
Non-clairvoyant Weighted Flow Time Scheduling
with Rejection Penalty

Ho-Leung Chan
∗

University of Hong Kong,
Hong Kong

hlchan@cs.hku.hk

Sze-Hang Chan
University of Hong Kong,

Hong Kong
shchan@cs.hku.hk

Tak-Wah Lam
†

University of Hong Kong,
Hong Kong

twlam@cs.hku.hk

Lap-Kei Lee
‡

University of Hong Kong,
Hong Kong

lklee@cs.hku.hk

Jianqiao Zhu
University of Hong Kong,

Hong Kong
jqzhu@cs.hku.hk

ABSTRACT
This paper initiates the study of online scheduling with rejection
penalty in the non-clairvoyant setting, i.e., the size (processing time)
of a job is not assumed to be known at its release time. In the re-
jection penalty model, jobs can be rejected with a penalty, and the
user cost of a job is defined as the weighted flow time of the job
plus the penalty if it is rejected before completion. Previous work
on minimizing the total user cost focused on the clairvoyant single-
processor setting [2, 8] and has produced O(1)-competitive online
algorithm for jobs with arbitrary weights and penalties. This paper
gives the first non-clairvoyant algorithms that are O(1)-competitive
for minimizing the total user cost on a single processor and multi-
processors, when using slightly faster (i.e., (1 + ϵ)-speed for any
ϵ > 0) processors. Note that if no extra speed is allowed, no on-
line algorithm can be O(1)-competitive even for minimizing (un-
weighted) flow time alone. The new user cost results can also be
regarded as a generalization of previous non-clairvoyant results on
minimizing weighted flow time alone (WSETF [4] for a single pro-
cessor; WLAPS [14] for multi-processors).

The above results assume a processor running at a fixed speed.
This paper shows more interesting results on extending the above
study to the dynamic speed scaling model, where the processor can
vary the speed dynamically and the rate of energy consumption
is an arbitrary increasing function of speed. A scheduling algo-

∗The research of Ho-Leung Chan was partially supported by GRF
Grant HKU710210E.
†The research of Tak-Wah Lam was partially supported by HKU
Grant 201109176197.
‡Part of the work was done when Lap-Kei Lee was working in
MADALGO (Center for Massive Data Algorithmics, a Center
of the Danish National Research Foundation), Aarhus University,
Denmark.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’12, June 25–27, 2012, Pittsburgh, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1213-4/12/06 ...$10.00.

rithm has to decide job rejection and determine the order and speed
of job execution. It is interesting to study the tradeoff between
the above-mentioned user cost and energy. This paper gives two
O(1)-competitive non-clairvoyant algorithms for minimizing the
user cost plus energy on a single processor and multi-processors,
respectively.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance Attributes; F.2.0 [Analysis
of Algorithms and Problem Complexity]: General

Keywords
Online scheduling, competitive analysis, weighted flow time, non-
clairvoyant scheduling, rejection penalty

1. INTRODUCTION
It is common that servers prioritize their jobs and reject some

low-priority jobs during peak load to meet the performance guaran-
tee. Serving too many jobs prolongs their individual response time,
yet rejecting jobs would cause users’ inconvenience and waste the
processing power already spent on them. To study the tradeoff be-
tween response time and rejection penalty, Bansal et al. [2] and
Chan et al. [8] considered flow-time scheduling on a single proces-
sor when jobs can be rejected at some penalty. Jobs arrive online
with arbitrary sizes, weights and penalties, and a scheduler may
reject some jobs before completion. Each job defines a user cost
equal to its weighted flow time plus the penalty if it is rejected,
where the flow time (or simply flow) of a job is the time elapsed
since the job is released until it is completed or rejected. The ob-
jective is to minimize the total user cost of all jobs.

Bansal et al. [2] showed that any online algorithm is Ω(max{n
1
4 ,

C
1
2 })-competitive, where n is the number of jobs and C is the

max-min ratio of job penalties. In view of the lower bound, they
consider giving the online algorithm a slightly faster processor.
Using a (1 + ϵ)-speed processor for any ϵ > 0, they gave an
O(1

ϵ
(logW+logC)2)-competitive algorithm where W is the max-

min ratio of job weights. Recently, Chan et al. [8] improved the
competitive ratio to O((1+ 1

ϵ
)2) when using a (1+ ϵ)2-speed pro-

cessor, which is independent of W and C. These two results are
based on job rejection policies that know the size of a job at its re-

246

Weighted flow User cost Weighted flow + energy User cost + energy

Single processor 1 + 1
ϵ

[4] 12(1 + 1
ϵ
)2 [†] 8(1 + 1

ϵ
)2 [7] 36(1 + 1

ϵ
)2 [†]

m > 1 processors 8(1 + 1
ϵ
)2 [14] 20(1 + 1

ϵ
)2 [†] 12(logm+ 2)(1 + 1

ϵ
)2 [†]

(using 2(1 + ϵ)-speed processors)

Table 1: Competitive ratios of non-clairvoyant scheduling for different objectives involving weighted flow time. Recall that user cost
equals weighted flow plus penalty. All results assume using a faster processor and, unless specified otherwise, are using (1+ ϵ)-speed
processors. Our new results are marked with [†].

lease time and its remaining size at any time, i.e., they only work
in the clairvoyant setting. In this paper, we extend the study of re-
jection penalty to the non-clairvoyant setting, where the size of a
released job is not known until the job is completed. Such a setting
is natural from the viewpoint of operating systems.

Non-clairvoyant flow-time scheduling on a single processor.
For the special case when each job has infinite penalty, no jobs
would be rejected and the problem reduces to the classic problem of
minimizing weighted flow time only. In the non-clairvoyant setting,
even for unweighted jobs, any algorithm is Ω(n1/3)-competitive [12]
for minimizing the total flow, where n is the number of jobs. Using
a slightly faster processor, Kalyanasundaram and Pruhs [11] an-
alyzed a non-clairvoyant algorithm SETF (Shortest Elapsed Time
First, which prefers jobs that have been processed the least) for a
single processor, and they showed that it is (1 + ϵ)-speed (1 +
1
ϵ
)-competitive for (unweighted) flow. Later, Bansal and Dhamd-

here [4] generalized this result for weighted jobs, and showed that
the algorithm WSETF is (1 + ϵ)-speed (1 + 1

ϵ
)-competitive for

weighted flow.
Multi-processor scheduling with arbitrary parallelizability.

On a multi-core chip that provides m ≥ 1 identical processors,
some jobs might be processed faster when using several proces-
sors in parallel, while others might be inherently sequential. In
the literature, the degree of parallelizability of a job was modeled
as follows (e.g., [9, 10, 14]): A job consists of a number of phases,
each with an arbitrary size and arbitrary speedup function that spec-
ifies the amount of speedup when running the job on a given num-
ber of processors. A non-clairvoyant scheduler has no information
about the phases in advance. For minimizing (unweighted) flow
in such a multi-processor model, Edmonds [9] gave a (2 + ϵ)-
speed O(1

ϵ
)-competitive algorithm, and Edmonds and Pruhs [10]

later showed that another algorithm LAPS (Latest Arrival Processor
Sharing, which shares the processing power equally among a con-
stant fraction of latest-arrival jobs) is (1+β+ϵ)-speed O(1+β+ϵ

βϵ
)-

competitive, for any ϵ > 0 and 0 < β ≤ 1 [10] . Very recently, Zhu
et al. [14] extended the latter result to weighted jobs and gave an al-
gorithm WLAPS (Weighted LAPS) that is (1+ϵ)-speed 8(1+ 1

ϵ
)2-

competitive for weighted flow.
New results on flow plus penalty. In this paper, we extend

the non-clairvoyant results on flow-time scheduling to the rejec-
tion penalty model. In particular, we propose a simple job rejection
policy RWE (Reject When weighted flow Equals penalty), which
rejects an unfinished job when the weighted flow incurred equals
the job penalty. Unlike previous job rejection policies [2, 8], RWE
does not require any information on job size, and it can be used in
different settings. We develop a rather general technique for ana-
lyzing RWE. In the single-processor setting, we show that WLAPS
coupled with RWE is (1 + ϵ)-speed 12(1 + 1

ϵ
)2-competitive for

minimizing total user cost; in the multi-processor setting, the com-
petitive ratio becomes 20(1 + 1

ϵ
)2. For the special case when jobs

must all be completed (i.e., with infinite penalty), our new algo-
rithm behaves exactly as WLAPS. The first two columns of Table 1

summarize the results on weighted flow and user cost (weighted
flow plus penalty).

