
Energy Efficient Online Deadline Scheduling

Ho-Leung Chan∗ Wun-Tat Chan† Tak-Wah Lam∗ Lap-Kei Lee∗ Kin-Sum Mak∗

Prudence W.H. Wong‡

Abstract. This paper extends the study of online algo-

rithms for energy-efficient deadline scheduling to the over-

loaded setting. Specifically, we consider a processor that

can vary its speed between 0 and a maximum speed T to

minimize its energy usage (of which the rate is roughly a cu-

bic function of the speed). As the speed is upper bounded,

the system may be overloaded with jobs and no scheduling

algorithms can meet the deadlines of all jobs. An optimal

schedule is expected to maximize the throughput, and fur-

thermore, its energy usage should be the smallest among all

schedules that achieve the maximum throughput. In design-

ing a scheduling algorithm, one has to face the dilemma of

selecting more jobs and being conservative in energy usage.

Even if we ignore energy usage, the best possible online al-

gorithm is 4-competitive on throughput [12]. On the other

hand, existing work on energy-efficient scheduling focuses on

minimizing the energy to complete all jobs on a processor

with unbounded speed, giving several O(1)-competitive al-

gorithms with respect to the energy usage [2,20]. This paper

presents the first online algorithm for the more realistic set-

ting where processor speed is bounded and the system may

be overloaded; the algorithm is O(1)-competitive on both

throughput and energy usage. If the maximum speed of the

online scheduler is relaxed slightly to (1+ǫ)T for some ǫ > 0,

we can improve the competitive ratio on throughput to arbi-

trarily close to one, while maintaining O(1)-competitive on

energy usage.

1 Introduction

Deadline scheduling. Let us first review a classical on-
line problem of deadline scheduling. We are given a pro-
cessor of speed T , which can do T units of work in one
unit of time. Jobs arrive online at unpredictable times;
the work and deadline of a job are known when the job
arrives. The aim is to design an (online) algorithm that
maximizes the throughput, which is the total work of
the jobs completed by their deadlines (see, e.g., [4,7,12]).

∗Department of Computer Science, University of Hong Kong,
Hong Kong. Email: {hlchan, twlam, lklee, ksmak}@cs.hku.hk

†Department of Computer Science, King’s College London,
UK. Email: jchan@dcs.kcl.ac.uk

‡Department of Computer Science, University of Liverpool,
UK. Email: pwong@csc.liv.ac.uk

We assume preemption is allowed, and a preempted job
can be resumed at the point of preemption. Note that a
processor of speed T may not meet the deadlines of all
jobs, i.e., the processor is overloaded. An algorithm A is
said to be c-competitive, where c ≥ 1, if for any job se-
quence, A obtains a throughput at least 1/c of the best
offline schedule. Koren and Shasha [12] have showed
that the online algorithm Dover is 4-competitive and no
online algorithm can be better than 4-competitive. If
the job sequence is restricted to be underloaded, the al-
gorithm EDF (earliest deadline first) guarantees to com-
plete all jobs in time and is thus 1-competitive [7].

Energy efficiency. Recent development on mobile
devices makes energy efficiency a major concern as these
devices are battery-operated. A popular technology
to reduce energy usage is to allow variable processor
speed, which is commonly known as dynamic voltage

scaling (see, e.g., [8,15,19]). As the rate of energy usage
P required to run a processor at speed s is believed
to be roughly sα where α ≥ 2 [5], it is more energy
efficient to schedule a job at a low speed whenever
possible. In this paper, we assume that the online
algorithm can adjust the speed of the processor to
any value in [0, T] where T is fixed in advance [15],
and we assume a general rate of energy usage in the
form sα. Given a job sequence, an optimal schedule
maximizes the throughput, while minimizing the energy
usage subject to this throughput. Our primary concern
is whether there exists an online algorithm that can be
O(1)-competitive on throughput and O(1)-competitive
on energy usage, i.e., the throughput and energy usage
are respectively at least 1/c and at most c′ times of that
of an optimal schedule, where c and c′ are constants.

