. Let ki ≥ 1 be the smallest
integer such that kimi ≥ �βni�. In other words, we need to
migrate ki tail jobs to the newly awaken processor. Since
ni ≥ mi and β < 0.5, we have kimi ≤ ni. Thus, the total
number of migrations within I is at most

N =
∑

1≤i≤�:ni≥mi

(1 + ki) ≤
∑

1≤i≤�:ni≥mi

(1 +
ni

mi
) .

We can lower bound the number of jobs arriving in I , as
follows. At time t1, the number of active jobs must be no
more than m0 since there is a sleep event right before t1 or
t1 = 0. Define n∗ = max{n1, . . . , nl}. Then, the number of
jobs arriving within I is at least n∗ −m0.

Now, we relate N with (n∗ − m0). Let r ≤
 be the
largest integer such that nr ≥ mr. If such r does not exist,
there is no migration within I . Otherwise, N ≤ ∑r

i=1(1 +
ni/mi) and nr ≥ mr = m0 + r. Note that r ≤ nr − m0 ≤
n∗ − m0, and r ≤ m (the wake-up sequence in I contains
consecutive wake-ups). Also note that ni/mi ≤ n∗/mi ≤
(n∗ −m0)/(mi −m0) = (n∗ −m0)/i. Therefore,

N ≤
r∑

i=1

(1 +
ni

mi
) ≤ (n∗ −m0) ·

(
1 +

r∑
i=1

1

i

)

≤ (n∗ −m0) · (2 + ln r) ≤ (n∗ −m0) · (2 + lnm) .

Therefore, the average number of migrations per job within
I is at most N/(n∗ −m0) ≤ lnm+ 2.

270