Dynamic speed scaling and energy. The above results assume
that processors are running at a fixed speed. We show that RWE
also works well in the dynamic speed scaling model, in which the
scheduler can manage the energy consumption by scaling the pro-
cessor speed dynamically (see [1] for a survey). Specifically, the
processor speed can vary between 0 and a maximum speed T , and
its rate of energy consumption (i.e., power) P increases with the
speed s according to a certain given power function, say, P (s) =
s3. In this model, a scheduler has to determine dynamically which
job and at what speed to execute.

Tradeoff between user cost and energy. The past few years
have witnessed several online results on optimizing the tradeoff
between flow and energy under the dynamic speed scaling model
(see [1] for survey). Chan et al. [8] have also extended the study
of rejection penalty to the dynamic speed scaling model and con-
sidered the tradeoff between user cost and energy consumption, but
their result is limited to the clairvoyant setting. In particular, they
gave a clairvoyant algorithm that is (1 + ϵ)2-speed O((1 + 1

ϵ
)2)-

competitive for minimizing total user cost plus energy on a single
processor [8]. In this context, a λ-speed processor (where λ > 1)
means that, given power P (s), it can run at speed λ·s. In this paper,
we use RWE to obtain a non-clairvoyant algorithm RAW which is
(1 + ϵ)-speed 36(1 + 1

ϵ
)2-competitive for minimizing total user

cost plus energy (see Table 1).
Multi-processor result. We further show that RWE also leads

to a new non-clairvoyant algorithm for minimizing user cost plus
energy on m > 1 processors, where each processor can scale its
speed independently and jobs comprise phases with different de-
grees of parallelizability. The only past relevant work was done
by Chan, Edmonds and Pruhs [6], who considered scheduling un-
weighted jobs non-clairvoyantly on processors with power function
P (s) = sα for any α > 1, and maximum speed T = ∞. The ob-
jective is to minimize total flow plus energy, and jobs must be all
completed. They showed a strong lower bound of Ω(m(α−1)/α2

)
on the competitive ratio. In view of this lower bound, they as-
sume that jobs satisfy two properties: (1) They do not have side
effect, i.e., the execution of a job does not affect anything exter-
nal to itself, so multiple copies of a job can run simultaneously.
(2) They are checkpointable, i.e., each copy can save its state pe-
riodically and then restart each copy from the point of execution
of the copy that made the most progress. Then Chan, Edmonds
and Pruhs [6] were able to extend LAPS to a new algorithm Multi-
LAPS which is O(2α logm α2

logα
)-competitive for minimizing (un-

weighted) flow plus energy, and showed that any algorithm for such
checkpointable jobs is Ω(log1/α m)-competitive. Roughly speak-
ing, previous speed scaling work scales the speed such that flow
and energy are incurred at the same rate, yet MultiLAPS needs to
run two times faster, leading to the multiplicative factor of 2α in
the competitive ratio.

We extend the above result to the rejection penalty model, and

247

more interestingly, allowing weighted jobs and arbitrary power func-
tion P (s). We give an algorithm MultiRAW which uses RWE as
job rejection policy and is 2(1+ ϵ)-speed 12(logm+2)(1+ 1

ϵ
)2-

competitive for minimizing total user cost plus energy. To ana-
lyze MultiRAW, we need to restrict the total processor speed of
the optimal offline algorithm to follow some function depending
on total weight of unfinished jobs, and show that such a restriction
does not increase the competitive ratio by a constant factor. To this
end, we generalize the offline transformation algorithm LLB (Lat-
est Lag Behind) first given in [7] for single processor, and allow it
to transform an offline algorithm that would run multiple different
jobs simultaneously on multiple processors. The transformed of-
fline algorithm may also run different jobs at the same time using
time sharing and always has the processor speed following the re-
quired function, and we show that its weighted flow is at most the
weighted flow plus energy of the original algorithm.

Organization of the paper. The following discussion focuses
on the results in the dynamic speed scaling model. Note that the
results in the fixed speed model would be shown as special cases.
Section 2 defines the models, problems and notations formally. Re-
sults on single processor and multi-processors are given in Sec-
tions 3 and 4, respectively.

2. FORMAL PROBLEM DEFINITIONS AND
NOTATIONS

We study job scheduling on a chip containing m ≥ 1 identical
processors. Jobs are arriving online, where each job j has a release
time r(j), a size p(j), a weight w(j) and a rejection penalty c(j).
Jobs are non-clairvoyant, meaning that the size of a job is unknown
until it is completed. Preemption and migration are allowed and
free.

Each processor can run independently at any speed s ∈ [0, T]
(where T is the maximum speed of the processor which may be
∞). The rate of energy usage is given by an arbitrary power func-
tion P (s). Similar to [3], we assume that P (0) = 0, and P at
all speeds in [0, T] is defined, strictly increasing, nonnegative, con-
tinuous, strictly convex and differentiable. As shown in [3], it is
possible to use such a power function P to emulate any arbitrary
power function with an arbitrarily small increase in the competitive
ratio. Let Q(y) = min{P−1(y), T}. Note that Q is monotoni-
cally increasing and concave. E.g., if P (s) = sα for some α > 1,
then Q(x) = x1/α.

In the single processor setting, each job is processed by at most
one processor and its processing rate is always the speed of the
processor times the fraction of the processor assigned to this job.
The processing rate is more complicated in the multi-processor set-
ting due to the varying parallelizability of the job. In particular, we
consider each job as a sequence of q(j) phases ⟨j1, j2, . . . , jq(j)⟩.
Each phase jk is an ordered pair ⟨p(jk),Γjk ⟩, where p(jk) is the
amount of work in the phase and Γjk is a speed-up function specify-
ing the degree of parallelism of the phase. More precisely, Γjk(y)

represents the rate at which work in the phase jk is processed when
using y processors running at speed 1. If the y processors are run-
ning at speed s, then the work is processed at rate Γjk(y) · s. Fol-
lowing the previous work (e.g., [6, 9, 10]), we assume that each
speedup function Γ is non-negative, monotonically increasing and
sublinear, i.e., Γ(y)

y
≥ Γ(y′)

y′ for any y ≤ y′. We assume that
for any phase, its speed-up function Γ satisfies that Γ(y) = y for
y ∈ [0, 1]. This assumption corresponds to the fact that when a
phase is processed by time-sharing on a y ≤ 1 fraction of a proces-
sor, its processing rate should be y times the speed of the processor.

In the non-clairvoyant setting, we assume that the size and speedup
function of each phase is not known to the online algorithm.

In the speed scaling model, the objective is to minimize the sum
of the total weighted flow time, total rejection penalty and total en-
ergy usage. We call it the cost of a schedule. Let OPT be the optimal
offline algorithm that always minimizes the cost. We analyze our
algorithms when they are given faster processors. Precisely, a y-
speed processor runs at speed sy when the rate of energy usage is
P (s).

Previous definitions. Our results make use of previous work like
WLAPS and AJW (e.g., [7]). We review the necessary definitions.
We say that a job is active at time t if it has arrived but has not yet
finished or rejected by time t. Throughout this paper, we denote
na(t) as the number of active job in the online algorithm at time t
and wa(t) be their total weight.

DEFINITION 1 (β-ADJUSTED WEIGHT). Let β ∈ (0, 1] be a
parameter. Consider any time t. Let j1, j2, . . . , jna(t) be the active
jobs in the online algorithm ordered in increasing order of arrival
times. Let τ be the largest integer such that the latest arrived jobs
{jτ , jτ+1, . . . , jna(t)} have total weight at least βwa(t). Then,
the β-adjusted weight of ji at time t, denoted w′

β(ji, t) (or simply
w′(ji, t)) when β is clear in context), is defined as follows:

w′
β(ji, t) =

0 if i < τ

βwa(t)−
∑na(t)

i=τ+1 w(ji) if i = τ
w(ji) if i > τ

DEFINITION 2 (JOB ASSIGNMENT POLICY WLAPS).
WLAPS(β) is parameterized by a constant β ∈ (0, 1]. It assumes
all processors are running at the same speed. At any time t, WLAPS
shares the processors among all active jobs proportional to their
adjusted weights at time t, i.e., each job j is assigned a fraction
w′(j,t)
βwa(t)

of the processors.