Previous work. Energy efficient algorithms for
deadline scheduling are first studied by Yao et al. [20].
They considered the case where the processor can run
at any speed in [0,∞), and can always complete a job
sequence without missing a deadline. In this case, both
the online and the offline algorithm aim to complete
the entire job sequence, the only concern is the speed
and energy usage. Yao et al. [20] gave a simple algo-
rithm called AVR for speed determination. When cou-
pled with EDF, AVR gives an online algorithm that

unbounded max speed fixed max speed fixed discrete speed levels
Throughput 1 14 14
Energy usage 2ααα [20], αα [2, 20] (αα + α24α) ∆α(αα + α24α) + 1

2(α/(α − 1))αeα [2]

Table 1: The performance guarantee (in terms of competitive ratios) for three different settings

is 2ααα-competitive on energy usage. They also pro-
posed another online algorithm OA (Optimal Avail-
able), which was later shown by Bansal et al. to be
αα-competitive [2]. Bansal et al. [2] further improved
the result with a new algorithm that is 2(α/(α−1))αeα-
competitive. This algorithm is also e-competitive with
respect to the maximum speed. On the other hand, Li
et al. [13] have considered structured jobs and shown
that AVR has a better performance.

Our contribution. In this paper, we consider
energy-efficient deadline scheduling on a processor with
a fixed maximum speed T and the system may be
overloaded. We give an algorithm, called FSA(OAT)
below, which is 14-competitive on throughput and (αα+
α24α)-competitive on energy usage. If T = ∞, then this
algorithm is 1-competitive on throughput (all jobs are
completed) and αα-competitive on energy usage. That
is, its behavior is identical to OA.

As the maximum speed is bounded, an online
scheduling algorithm may not be able to finish all jobs.
It needs two kinds of strategies, one for selecting jobs
and one determining the speed (as a function over
time). In this paper, we consider a simple job selection
strategy called FSA (Full Speed Admission). Slightly
oversimplifying, FSA attempts to admit a new job J for
processing whenever it finds that using the maximum
speed, it is feasible to complete J together with the
remaining work of all admitted jobs. Such a feasibility
test makes FSA very aggressive in admitting new jobs.
In Section 2, we will show that if FSA is coupled with
a speed function that allows FSA to finish all jobs ever
admitted, then FSA is 14-competitive on throughput.
In the full paper, we will give a more complicated
analysis to improve the competitive ratio to 10.

The key question is whether there is a speed func-
tion that is conservative in energy usage and can make
FSA finish all jobs ever admitted. To this end, we make
use of the previously known algorithm OA, which is for
scheduling jobs on a processor with unbounded speed.
We denote OAT (Optimal Available, at most T) to be
the speed function which, at any time, takes the min-
imum of T and the speed used by OA. We show that
FSA when coupled with OAT can complete all jobs ad-
mitted and is thus 14-competitive on throughput. And
OAT is conservative in energy usage in the bounded-
speed setting, i.e., the energy usage of OAT is at most a
constant times of that of any algorithm that maximizes

the throughput on a processor with a maximum speed
T . The analysis of OAT is non-trivial. It stems from
an intrigue classification of underloaded and overloaded
periods and the observation that an optimal schedule
(which maximizes the throughput) must complete all
jobs in underloaded periods and at least a fraction of
the largest possible amount of work that can be com-
pleted for the remaining jobs.