DEFINITION 3 (SPEED SCALING POLICY AJW). At any time
t, AJW sets the speed of each processor to s(t) = Q(wa(t)

m
). In-

tuitively, the speed s(t) ensures that the total rate of energy usage
equals wa(t), or s(t) = T if mP (T) < wa(t).

3. SINGLE PROCESSOR RESULTS
In this section, we propose a simple job rejection policy RWE

(Reject When weighted flow Equals penalty). Combining RWE
with WLAPS, we can obtain an O(1)-competitive algorithm for
minimizing weighted flow plus penalty on a fixed-speed proces-
sor. Below we show a more general result on combining RWE with
WLAPS and AJW to obtain an O(1)-competitive algorithm for min-
imizing weighted flow plus penalty plus energy under the dynamic
speed scaling model. RWE is defined as follows.

DEFINITION 4 (JOB REJECTION POLICY RWE). RWE rejects
a job j if it is not completed by time r(j) + c(j)

w(j)
.

Algorithm RAW. Let β ∈ (0, 1] be a constant. RAW assumes a
(1+ϵ)-speed processor where ϵ > 0 can be any real. RAW assigns
jobs to the processor by WLAPS, i.e., sharing the processor among
all active jobs proportional to their adjusted weights. RAW scales
the processor speed to (1 + ϵ) · Q(wa(t)) (so the rate of energy
usage is wa(t)). RAW rejects jobs according to RWE.

We call the algorithm RAW to stand for RWE-AJW-WLAPS. Our
main result is the following.

248

THEOREM 1. Let β = ϵ
2(1+ϵ)

. RAW is (1 + ϵ)-speed 36(1 +
1
ϵ
)2-competitive for minimizing weighted flow plus penalty plus en-

ergy.

To prove Theorem 1, let OFF be the offline algorithm that min-
imizes the cost under the condition that OFF scales the processor
speed by AJW, and OFF rejects a job j at time r(j) if OPT rejects
j. It is known that the cost of OFF is at most twice of OPT when
they do not reject jobs [7]. Below we show that this relationship
remains valid even if they reject jobs.

LEMMA 2. The cost of OFF is at most twice the cost of OPT.

PROOF. For each job j, recall that OFF rejects j when j arrives
if OPT rejects j. Then, OFF schedules the remaining jobs by the
algorithm LLB [7], which uses AJW to scale the processor speed.
[7] shows that the total weighted flow time plus energy usage of
LLB is at most twice that of OPT. Since the total penalty of OFF
is the same as that of OPT, the cost of OFF is at most twice that of
OPT.

Hence, it suffices to analyze RAW against OFF, which would
incur an extra factor of two in the competitive ratio. At any time
t, let qa(j, t) be the remaining work of j in RAW and let qo(j, t)
be that in OFF. Note that qa(j, t) (resp., qo(j, t)) becomes 0 once
RAW (resp., OFF) rejects j. We are interested in the progress of the
jobs that are not rejected by OFF.

DEFINITION 5 (LAGGING WORK). At any time t, for any job
j, the amount of lagging work of j is defined as

x(j, t) =

{
0 if OFF rejects j at r(j)
max{qa(j, t)− qo(j, t), 0} otherwise

Intuitively, x(j, t) is the amount of “useful” work that RAW is
lagging behind OFF. In particular, if j is already rejected by OFF,
then all work remaining in RAW is not useful.

At any time t, let R(t) be the set of jobs being processed by
RAW. Recall that the total adjusted weight of jobs in R(t) is βwa(t),
where wa(t) is the total weight of all active jobs. Let L(t) ⊆ R(t)
be those jobs in R(t) such that x(j, t) > 0. We call L(t) the lag-
ging jobs. We denote ϕ(t) =

∑
j∈L(t) w

′(j, t). Then Theorem 1
follows from the following two lemmas.

LEMMA 3 (LOWER BOUND OF OFF).
∫ ∞

0

(βwa(t)−ϕ(t))dt

≤ Wo +Co, where Wo and Co are the total weighted flow and the
total rejection penalty of OFF, respectively.

LEMMA 4 (UPPER BOUND OF RAW).
∫ ∞

0

wa(t) dt ≤
1
β2

∫∞
0

((βwa(t) − ϕ(t)) + βwo(t))dt, where wo(t) is the total
weight of active jobs in OFF at time t.

Before proving Lemmas 3 and 4, we show how to use these two
lemmas to prove Theorem 1.

PROOF. (Proof of Theorem 1) Recall that that β < 1/2. By
Lemmas 3 and 4, the total weighted flow time of RAW is at most
1
β2 (Wo + Co +

∫∞
0

βwo(t)dt) = (2(1 + 1
ϵ
))2((1 + β)Wo +

Co) ≤ 6(1 + 1
ϵ
)2 · (Wo + Co). Note that for each job j rejected

by RWE, the weighted flow time incurred is c(j)
w(j)

· w(j) = c(j).
Hence, the total penalty of RAW is at most its total weighted flow
time. Furthermore, by running AJW, RAW has energy usage at
most its weighted flow time. In summary, the cost of RAW is at
most 18(1 + 1

ϵ
)2 times the cost of OFF. The latter is at most twice

the cost of OPT (by Lemma 2). Theorem 1 follows.

PROOF. (Proof of Lemma 3) Consider any time t. Note that
βwa(t) − ϕ(t) is the total weight of jobs in R(t) \ L(t), which
are the jobs j being processed by RAW with x(j, t) = 0. Note
that x(j, t) = 0 only if j is rejected by OFF at r(j) or qa(j, t) ≤
qo(j, t) at time t. Let C be the set of jobs rejected by OFF. Let
C(t) = C ∩ R(t) \ L(t) be those jobs in C that are still active
in RAW at time t and let N(t) ⊆ R(t) \ L(t) be those jobs j not
rejected by OFF but qa(j, t) ≤ qo(j, t) at time t. Then,∫ ∞

0

(βwa(t)−ϕ(t))dt =

∫ ∞

0

∑
j∈C(t)

w(j)dt+

∫ ∞

0

∑
j∈N(t)

w(j)dt.

Note that for each job j, j remains in RAW for at most c(j)
w(j)

units
of time and incurs a weighted flow time of at most c(j). Hence,∫∞
0

∑
j∈C(t) w(j)dt ≤

∑
j∈C c(j) = Co.

For each job j in N(t), j is not completed by OFF at time t.
Hence,

∫∞
0

∑
j∈N(t) w(j)dt ≤

∫∞
0

wo(t)dt ≤ Wo, where wo(t)
is the total weight of jobs in OFF at time t.

PROOF. (Proof of Lemma 4) We use a potential function anal-
ysis. Let j1, j2, . . . , jna(t) be the active jobs in RAW at time t
arranged in increasing order of arrival times. We denote h(ji) =∑i

k=1 w(ji) as the total weight of active jobs arrived no later than
ji. Recall that x(j, t) is the lagging work of j at time t. Then, we
define

Φ(t) = γ

na(t)∑
i=1

f(h(ji)) · x(ji, t),

where γ = 1
β(1+ϵ)

and f(h) = h/Q(h). Note that f(h) is non-
decreasing.1 We will show that Φ satisfies the following three con-
ditions.

• Boundary condition: Φ = 0 before the first job arrives and
after all jobs are finished.

• Discrete event condition: Φ does not increase at job arrival,
completion or rejection.

• Running condition: At any other time t,

wa(t) +
dΦ(t)
dt

≤ 1
β2 ((βwa(t)− ϕ(t)) + βwo(t)) .

Then, by integrating these conditions over time, the lemma follows.
The boundary condition is true as na(t) = 0 before any job is re-
leased and after all jobs are finished. When a job j arrives, no
matter whether OFF rejects j, x(j, t) = 0, so Φ does not increase.
When j is completed by OFF, x(j, t) and Φ do not change. When j
is completed or rejected by RAW, the term corresponding to j dis-
appears and other terms may only decrease, so Φ does not increase.
Thus, the discrete event condition is true. For the running condi-
tion, Lemma 5 below shows that dΦ

dt
≤ 1−2β

β
max{wa(t), wo(t)}−

1
β2 (1 − β)ϕ(t). Note that 1−2β

β
max{wa(t), wo(t)} is no greater

than 1
β
max{wa(t), wo(t)} − 2wa(t), and 1

β
ϕ(t) ≤ 1

β
βwa(t) ≤

wa(t). Therefore,

wa(t) +
dΦ(t)
dt

≤ wa(t) +
1−2β

β
max{wa(t), wo(t)} − 1

β2 (1− β)ϕ(t)

≤ wa(t) +
1
β
max{wa(t), wo(t)} − 2wa(t)− 1

β2 ϕ(t) + wa(t)

≤ 1
β2 [βmax{wa(t), wo(t)} − ϕ(t)]

≤ 1
β2 ((βwa(t)− ϕ(t)) + βwo(t)).

1Since Q is concave, for any λ ∈ [0, 1] and h ≥ 0, (1−λ)Q(0)+
λQ(h) ≤ Q((1 − λ)0 + λh), i.e., λQ(h) ≤ Q(λh). Hence,
f(λh) = λh

Q(λh)
≤ h

Q(h)
= f(h).

249

LEMMA 5. At any time t without discrete events, dΦ
dt

≤ 1−2β
β

·
max{wa(t), wo(t)} − 1

β2 (1− β)ϕ(t).

PROOF. We consider dΦ
dt

as a combined effect due to the action
of RAW and OFF. Let dΦa

dt
and dΦo

dt
be the rate of change of Φ due

to RAW and OFF, respectively. Then dΦ
dt

= dΦa
dt

+ dΦo
dt

.
For each active job j in RAW, if j ∈ L(t), x(j, t) > 0 and

h(j) ≥ (1−β)wa(t). RAW processes j at a speed (1+ ϵ)w′(j,t)
βwa(t)

·
Q(wa(t)). Hence, for each term γ · f(h(j)) · x(j, t) where j ∈
L(t), the term is decreasing at a rate at least

γ · h(j)

Q(h(j))
· (1 + ϵ)

w′(j, t)

βwa(t)
Q(wa(t))

≥ γ · (1− β)wa(t)

Q((1− β)wa(t))
· (1 + ϵ)

w′(j, t)

βwa(t)
Q(wa(t))

≥ γ
1− β

β
(1 + ϵ)w′(j, t) =

1− β

β2
w′(j, t)

where the first inequality comes from that f(h) = h/Q(h) is non-
decreasing with h, and the second inequality comes from that Q is
increasing. For each job j /∈ L(t), the term γ · f(h(j)) · x(j, t) is
non-increasing. Hence, dΦa

dt
≤ − 1−β

β2

∑
j∈L(t) w

′(j, t) = − 1−β
β2 ϕ(t).

For OFF, the worst case (in which dΦo
dt

is the largest) occurs when
it processes the job with maximum h(j), which equals wa(t), using
all its speed so = Q(wo(t)). Then dΦo

dt
≤ γ · f(wa(t)) · so =

γ wa(t)
Q(wa(t))

·Q(wo(t)). If wa(t) ≥ wo(t), Q(wa(t)) ≥ Q(wo(t))

and dΦo
dt

≤ γwa(t). Otherwise, wa(t) < wo(t). Since f is non-
decreasing, f(wa(t)) ≤ f(wo(t)). Hence, dΦo

dt
≤ γf(wo(t)) ·

so = γwo(t). Combining the two cases, we have dΦo
dt

≤ γ ·
max{wa(t), wo(t)}. Notice that β = ϵ

2(1+ϵ)
and 1

1+ϵ
= 1 − 2β.

Hence, γmax{wa(t), wo(t)} = 1
β(1+ϵ)

· max{wa(t), wo(t)} =
1−2β

β
max{wa(t), wo(t)} and the lemma follows.

Remarks on fixed speed setting. Since the fixed speed setting
is a special case of the arbitrary power function setting (where en-
ergy usage of any algorithm is zero), the previous result immedi-
ately implies that RAW is 36(1+ 1

ϵ
)2-competitive using a (1+ ϵ)-

speed processor. Yet we can tighten the analysis to achieve a better
competitive ratio. In particular, we can directly compare RAW and
OPT and show lemmas similar to Lemma 3 and 4, which can upper
bound the total weighted flow of RAW to be at most 6(1 + 1

ϵ
)2

times the cost of OPT. The total rejection penalty of RAW is at
most its weighted flow. The following theorem follows.

THEOREM 6. For the fixed speed setting, RAW is (1+ ϵ)-speed
12(1+ 1

ϵ
)2-competitive for minimizing weighted flow plus penalty.

4. MULTI-PROCESSOR RESULTS
We consider scheduling on m > 1 processors in the speed scal-

ing model. We give an algorithm MultiRAW which is 2(1 + ϵ)-
speed 12(1+ 1

ϵ
)2(logm+2)-competitive for minimizing weighted

flow plus penalty plus energy. Note that MultiRAW follows the job
rejection policy RWE given in Section 3. The fixed speed model is
treated as a special case; we can modify the result of MultiRAW to
get an (1+ϵ)-speed 20(1+ 1

ϵ
)2-competitive algorithm for weighted

flow plus penalty. For simplicity, we first assume that the number
of processors m is a power of two. We will explain how to remove
this assumption later.

Our algorithm is built on MultiLAPS proposed by [6], in which
they consider unweighted jobs that cannot be rejected and the power

function is P (s) = sα without maximum speed bound. Their ob-
jective is to minimize the total flow time plus energy usage.

Algorithm MultiLAPS [6]. Let β ∈ (0, 1] be a constant and
na(t) be the number of active jobs in MultiLAPS at time t. Mul-
tiLAPS divides the m processors into logm groups such that for
ℓ = 1, . . . , logm, the ℓ-th group consists of mℓ = 2−ℓm proces-
sors each running at speed 2(na(t)

mℓ
)1/α. Each group runs indepen-

dently and processes the ⌈βna(t)⌉ jobs with the latest arrival times
by sharing the processors within the group equally among the jobs.
Note that each of these jobs is duplicated into logm copies and
processed simultaneously by the logm groups. Since the jobs are
checkpointable, at any time, the processing rate of a job is the max-
imum processing rate among all the copies of the job in the logm
groups.

Algorithm MultiRAW. To handle weighted jobs, rejection penalty,
and arbitrary power functions, we extend the algorithm MultiLAPS
as follows.

• For the ℓ-th group, we set the speed of each processor to sℓ =

2(1+ϵ)Q(wa(t)
mℓ

); recall that Q(y) = min{P−1(y), T}, and
wa(t) is the total weight of the active jobs at time t.

• We share the processors within a group proportional to the
adjusted weight of the jobs. Hence, a job j is processed by
w′(j,t)
βwa(t)

·mℓ processors in the ℓ-th group.
• (Job rejection policy RWE) We reject a job j if it is not fin-

ished by time r(j) + c(j)
w(j)

.

Our main result is the following theorem. Sections 4.1 to 4.5 are
devoted to proving this theorem.

THEOREM 7. Let ϵ > 0 be any real and β = ϵ
2(1+ϵ)

. MultiRAW
is 2(1+ϵ)-speed 12(1+ 1

ϵ
)2(logm+2)-competitive for minimizing

weighted flow plus penalty plus energy.

4.1 Restricting input instances and offline al-
gorithm

Canonical instances. We first show that it suffices to consider
some specific input instances. Recall that jobs may have vary-
ing parallelizability and the parallelizability of a phase is given by
a speedup function Γ. We call Γ parallel up to σ processors if
Γ(y) = y for all y ≤ σ and Γ(y) = σ for y > σ. We call an
instance canonical if each job phase is parallel up to σ processors
for some σ ∈ [1,m], where σ may be different for different phases.

LEMMA 8. For any input instance I , we can transform I into a
canonical instance such that the cost of MultiRAW does not change
and the cost of OPT may only decrease.

Canonical instances were first introduced in [6,14], and Lemma 8
can be proven in a similar way as in [6, 14]. In the following, we
consider canonical instances only.