The result on FSA and OAT can be applied to the
following three variations:
• Discrete speed levels. Very recently, scheduling
on a processor with a fixed number of discrete speed
levels has also attracted attention [11,14]; in particular,
assuming the underloaded setting, Li and Yao [14] have
devised a polynomial-time offline algorithm for finding
a schedule with optimal energy usage. But not much
has been known for the overloaded setting, let alone
competitive online algorithms. Note that FSA(OAT)
can be adapted to discrete speed levels; we simply set
the maximum speed to be the highest speed level and
round up the speed function to the next higher level. A
careful analysis would show that this algorithm is still
14-competitive on throughput and (∆α(αα+α24α)+1)-
competitive on energy usage, where ∆ is the largest
ratio of two consecutive (non-zero) speed levels (e.g.,
if the speed levels are uniformly distributed between
[0, T], then ∆ = 2).
• Better throughput via max speed relaxation. Note
that even if the energy concern is ignored, no online
algorithm can be better than 4-competitive on through-
put [12]. To obtain a better performance, we also con-
sider in this paper the possibility of compensating the
online algorithm with a higher maximum speed. We
show that if the maximum speed of the online scheduler
is relaxed to (1+ǫ)T , for any ǫ > 0, there exists an online
algorithm that is (1 + 1/ǫ)-competitive on throughput
and (1 + ǫ)α(αα + α24α)-competitive on energy usage.
• Jobs with arbitrary value. In some applications, the
throughput is measured by the value or profit of jobs,
which is not related to the amount of work [12]. In this
more general case, a straightforward adaptation of FSA
can give an online algorithm that is 14k-competitive
on throughput and (αα + α22α(1 + k)α)-competitive on
energy usage, where k is the importance ratio (i.e., the
ratio of the largest possible value per unit work to the
smallest possible one).

Remarks. The literature also contains results on

other interesting aspects of energy efficient scheduling
[10]. Irani et al. [9] extended the result on AVR [20]
to a setting where the processor has a sleep state, and
showed that the extension increases the competitive
ratio on energy by only a constant factor. We conjecture
that using a similar technique, the algorithm in this
paper can also be adapted to allow a sleep state. On
the other hand, Pruhs et al. [16] have studied the offline
problem of minimizing total flow time subject to a
fixed amount of energy, while Albers and Fujiwara [1]
have studied the online problem of minimizing a cost
consisting of the energy usage and the total flow time;
both results focus on unit-size jobs. Furthermore, the
offline problem of minimizing the makespan subject to
a fixed amount of energy has been studied in [6, 17].
Another practical concern is the maximum temperature
of the processor as the temperature is related to energy
usage. Several interesting results have been reported
in [2, 3].

Organization of paper. The rest of the paper is
organized as follows. In Section 2, we show that if FSA
is coupled with a speed function that allows FSA to
finish all jobs admitted, then FSA is 14-competitive.
We then define and prove the property of such speed
function OAT in Section 3. In Section 4, we prove
that the speed function OAT is conservative in energy
usage. We then discuss the speed relaxation results
in Section 5. Due to space limitation, the results on
arbitrary value and discrete speed levels are omitted.

Notations. For any job J , we denote the release
time, work and deadline of J as r(J), w(J), and d(J),
respectively. The span of J , denoted ρ(J) or span(J),
is the time interval [r(J), d(J)]. For any set of jobs L,
let w(L) denote the total work of all jobs in L. To ease
our discussion, we assume that an algorithm will not
process a job after missing its deadline, and whenever
we say that a job is completed, it is always meant to be
completed by the deadline.

2 Throughput analysis of FSA

This section presents the details of FSA, which is a
strategy for selecting jobs for possible scheduling. Note
that FSA itself does not specify the processor speed. To
define a schedule, we need to supplement FSA with a
speed function f . The resulting scheduling algorithm
will be referred to as FSA(f). The main result in this
section is that if the function f is fast enough for FSA(f)
to complete every job it has committed, then FSA(f) is
14-competitive on throughput.

FSA maintains an admitted list of jobs. Jobs that
are not admitted will not get scheduled. At any time,
FSA runs the job in the admitted list with the earliest
deadline. The admitted list is updated as follows.

Job Arrival. When a job J arrives, let J1, J2, . . . , Jn

be the jobs currently in the admitted list, where
d(J1) ≤ d(J2) ≤ · · · ≤ d(Jn).

• J is admitted if J together with J1, J2, . . . , Jn

are full-speed admissible. [A set S of jobs is
said to be full-speed admissible at a certain time
if, when using the maximum speed T onwards,
the remaining work of every job in S can be
completed by its deadline.]