Restricted offline algorithm. To prove Theorem 7, we need
to compare MultiRAW against the optimal offline algorithm OPT.
Without loss of generality, OPT rejects jobs at their release time. It
is sometimes easier to compare MultiRAW against an offline algo-
rithm that rejects the same set of jobs as OPT but works on a single
processor with maximum speed m · T . Let OFF be such an offline
algorithm that minimizes the weighted flow alone under the condi-
tion that the single processor always runs at speed m · Q(wo(t)

m
),

where wo(t) is the total weight of active jobs in OFF. Note that OFF
does not have energy concern in its objective.

LEMMA 9. The weighted flow of OFF is at most the weighted
flow plus energy of OPT.

250

To prove Lemma 9, we generalize the algorithm LLB (Latest Lag
Behind) given in [7] to transform OPT (which minimizes weighted
flow plus energy of the jobs not rejected on m processors) to an
offline algorithm LLB′ on a single processor with maximum speed
m · T that at any time t, follows the speed m · Q(wb(t)

m
), where

wb(t) is the total weight of active jobs in LLB′. A new feature of
LLB′ is the ability to handle the case that OPT can run multiple
jobs by time sharing at the same time.

Algorithm LLB′. Consider any time t. Let nb(t) be the number
of active jobs in LLB′. For any job j, let pb(j, t) and po(j, t) be
the work done on j up to time t by LLB′ and OPT, respectively.
Furthermore, let d(j, t) = po(j, t) − pb(j, t). We say a job j is
lagging at time t if d(j, t) > 0. Let y(j) be the latest time when j
has become lagging; if j is non-lagging, let y(j) = t. We denote
the active jobs in LLB′ at time t as j1, j2, . . . , jnb(t), arranged in
increasing order of y(ji), i.e., y(j1) ≤ y(j2) ≤ · · · ≤ y(jnb(t)).
Let ℓ be the number of lagging jobs (0 ≤ ℓ ≤ nb(t)). Let so be the
total speed of the m processors in OPT at time t. Let sx ≤ so be the
total speed OPT assigns to all jobs j with d(j, t) = 0. LLB′ sets its
speed sb = m · Q(wb(t)

m
), and focuses on the job ja defined to be

jℓ if ℓ > 0, and jnb(t) otherwise. Details are as follows:

• If OPT is not running any job ji with d(ji, t) = 0, then LLB′

runs ja with speed sb.
• If OPT is processing some jobs ji with d(ji, t) = 0, but sx ≤

sb (i.e., LLB′ has enough speed to prevent all of them from
becoming lagging), then LLB′ follows OPT’s speed on each
of those jobs and runs ja with the remaining speed sb − sx.

• Otherwise (sb < sx), LLB′ follows OPT’s speed for each of
those jobs ji, in descending order of the index i, until there
is some job j which LLB′ cannot follow OPT’s total speed
on j. LLB′ then assigns all of its remaining speed to j.

Roughly speaking, LLB′ attempts to catch up with the progress
of OPT; it gives priority to the job that has become lagging most
recently, while trying to avoid creating more new lagging jobs. We
can show that the weighted flow of LLB′ is at most the weighted
flow plus energy of OPT. Its proof is given in Appendix B. Since
OFF minimizes weighted flow, Lemma 9 follows.

4.2 Lower bound on processing of MultiRAW
At any time t, consider any active job j in MultiRAW. We define

σ(j, t) such that the next available work of j belongs to a phase that
is parallel up to σ(j, t) processors. We call σ(j, t) the saturated
number of j at time t. Intuitively, any processor allocated to j
beyond σ(j, t) is wasted and cannot further increase the processing
rate.

At any time t, let R(t) be the set of jobs j with positive adjusted
weight, i.e., w′(j, t) > 0. Note that R(t) is the set of jobs being
processed by MultiRAW and the processing rate of a job j ∈ R(t)
is the maximum of its processing rate in the logm groups. We
classify the work of j into two types as follows. We label the work
as unsaturated if it is processed by no more processors than its
saturation number in all groups; and label the work as saturated
otherwise. We call a job j ∈ R(t) saturated at time t if MultiRAW
is processing its saturated work, and call j unsaturated otherwise.
Intuitively, by running j on logm groups, MultiRAW guarantees
at least one group has a sufficient processing rate on j.

LEMMA 10. At any time t, consider any job j ∈ R(t). If j is
unsaturated, the processing rate on j is at least (1 + ϵ)w′(j,t)

βwa(t)
·

m ·Q(wa(t)
m

). If j is saturated, the processing rate on j is at least

(1 + ϵ) · σ(j, t) ·Q(w
′(j,t)

σ(j,t)
).

PROOF. If j is unsaturated, consider the processing rate of j by
the first group, which has m/2 processors each running at speed
2(1 + ϵ)Q(wa(t)

m/2
). The job j receives w′(j,t)

βwa(t)
fraction of the pro-

cessors. Since j is unsaturated, the processing rate on j equals
m/2 · w′(j,t)

βwa(t)
· 2(1 + ϵ)Q(wa(t)

m/2
). Since Q is non-decreasing and

wa(t)
m/2

≥ wa(t)
m

, we obtain the desired bound.
If j is saturated, we let the k-th group be the group such that

mk
w′(j,t)
βwa(t)

≤ σ(j, t) < 2mk
w′(j,t)
βwa(t)

, where mk is the number of
processors in the group. Note that k must exist since σ(j, t) ≥ 1 =

mlogm ≥ mlogm
w′(j,t)
βwa(t)

. The processing rate on j by this group

equals mk
w′(j,t)
βwa(t)

· 2(1 + ϵ)Q(wa(t)
mk

) ≥ (1 + ϵ)σ(j, t)Q(wa(t)
mk

).

Since wa(t)
mk

≥ w′(j,t)
βσ(j,t)

≥ w′(j,t)
σ(j,t)

, we obtain the desired bound.

4.3 Bounding weighted flow of MultiRAW
To bound the weighted flow of MultiRAW, we identify a sub-

set of jobs such that the weighted flow of MultiRAW is at most a
constant times the total weighted flow of these jobs in MultiRAW.
Then, we upper bound this cost by the weighted flow of OFF and
the cost of OPT in Section 4.4, and the desired result follows.

Now, we compare MultiRAW against OFF. For any job j and
time t, let qa(j, t) and qo(j, t) be the remaining amount of unsatu-
rated work of j in MultiRAW and OFF, respectively. In particular,
qa(j, t) (resp., qo(j, t)) is zero if j has been rejected by MultiRAW
(resp., OFF) by time t. Recall that OFF only rejects j at r(j). We
define the amount of lagging work of a job j, denoted x(j, t), in
the same way as in Definition 5 in Section 3.

Consider any time t. It is useful to have a detailed breakdown
of the set R(t) of jobs being processed by MultiRAW. We di-
vide R(t) into two sets S(t) and U(t) containing the saturated and
unsaturated jobs, respectively. We further divide U(t) into L(t)
and N(t) which contain jobs with x(j, t) > 0 and x(j, t) = 0,
respectively. We call L(t) the lagging jobs and N(t) the non-
lagging jobs. Recall that the total adjusted weight of jobs in R(t)
is βwa(t). Let ϕ(t) =

∑
j∈L(t) w

′(j, t). Similar to Lemma 4 in
the single processor setting, we try to bound the total weighted flow
time of MultiRAW by weighted flow time incurred due to jobs in
R(t) \ L(t).

LEMMA 11 (WEIGHTED FLOW OF MULTIRAW).∫ ∞

0

wa(t)dt ≤
1

β2

∫ ∞

0

((βwa(t)− ϕ(t)) + βwo(t)) dt,

where wo(t) is the total weight of active jobs in OFF at time t.

The proof is similar to that of Lemma 4. In particular, by Lemma 10,
the processing rate of each unsaturated job j in MultiRAW is at
least (1+ϵ)w′(j,t)

βwa(t)
·m·Q(wa(t)

m
). On the other hand, the processing

rate of an unsaturated job j in OFF is at most m ·Q(wo(t)
m

). Hence,
by redefining the potential function Φ(t) to γ

∑na(t)
i=1 f(h(ji)

m
) ·

x(ji, t), we can prove a lemma identical to Lemma 5 (see Ap-
pendix A). Then we can prove Lemma 11 in the same way as
Lemma 4.

4.4 Bounding non-lagging jobs and saturated
jobs

In the following, we show that
∫∞
0

(βwa(t) − ϕ(t))dt can be
bounded by the weighted flow of OFF and the cost of OPT. Let C
be set of jobs rejected by OPT, which is also the set of jobs rejected
by OFF. Let C(t) = C ∩ (S(t) ∪N(t)). Then, βwa(t)− ϕ(t) =∑

j∈C(t) w
′(j, t)+

∑
j∈N(t)\C(t) w

′(j, t)+
∑

j∈S(t)\C(t) w
′(j, t).

251

We further break down the proof into two parts. Let W ∗, E∗ and
C∗ be the weighted flow, energy and penalty of OPT, respectively.
Let Wo be the weighted flow of OFF.

LEMMA 12.∫ ∞

0

∑
j∈C(t)

w′(j, t) +
∑

j∈N(t)\C(t)

w′(j, t)dt ≤ Wo + C∗

PROOF. For each j ∈ C(t), j remains in MultiRAW for at
most c(j)/w(j) units of time, incurring a weighted flow of at most
c(j). Hence,

∫∞
0

∑
j∈C(t) w(j)dt ≤

∑
j∈C c(j) = C∗. For

each j ∈ N(t) \ C(t), j is unfinished by OFF at time t. Hence,∫∞
0

∑
j∈N(t)\C(t) w(j)dt ≤

∫∞
0

wo(t)dt = Wo, where wo(t) is
the total weight of active jobs in OFF at time t. The lemma follows
by observing that w′(j, t) ≤ w(j) for any job j at any time t.

LEMMA 13.
∫ ∞

0

∑
j∈S(t)\C(t)

w′(j, t)dt ≤ W ∗ + E∗.

PROOF. Consider any job j not rejected by OPT. Let ∆(j) be
the union of all saturated work in j. We divide the saturated work
∆(j) into infinitesimal pieces {x1, x2, . . . } such that (1) within
a piece of work, the saturation number remains the same; and (2)
MultiRAW processes each piece continuously at a fixed rate, and
so as OPT; and (3) there is no job arrival, rejection or completion
during the processing of a piece. Each piece is infinitesimal. For
any piece x ∈ ∆(j), we let σ(x) be its saturation number. Let
s(x) and s∗(x) be the processing rate on x by MultiRAW and OPT,
respectively. Let w′(x) be the adjusted weight of j when x is being
processed by MultiRAW. Let p(x) be the size of x. Let S∗ be the
set of jobs that are not rejected by OPT. Then,∫ ∞

0

∑
j∈S(t)\C(t)

w′(j, t)dt =
∑
j∈S∗

∑
x∈∆(j)

p(x)

s(x)
w′(x)

Since x is a piece of saturated work, by Lemma 10, s(x) ≥
(1 + ϵ)σ(x)Q(w

′(x)
σ(x)

) > σ(x)Q(w
′(x)

σ(x)
). Hence, p(x)

s(x)
w′(x) ≤

p(x) w′(x)/σ(x)
Q(w′(x)/σ(x))

≤ p(x) w(j)/σ(x)
Q(w(j)/σ(x))

. The last inequality comes
from the fact that y

Q(y)
is increasing with y (as Q is nonnegative and

concave) and w′(x) ≤ w(j).
Consider the same piece of work x. The weighted flow incurred

by x in OPT is p(x)
s∗(x)w(j). OPT processes x at the rate s∗(x); the

most energy efficient way is to use σ(x) processors each running
at speed s∗(x)

σ(x)
. The rate of energy usage is σ(x) · P (s∗(x)/σ(x)).

Considering the cost in OPT, we have

W ∗ + E∗ ≥
∑
j∈S∗

∑
x∈∆(j)

(
p(x)

s∗(x)
w(j) +

p(x)

s∗(x)
· σ(x) · P (

s∗(x)

σ(x)
)

)

It remains to show w(j)
s∗(x) +

σ(x)
s∗(x) ·P (s

∗(x)
σ(x)

) ≥ w(j)/σ(x)
Q(w(j)/σ(x))

. To
this end, we consider two cases. If s∗(x) ≤ σ(x)Q(w(j)/σ(x)),
then w(j)

s∗(x) ≥ w(j)/σ(x)
Q(w(j)/σ(x))

; otherwise, we note that P (y)
y

is in-
creasing with y.

σ(x)

s∗(x)
· P (

s∗(x)

σ(x)
) =

P (s∗(x)/σ(x))

s∗(x)/σ(x)
≥

P (Q(w(j)/σ(x)))

Q(w(j)/σ(x))

=
w(j)/σ(x)

Q(w(j)/σ(x))

The last equality follows from the fact that σ(x)T ≥ s∗(x) >
σ(x)Q(w(j)/σ(x)). Therefore, T > Q(w(j)/σ(x)) and we have
P (Q(w(j)/σ(x))) = w(j)/σ(x).

4.5 Conclusion — Proof of Theorem 7
We are ready to prove Theorem 7.

PROOF. (Proof of Theorem 7) By Lemmas 12 and 13, we have∫∞
0

(βwa(t) − ϕ(t))dt ≤ Wo + W ∗ + E∗ + C∗. Together with
Lemma 11 and that β < 1

2
, the weighted flow of MultiRAW is

at most 1
β2 ((1 + β)Wo + W ∗ + E∗ + C∗) ≤ 1

β2 (1.5Wo +

W ∗ + E∗ + C∗), which by Lemma 9, is at most 2.5
β2 times the

cost of OPT. The total energy usage of MultiRAW is at most logm
times its weighted flow time. The rejection penalty of MultiRAW
is at most its weighted flow time. Hence, MultiRAW is at most
(2.5
β2 (logm + 2))-competitive against OPT. Finally, putting β =
ϵ

2(1+ϵ)
, we conclude that MultiRAW is 10(1 + 1

ϵ
)2(logm + 2)-

competitive.
So far, we have assumed that m is a power of two. If m is not a

power of two, let m1 = ⌈m/2⌉ and mi =
⌈
(m−

∑i−1
j=1 mj)/2

⌉
,

where mi is the number of processors in the i-th group. We can
show that mi ≤ 3mi+1. Repeating the argument of Lemma 10,
we can show that each saturated job j has a processing rate at least
2
3
(1 + ϵ) · σ(j, t) · Q(w

′(j,t)
σ(j,t)

). The only consequence is that the
right-hand-side of Lemma 13 is weakened to 1.5(W ∗ + E∗). The
competitive ratio of MultiRAW is increased by a factor of 3

2.5
and

becomes 12(1 + 1
ϵ
)2(logm+ 2).

Remarks on fixed speed setting. If all the processors have
speed one and energy is not a concern, we can largely simplify
the algorithm by running a single group with all the m processors.
We assume that the online algorithm is given (1 + ϵ)-speed pro-
cessors and we share the processors to the active jobs proportional
to the adjusted weight w′(j, t). Then, similar to Lemma 10, we
can show that each unsaturated job is processed at a rate at least
w′(j,t)
βwa(t)

m(1 + ϵ) and each saturated job is processed at a rate at
least (1 + ϵ)σ(j, t). We can check that Lemmas 11, 12 and 13 re-
main true, where E∗ = 0. Hence, the total weighted flow is at most
2.5
β2 times the cost of OPT. The rejection penalty of the online algo-
rithm is at most its total weighted flow time. Note that β = ϵ

2(1+ϵ)
.

Hence, we have the following theorem.

THEOREM 14. For the fixed speed setting, there is a (1 + ϵ)-
speed 20(1 + 1

ϵ
)2-competitive algorithm.

Note that for each job j, we only process one copy of j. Hence,
the results hold even if the jobs are non-checkpointable.

5. REFERENCES
[1] S. Albers. Energy-efficient algorithms. Communications of

the ACM, 53(5):86–96, 2010.
[2] N. Bansal, A. Blum, S. Chawla, and K. Dhamdhere.

Scheduling for flow-time with admission control. In Proc.
ESA, pages 43–54, 2003.

[3] N. Bansal, H. L. Chan, and K. Pruhs. Speed scaling with an
arbitrary power function. In Proc. SODA, pages 693–701,
2009.

[4] N. Bansal and K. Dhamdhere. Minimizing weighted flow
time. ACM Transactions on Algorithms, 3(4):39, 2007.