• Otherwise, J can still be admitted if
w(J) > 2(w(J1) + w(J2) + · · · + w(Jk))
and {J, Jk+1, Jk+2, . . . , Jn} are full-speed
admissible, where k is the smallest possible
integer in [1, n]. In this case, J1, . . . , Jk will be
expelled from the admitted list.

Job Completion. When a job J finishes, J is
removed from the admitted list.
Job Overdue. At the deadline of a job J , if job J
is still in the admitted list but has not yet finished,
J is removed from the admitted list.

Note that a job admitted at release time may be
expelled due to other bigger jobs released later. A job
is said to be admitted perennially if this job, after being
admitted, never gets expelled due to bigger jobs. Note
that if the online algorithm always runs at speed T ,
then no job will become overdue and all jobs admitted
perennially will be completed by their deadlines. In
general, for an arbitrary speed function f , FSA(f) may
not be able to complete all jobs admitted perennially.

Definition 2.1. FSA(f) is said to be honest if for any
job sequence I, FSA(f) completes all jobs admitted
perennially on or before their deadlines.

Theorem 2.1. If FSA(f) is honest, then FSA(f) is 14-
competitive on throughput.

The rest of this section is devoted to proving
Theorem 2.1. In the next section, we will describe
a speed function OAT and show that FSA(OAT) is
honest. Assume that FSA(f) is honest and consider any
job sequence I. Let A ⊆ I be the set of jobs that have
been admitted by FSA(f) at their release time, and let
N = I−A. We further divide A into C and E such that
C is the set of jobs that are admitted perennially, and
E = A−C. Since FSA(f) is honest, FSA(f) completes
exactly the jobs in C and expels all jobs in E. The
competitiveness of FSA(f) (i.e., Theorem 2.1) stems
from the following upper bounds on E and N .

Lemma 2.1. w(E) ≤ w(C).

Proof. For every job X in A that forces another job J
in E to be expelled from the admitted list, we link up
X and J so that X is the parent of J . This parent
relationship forms a forest, and the root of each tree is
a job in C and all other nodes are jobs in E. By the
definition of expelling jobs, the work of a parent is at
least two times the total work of its children. Thus, for
each root r, we have w(r) at least the total work of all
other nodes in the tree. Sum over all trees, we obtain
the relationship w(E) ≤ w(C). �

Consider the union of the spans of all jobs in N ,
which may cover one or more intervals. Let ℓ =
|
⋃

X∈N ρ(X)| be the total length of these intervals. The
total work of N might be huge, yet the amount of work
of N that can be completed (by the optimal algorithm)
is bounded by ℓT . Below we give an upper bound of ℓT .

Lemma 2.2. ℓT ≤ 6w(A).

With Lemmas 2.1 and 2.2, proving Theorem 2.1 is
straightforward. Consider any optimal algorithm. It
can at most complete all jobs in A. With respect to N ,
the jobs that can be completed have a total work at most
ℓT , which, by Lemma 2.2, is at most 6w(A). Thus, the
total amount of work completed is at most 7w(A), or
equivalently, 7(w(C) + w(E)). By Lemma 2.1, w(E) ≤
w(C) and 7(w(C) + w(E)) ≤ 14w(C). Recall that
FSA(f) completes all jobs in C, attaining a throughput
of w(C). Thus, Theorem 2.1 follows.

It remains to prove the upper bound of ℓ. Recall
that ℓ = |

⋃

X∈N ρ(X)|. We will define, for each job
X ∈ N , an interval ρ′(X) that encloses ρ(X). Then
ℓ ≤ |

⋃

X∈N ρ′(X)|. The way ρ′ is defined allows us
to upper bound each |ρ′(X)| in terms of the jobs in A
whose deadlines are in ρ′(X). (see Lemma 2.3). The
following simple observation further shows that ℓ can
be upper bounded by considering a subset M of N with
all elements X of M having disjoint ρ′(X). Then we
can easily show that ℓT ≤ 6w(A).