[5] H. L. Chan, J. Edmonds, T. W. Lam, L. K. Lee,
A. Marchetti-Spaccamela, and K. Pruhs. Nonclairvoyant
speed scaling for flow and energy. Algorithmica,
61(3):507–517, 2011.

[6] H. L. Chan, J. Edmonds, and K. Pruhs. Speed scaling of
processes with arbitrary speedup curves on a multiprocessor.
In Proc. SPAA, pages 1–10, 2009.

252

[7] S. H. Chan, T. W. Lam, and L. K. Lee. Non-clairvoyant
speed scaling for weighted flow time. In Proc. ESA, pages
23–35, 2010.

[8] S. H. Chan, T. W. Lam, and L. K. Lee. Scheduling for
weighted flow time and energy with rejection penalty. In
Proc. STACS, pages 392–403, 2011.

[9] J. Edmonds. Scheduling in the dark. Theor. Comput. Sci.,
235(1):109–141, 2000.

[10] J. Edmonds and K. Pruhs. Scalably scheduling processes
with arbitrary speedup curves. In Proc. SODA, pages
685–692, 2009.

[11] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as
clairvoyance. Journal of the ACM, 47(4):617–643, 2000.

[12] R. Motwani, S. Phillips, and E. Torng. Nonclairvoyant
scheduling. Theor. Comput. Sci., 130(1):17–47, 1994.

[13] F. Yao, A. Demers, and S. Shenker. A scheduling model for
reduced CPU energy. In Proc. FOCS, pages 374–382, 1995.

[14] J. Zhu, H. L. Chan and T. W. Lam. Non-clairvoyant weighted
flow time scheduling on different multi-processor models. To
appear in Proc. WAOA, 2011.

Appendix A: Lemma 5 for Multi-processor Set-
ting
In this appendix, we consider m > 1 processors and prove Lemma 5
for the multi-processor setting. Recall that j1, j2, . . . , jna(t) are the
active jobs in MultiRAW at time t arranged in increasing order of
arrival times, and h(ji) =

∑i
k=1 w(ji). As mentioned in Sec-

tion 4, Φ(t) = γ
∑na(t)

i=1 f(h(ji)
m

) ·x(ji, t), where γ = 1
β(1+ϵ)

and
f(h) = h/Q(h).

Lemma 5. At any time t without discrete events, dΦ
dt

≤ 1−2β
β

·
max{wa(t), wo(t)} − 1

β2 (1− β)ϕ(t).

PROOF. We consider dΦ
dt

as a combined effect due to the action
of MultiRAW and OFF. Let dΦa

dt
and dΦo

dt
be the rate of change of Φ

due to MultiRAW and OFF, respectively. Then dΦ
dt

= dΦa
dt

+ dΦo
dt

.
Note that OFF is an offline algorithm on a single processor with
maximum speed m · T , which at any time t, follows the speed
m · Q(wo(t)

m
), where wo(t) is the total weight of active jobs in

LLB′.
Consider the schedule of MultiRAW. For each active job j in

MultiRAW, if j ∈ L(t) ⊆ R(t), j is an unsaturated job, x(j, t) >
0 and h(j) ≥ (1− β)wa(t). By Lemma 10, MultiRAW processes
j at a rate (1 + ϵ)w′(j,t)

βwa(t)
· m · Q(wa(t)

m
). Hence, for each term

γ · f(h(j)
m

) ·x(j, t) where j ∈ L(t), the term is decreasing at a rate
at least

γ · h(j)/m
Q(h(j)/m)

· (1 + ϵ)w′(j,t)
βwa(t)

·m ·Q(wa(t)
m

)

≥ γ · (1−β)wa(t)/m
Q((1−β)wa(t)/m)

· (1 + ϵ)w′(j,t)
βwa(t)

·m ·Q(wa(t)
m

)

≥ γ 1−β
β

(1 + ϵ)w′(j, t) = 1−β
β2 w′(j, t)

where the first inequality comes from that f(h) = h/Q(h) is in-
creasing with h, and the second inequality comes from that Q is in-
creasing. For each job j /∈ L(t), the term γ ·f(h(j)

m
)·x(j, t) is non-

increasing. Hence, dΦa
dt

≤ − 1−β
β2

∑
j∈L(t) w

′(j, t) = − 1−β
β2 ϕ(t).

The processing rate of an unsaturated job j in OFF is at most its
speed on the single processor, which is so = m ·Q(wo(t)

m
). Thus,

the worst case (in which dΦo
dt

is the largest) occurs when OFF pro-
cesses the job with maximum h(j), which equals wa(t), using all

its speed so. Then dΦo
dt

≤ γ · f(wa(t)
m

) · so = γ wa(t)/m
Q(wa(t)/m)

·m ·
Q(wo(t)/m). If wa(t) ≥ wo(t), Q(wa(t)/m) ≥ Q(wo(t)/m)
and dΦo

dt
≤ γwa(t). Otherwise, wa(t) < wo(t), since f is non-

decreasing, f(wa(t)
m

) ≤ f(wo(t)
m

). Hence, dΦo
dt

≤ γf(wo(t)
m

)so =

γwo(t). Combining these two cases, we obtain that dΦo
dt

≤ γ ·
max{wa(t), wo(t)}. Finally, notice that β = ϵ

2(1+ϵ)
and 1

1+ϵ
=

1−2β. Hence, γmax{wa(t), wo(t)} = 1
β(1+ϵ)

max{wa(t), wo(t)}
= 1−2β

β
max{wa(t), wo(t)} and the lemma follows.

Appendix B: Offline Schedule Transformation
This appendix shows the following lemma on the performance of
LLB′ that transforms OPT (which minimizes weighted flow plus
energy on m processors) to an offline algorithm LLB′ on a single
processor with maximum speed m ·T , which at any time t, follows
the speed m · Q(wb(t)

m
), where wb(t) is the total weight of active

jobs in LLB′.

LEMMA 15. The weighted flow of LLB′ is at most the weighted
flow plus energy of OPT.

Before proving Lemma 15, we first restate the algorithm LLB′

given in Section 4.
Algorithm LLB′. Consider any time t. Let nb(t) be the number

of active jobs in LLB′. For any job j, let pb(j, t) and po(j, t) be
the work done on j up to time t by LLB′ and OPT, respectively.
Furthermore, let d(j, t) = po(j, t) − pb(j, t). We say a job j is
lagging at time t if d(j, t) > 0. Let y(j) be the latest time when j
has become lagging; if j is non-lagging, let y(j) = t. We denote
the active jobs in LLB′ at time t as j1, j2, . . . , jnb(t), arranged in
increasing order of y(ji), i.e., y(j1) ≤ y(j2) ≤ · · · ≤ y(jnb(t)).
Let ℓ be the number of lagging jobs (0 ≤ ℓ ≤ nb(t)). Let so be the
total speed of the m processors in OPT at time t. Let sx ≤ so be the
total speed OPT assigns to all jobs j with d(j, t) = 0. LLB′ sets its
speed sb = m · Q(wb(t)

m
), and focuses on the job ja defined to be

jℓ if ℓ > 0, and jnb(t) otherwise. Details are as follows:

1. If OPT is not running any job ji with d(ji, t) = 0, then LLB′

runs ja with speed sb.
2. If OPT is processing some jobs ji with d(ji, t) = 0, but sx ≤

sb (i.e., LLB′ has enough speed to prevent all of them from
becoming lagging), then LLB′ follows OPT’s speed on each
of those jobs and runs ja with the remaining speed sb − sx.

3. Otherwise (sb < sx), LLB′ follows OPT’s speed for each of
those jobs ji, in descending order of the index i, until there is
some job j which LLB′ cannot follow OPT’s total speed on j.
LLB′ then assigns all of its remaining speed to j.

Note that any job phase has a speed-up function Γ satisfying
Γ(y) = y for y ∈ (0, 1]. Therefore, LLB′ using a single processor
with maximum speed m · T can guarantee all its speed to be fully
utilized to process the jobs and no speed would be wasted.

To prove Lemma 15, we exploit potential functions. Let Fb be
the total weighted flow of LLB′, and let Fo and Eo be the total
weighted flow and energy of OPT, respectively. For any time t, let
Fb(t) be the total weighted flow incurred up to time t by LLB′.
Define Fo(t) and Eo(t) similarly. We derive a potential function
Φ(t) that satisfies the following three conditions:

• Boundary condition: Φ = 0 before the first job arrives and
after all jobs are finished.