Fact 2.1. N contains a subset M such that all el-

ements X of M have mutually disjoint ρ′(X), and

|
⋃

X∈N ρ′(X)| ≤ 2
∑

X∈M |ρ′(X)|. 1

We have yet to define ρ′(X) and relate it to jobs in
A whose deadlines are in ρ′(X).

1The argument is as follows: Let Mo be a minimal subset
of N such that

S

X∈Mo
ρ′(X) =

S

X∈N
ρ′(X). I.e., Mo and

N define the union of time intervals. Note that no three jobs

in Mo have their intervals overlapping at a common time. We
can further partition Mo into two disjoint subsets such that in
each subset, no two intervals overlap. Let M be the subset

whose union of intervals has a bigger total length. Then we have
ℓ ≤ |

S

X∈Mo
ρ′(X)| ≤ 2|

S

X∈M
ρ′(X)| ≤ 2

P

X∈M
|ρ′(X)|.

Definition. At time r(X) (i.e., when X is released),
let S(X) = {J1, J2, . . . , Jn} be the jobs in the admitted
list, where d(J1) ≤ d(J2) ≤ · · · ≤ d(Jn). Note that
X is in N , and X and S(X) together are not full-
speed admissible. Let k ≤ n be the smallest integer
such that X,Jk, . . . , Jn are not full-speed admissible,
but X,Jk+1, . . . , Jn are. Furthermore, let m ≤ n be
the smallest integer such that X,Jk, Jk+1, . . . , Jm are
not full-speed admissible. Let ρ′(X) = [r(X), s], where
s = max{d(X), d(Jm)}. Furthermore, denote S1(X) =
{J1, . . . , Jk}, and S2(X) = {Jk, . . . , Jm}. Note that
each job in S1(X) or S2(X) has deadline in ρ′(X).

Lemma 2.3. For any job X ∈ N , |ρ′(X)|T <
2w(S1(X)) + w(S2(X)) ≤ 3w(A|ρ′(X)), where A|ρ′(X)

is the subset of jobs in A whose deadlines are in ρ′(X).

Proof. Any job X ∈ N is not admitted at time r(X).
By the definition of S1(X), X ∪ (S(X)−S1(X)) is full-
speed admissible at r(X). Since X is not admitted, we
have w(X) ≤ 2w(S1(X)).

By definition, at time r(X), X plus S2(X) =
{Jk, . . . , Jm} are not full-speed admissible, but be-
come full-speed admissible if Jm is removed. In other
words, w(X) plus the remaining work of S2(X) at
time r(X) is strictly greater than (max{d(X), d(Jm)}−
r(X))T = |ρ′(X)|T . Thus, we have |ρ′(X)|T < w(X) +
w(S2(X)) ≤ 2w(S1(X)) + w(S2(X)). Since jobs in
S1(X) or S2(X) are all in A and have deadlines in ρ′(X),
we have 2w(S1(X)) + w(S2(X)) ≤ 3w(A|ρ′(X)). The
lemma follows. �

Proof of Lemma 2.2. By Lemma 2.3, for each job X ∈
N , |ρ′(X)|T < 3w(A|ρ′(X)). By Fact 2.1, N contains a
subset M with all elements X having disjoint ρ′(X), and
ℓT ≤ 2

∑

X∈M |ρ′(X)|T ≤
∑

X∈M 6w(A|ρ′(X)). For any
two jobs X,X ′ in M , ρ′(X) and ρ′(X ′) do not overlap,
and the sets A|ρ′(X) and A|ρ′(X′) are also disjoint. Thus,
∑

X∈M 6w(A|ρ′(X)) ≤ 6w(A). �

3 The speed function OAT makes FSA honest

We supplement FSA with a speed function OAT, which
is derived from the algorithm OA (Optimal Available)
[20]. As mentioned before, OA is designed for scheduling
on a processor with unbounded speed and targets to
complete all jobs. Given a job sequence I, we maintain
an imaginary schedule of I using OA. Let OA(t) be the
speed of OA at time t. Note that OA(t) may be higher
than the given maximum speed T . The speed function
OAT(t) is defined to be min{OA(t), T}. Let us reiterate
that OAT does not depend on how FSA works.

In this section, we first review the definition and
some properties of OA. Then we present the main
result that FSA(OAT) is honest. At first glance, one

might worry that OAT is sometimes too slow to allow
FSA to complete the jobs admitted. Nevertheless, we
have a non-trivial observation that when OA is slow
(using a speed at most T) in processing a job J that has
been admitted by FSA, J indeed has better progress in
the schedule of FSA(OAT) and doesn’t require a higher
speed to get completed.

Let I be a job sequence. Let wOA(J, t) denote the
remaining work of a job J at time t in the OA schedule
(we assume that wOA(J, t) = 0 if J has not yet arrived at
t). At time t, the OA algorithm schedules the earliest-
deadline job J with positive remaining work at speed

OA(t) = max
t′>t

∑

d(J)≤t′ wOA(J, t)

t′ − t
.

Intuitively,
P

d(J)≤t′ wOA(J,t)

t′−t
measures the “intensity” of

the interval [t, t′], which is a lower bound of the speed
required to complete the remaining jobs with deadlines
falling into the interval [t, t′].

We order the jobs in I in ascending order of their
release times (ties are broken by job ID). Below the
variable I ′ (or Io) refers to a prefix of I. We often
compare the OA schedule of I and the OA schedule
of I ′. At any time t, let OAI(t) and OAI′(t) denote
the current speed of the OA schedule of I and I ′,
respectively. Similarly, we define OATI(t) or OATI′(t)
for OAT. The following properties can be proven based
on the existing knowledge of OA [2,20].

Fact 3.1. At any time t, let I ′ ⊆ I be all the jobs

released on or before t. Then, for all t′ > t, we have
∑

d(J)≤t′ wOA(J, t) ≤
∫ t′

t
OAI′(x)dx.

Fact 3.2. Let J be a job in I. Let I ′ ⊆ I denote all jobs

preceding J , and I ′′ = I ′ ∪ {J}. Consider the two OA
schedules for I ′ and I ′′ respectively. At any time before

r(J), these two schedules run at the same speed. At

any time t ≥ r(J), OAI′(t) ≤ OAI′′(t). Furthermore,

OAI′′(t) ≤ OA(t).

At any time t, let wFSA(J, t) denote the remaining
work of job J at time t in the schedule given by
FSA(OAT). Note that a set S of jobs is full-speed
admissible at time t if and only if, for any t′ > t,

∑

J∈S and d(J)≤t′

wFSA(J, t) ≤ T (t′ − t).

First of all, we prove a weaker form of honesty for
FSA(OAT), namely, whenever FSA(OAT) finds a full-
speed admissible set of jobs, FSA(OAT) can complete
them if no more jobs will arrive. Consider any time to
when a job in I is released. Let Io be the set of jobs
arrived on or before to, and let So ⊆ Io be the set of jobs
in the admitted list of FSA(OAT). Since FSA(OAT)

has performed an admission test at time to, the jobs
in So must be full-speed admissible. In the next two
lemmas, we will show that if no more job arrives after Io,
the remaining work of all jobs in So can be completed
using the speed function OATIo

, or equivalently, for any
t′ > to, ∑

J∈So and d(J)≤t′

wFSA(J, to) ≤

∫ t′

to

OATIo
(x)dx.

Consider the OA schedule of Io. Let t1 ≥ to be the
latest time this OA schedule runs at a speed higher than
T (if t1 does not exists, i.e., OAIo

(to) ≤ T , then we set
t1 to be the time immediately before to). In other words,
for any t0 ≤ t ≤ t1, OAIo

(t) > T and OATIo
(t) = T .

And for any t > t1, OAIo
(t) = OATIo

(t). The following
two lemmas consider the remaining work of the jobs in
So at time to according to whether the deadlines of these
jobs are before t1 or not.