• Discrete event condition: Φ does not increase when a job ar-
rives, or is completed by LLB′ or OPT, or when a lagging job
is changed to non-lagging or vice versa.

253

• Running condition: At any other time t, dFb(t)
dt + dΦ(t)

dt ≤
dFo(t)

dt + dEo(t)
dt .

Integrating these conditions over time, we can conclude that Fb ≤
Fo + Eo; Lemma 15 follows.

Potential function Φ(t). Consider any time t. Recall that the
active jobs in LLB′ are denoted as j1 . . . jnb(t). Define the coef-
ficient ci of ji to be

∑i
k=1 w(jk). The potential function Φ(t) is

defined as follows.

Φ(t) =
∑nb(t)

i=1
f(ci) ·max(d(ji, t), 0)

where f(x) = P ′(P−1(x
m
)). Note that P ′ is the first derivative

of P . Since P is convex, P ′ is non-decreasing, which together
with that P−1(x) is non-decreasing, implies that P ′(P−1(x)) is
also non-decreasing. Therefore, f(x) = P ′(P−1(x

m
)) is a non-

decreasing function of x.
The boundary condition is obvious. Now we check the discrete

event condition. Recall that ℓ is the number of lagging jobs. When
a job j arrives at time t, we have d(j, t) = 0, y(j) = t and the
coefficients of all lagging jobs of LLB′ remain the same, so Φ does
not change. When OPT completes a job or LLB′ completes a non-
lagging job, Φ does not change. When LLB′ completes a lagging
job or a lagging job changes to non-lagging at time t, that job must
be jℓ and d(jℓ, t) ≤ 0. The coefficients of other lagging jobs stay
the same, so Φ does not change. When one or more job(s) changes
from non-lagging to lagging, those jobs must have the largest index
among all lagging jobs and their d(j, t)’s are all 0. The coefficients
of other lagging jobs stay the same, so Φ does not change.

It remains to check the running condition. Consider any time
t without discrete events. Recall that sb is the current speed of
LLB′, and so is the current total processor speed of OPT. Let wo(t)

be the total weight of active jobs in OPT. Then, dFb
dt = wb(t)

and dFo
dt = wo(t). Since P is convex, the energy usage of the m

processors in OPT is dEo
dt ≥ m · P (so

m
). If all active jobs in LLB′

are non-lagging, i.e., d(ji, t) ≤ 0 for all 1 ≤ i ≤ nb(t), then these
jobs are also active in OPT and hence wo(t) ≥ wb(t). In this case,
Φ remains zero and thus dΦ(t)

dt = 0. Then the running condition
follows easily since dFb(t)

dt = wb(t) ≤ wo(t) ≤ dFo(t)
dt + dEo(t)

dt .
Henceforth, we assume at least one active job in LLB′ is lagging,
i.e., ℓ > 0.

We define a real number β ≤ 1 such that βwb(t) = cℓ, which is
the total weight of lagging jobs. Then the rate of change of Φ can
be bounded easily (Lemma 16). More interestingly, we can also
show that at any time t, Q(βwb(t)) ≤ m · T (Lemma 17).

LEMMA 16. dΦ(t)
dt ≤ f(βwb(t)) · (−sb + so).

PROOF. We consider how Φ changes in an infinitesimal amount
of time (from time t to t + dt) where no job arrives, or completes,
or changes from lagging to non-lagging or vice versa. Recall that
sx is OPT’s total speed on jobs ji with d(ji, t) = 0. Then, OPT’s
total speed on jobs ji′ with d(ji′ , t) ̸= 0 is so − sx.

In the definition of LLB′, if Case 3 happens at t, some jobs
including job j become lagging, which corresponds to a discrete
event condition. Right after t, j become the new ja and LLB′ will
follow Case 1 or Case 2. Thus, it suffices to consider Cases 1 and
2 for the running condition.

Consider each job ji with d(ji, t) = 0. By Cases 1 and 2 in the
definition of LLB′, either both LLB′ and OPT are not working on
ji, or they are running ji with the same speed (totaling to sx for all
such ji’s). Therefore, d(ji, t) remains 0 and the processing of ji
does not affect the value of Φ.

Now consider other jobs ji with d(ji, t) ̸= 0. Recall that LLB′

is running jℓ with the remaining speed sb−sx. Since LLB′ is using

a single processor with maximum speed m ·T , jℓ is also processed
by LLB′ at a rate of sb − sx. Consider the processing of OPT. The
worst case that causes the largest increase in dΦ

dt is that OPT is also
using all its remaining speed so − sx to run jℓ. It is because any
job jk with k > ℓ is non-lagging and OPT cannot increase Φ by
processing jk. Also, OPT cannot increase Φ by processing a job
that is not active in LLB′. In this case, d(jℓ, t) changes at a rate of
at most −(sb−sx)+(so−sx) = (−sb+so). Therefore, Φ changes
at rate at most f(cℓ) · (−sb + so) = f(βwb(t)) · (−sb + so).

LEMMA 17. At any time t, we have P−1(βwb(t)
m

) ≤ T .

PROOF. We will prove βwb(t)
m

≤ P (T); then the lemma follows
by taking P−1 on both sides of the inequality. Consider the current
time t. If wb(t)

m
≤ P (T), then βwb(t)

m
≤ wb(t)

m
≤ P (T). If

wb(t)
m

> P (T), let t0 be the last time before t where wb(t)
m

≤
P (T). Then the total weight of lagging jobs at t0 is at most m ·
P (T). At any time after t0, LLB′’s speed is m · T . Since the total
speed of OPT is also at most m · T , by the definition of LLB′, for
each job arrived after t0, LLB′’s progress is at least OPT’s progress.
Hence, those new jobs cannot be lagging. Furthermore, Case 3 in
the definition of LLB′ does not occur, and thus the total weight of
lagging jobs cannot increase after t0 and remains at most m ·P (T)

at time t. In other words, βwb(t) ≤ m · P (T), i.e., βwb(t)
m

≤
P (T).

We are now ready to prove the running condition, which to-
gether with the boundary and discrete event conditions, implies
Lemma 15.

LEMMA 18. At any time t without discrete events, dFb(t)
dt +

dΦ(t)
dt ≤ dFo(t)

dt + dEo(t)
dt .

PROOF. Recall that jℓ is the lagging job with the largest index,
and jℓ+1, . . . , jna are non-lagging and must also be active jobs in
OPT. The total weight of these jobs is wb(t) − βwb(t) = (1 −
β)wb(t), so wo(t) ≥ (1−β)wb(t). Also recall that dFb(t)

dt = wb(t)

and dFo(t)
dt + dEo(t)

dt ≥ wo(t) + m · P (so
m
) ≥ (1 − β)wb(t) +

m · P (so
m
). We note a fact (given in [3]) that for any real x ≥ 0,

P ′(P−1(x))·so ≤ P−1(x)·P ′(P−1(x))+P (so)−x. Lemma 16,
together with this fact, gives
dFb(t)

dt + dΦ(t)
dt

≤ wb(t) + P ′(P−1(βwb(t)
m

)) · (−sb + so)

≤ wb(t) + (−sb)P
′(P−1(βwb(t)

m
)) +m · P ′(P−1(βwb(t)

m
))(so

m
)

≤ wb(t) + (−sb)P
′(P−1(βwb(t)

m
))+

m · (P−1(
βwb(t)

m
) · P ′(P−1(

βwb(t)

m
)) + P (

so

m
)− βwb(t)

m
)

≤ wb(t)− βwb(t) +m · P (so
m
)+

P ′(P−1(
βwb(t)

m
)) · (−sb +m · P−1(

βwb(t)

m
)) .

Since sb = m · Q(wb(t)
m

), where Q(y) = min(P−1(y), T), we
have sb = m · min(P−1(wb(t)

m
), T). By Lemma 17, sb ≥ m ·

min(P−1(wb(t)
m

), P−1(βwb(t)
m

)) = m · P−1(βwb(t)
m

). Thus, the
last term of the above inequality is at most 0, and hence dFb(t)

dt +
dΦ(t)

dt ≤ (1− β)wb(t) +m · P (so
m
) ≤ dFo(t)

dt + dEo(t)
dt .

254