Lemma 3.1. For any to ≤ t′ ≤ t1,
∑

J∈So and to≤d(J)≤t′

wFSA(J, t0) ≤ T (t′−to) =

∫ t′

t0

OATIo
(x)dx.

Proof. The lemma is true since So is full-speed admis-
sible at to and OATIo

(x) = T for to ≤ x ≤ t′. �

Lemma 3.2. For any t′ > t1,
∑

J∈So and t1<d(J)≤t′

wFSA(J, to) ≤
∑

J∈Io and t1<d(J)≤t′

wOA(J, to)

≤

∫ t′

t1

OAIo
(x)dx =

∫ t′

t1

OATIo
(x)dx.

The first inequality in Lemma 3.2 is based on an
interesting observation (Lemma 3.3) that at time to,
FSA(OAT) has made more progress than OA for those
jobs with deadlines later than t1. It can be easily proved
by induction on Io, using Facts 3.1 and 3.2.

Lemma 3.3. wFSA(J, to) ≤ wOA(J, to) for any J ∈ So

with d(J) > t1.

Proof of Lemma 3.2. The first inequality follows from
Lemma 3.3, and the second inequality follows from the
definition of OA and Fact 3.1. The last equality is due
to the definition of t1, which asserts that OAIo

(t) ≤ T
for any t > t1. �

Theorem 3.1. FSA(OAT) is honest.

Proof. Let J be a job that FSA(OAT) admitted peren-
nially but the deadline of J is missed. Let t < d(J) be
the latest time that there is a job J ′ arriving at t. Af-
ter running an admission test on J ′ by FSA(OAT), the
admitted list, which must still include J , remains full-
speed admissible. By Lemmas 3.1 and 3.2, no job in the
admitted list should miss deadline before any new job
arrives, which contradicts the assumption that J misses
its deadline. �

4 Energy usage of FSA(OAT)

This section shows that the energy usage of OAT is
at most (αα + α24α) times that of OPT, where OPT

is the optimal schedule with maximum speed T that
maximizes the throughput and minimizes the energy
subject to this throughput.

Overview of the proof. Given a job sequence I, we
will first partition the time line into intervals, which
we call overloaded periods and underloaded periods (see
below for formal definitions). Roughly speaking, a
processor with maximum speed T cannot complete all
the jobs whose spans fall completely in an overloaded
period. Since OPT maximizes the throughput and
there is too much work available during an overloaded
period, we can show that the amount of work done by
OPT during the overloaded periods must be at least a
constant fraction of the maximum work of a speed-T
processor can do. Thus, OPT does not use much less
energy than OAT during the overloaded periods.

We then show that OPT completes all jobs whose
spans do not fall completely in an overloaded period.
We adapt the potential function in [2] (which works for
the setting where the maximum speed is unbounded) to
bound the energy usage of OPT and OAT on these jobs.
Note that OPT may spread the work of these jobs over
both the overloaded and non-overloaded periods, while
OAT may accumulate these work to the non-overloaded
periods, leading to higher speed and energy usage. We
observe that the amount of such work accumulated is
at most proportional to the length of the overloaded
periods, so we use another potential function to account
for such accumulation, showing that the energy usage
of OAT on these jobs is bounded by the total energy
usage of OPT.

4.1 Overloaded periods and properties of OPT

For any S ⊆ I, S is said to be feasible if a processor with
maximum speed T can complete all jobs in S; and S is
infeasible otherwise. Furthermore, S ⊆ I is a minimally

infeasible job set if (1) S is infeasible, and (2) for any
job J ∈ S, S −{J} is feasible. The span of a minimally
infeasible job set S, denoted span(S), is the union of
span(J) over all jobs J ∈ S. Note that span(S) is a
single time interval.

Let M be the collection of all minimally infeasible
job sets of I. Note that elements of M may overlap. The
union of span(S) over all S ∈ M defines a number of
disjoint time intervals λ1, λ2 We call each such time
interval an overloaded period. We call the remaining
time intervals the underloaded periods. Let Po and Pu be
the set of overloaded periods and underloaded periods,
respectively.

We divide I into two groups: Io = {J ∈ I |
span(J) ⊆ λi for some overloaded period λi} and Iu =
I − Io. That is, a job J is in Iu if its span overlaps with
any underloaded period. Below we prove a property
about Iu, followed by a useful property about OPT.

Lemma 4.1. (1) Iu is feasible. (2) For any feasible job

set S ⊆ Io, Iu ∪ S is feasible.

Proof. We first show that for any set S ⊆ I, if S is
feasible, then for any J ∈ Iu − S, S ∪ {J} is feasible.
Assume for contradiction that there is a set S ⊆ I such
that for some J ∈ Iu − S, S is feasible and S ∪ {J} is
infeasible. Let S be the one with the smallest number
of jobs. Let J ′ ∈ S be a job such that (S − {J ′}) ∪ {J}
is infeasible. If no such J ′ is found, then S ∪ {J} is
a minimally infeasible job set and J cannot be in Iu.
The latter is a contradiction. If such J ′ exist, then
(S−{J ′}) is feasible and (S−{J ′})∪{J} is infeasible. It
contradicts that S is the smallest set with such property.

Thus, for any set S ⊆ I, if S is feasible, we can add
each job in Iu to S continuously, and the resulting set
S ∪ Iu remains feasible. (1) is the case when S is an
empty set. (2) is the case when S is a subset of Io. �

Lemma 4.2. OPT completes all jobs in Iu.

Proof. Let S ⊆ I be the set of jobs OPT completes. Let
S′ = S−Iu, which is feasible. If OPT does not complete
some jobs in Iu, then S′ ∪ Iu has larger total work than
S, and S′ ∪ Iu is feasible by Lemma 4.1. It contradicts
the fact that OPT maximizes the throughput. �

Lemma 4.3. Let |Po| be the total length of all over-

loaded periods. Then, the jobs in Io that OPT completes

have a total work at least 1
4T |Po|.

Proof. We will show that there is a set of jobs So ⊆ Io

such that So is feasible and total work of all jobs in So

is at least 1
4T |Po|. Then, by Lemma 4.1, throughput of

OPT is at least the total work of So∪Iu, which is at least
1
4T |Po| plus the total work of Iu. So OPT completes at
least 1

4T |Po| units of work belonging to jobs in Io.
From the collection M of all minimally infeasible

job sets, we can select greedily a sub-collection N =
{S1, S2, . . . , Sr}, ordered by their starting time, such
that the union of the spans of all Si is exactly Po, and
the span of each Si does not overlap with other job
sets in N , except Si−1 and Si+1. Let N1 = {Si ∈ S |
i is odd} and N2 = {Si ∈ S | i is even}. The span of
at least one of the above two groups has a total length
at least |Po|/2. W.L.O.G., let that group be N1. Note
that no two job sets in N1 overlap.

For each Si ∈ N1, we remove the smallest-size job
from Si to make a feasible job set. Let So be the union

of these feasible job sets. Then, So is feasible and the
total work of So is at least T times half the total span
of all Si in T1. Thus, the total work of So is at least
1
4T |Po|. �

4.2 Potential functions relating OAT and OPT

We are now ready to compare the energy usage of OAT
and OPT using two potential functions. Recall that
OAT gives a speed function without a schedule, while
OA defines both. To ease the discussion, let us define an
imaginary schedule OAcut which at any time t, processes
the same job as OA at the speed min{OA(t), T}. Note
that OAcut is running at the same speed as OAT, so
they use the same amount of energy. In the following,
we will focus at OAcut and analyze its energy usage
compared with OPT.

Defining the potential functions. We need some
notations to define our potential functions. Let t be the
current time. For any t′, t′′ ≥ t, let wOA(t′, t′′) be the
amount of work remaining in the simulated schedule of
OA, for jobs released on or before t and have deadlines
in (t′, t′′]. For any interval (t′, t′′], the density of the
interval, denoted denOA(t′, t′′), is wOA(t′, t′′)/(t′′ − t′).
We let t0 = t. For i ≥ 1, define ti to be the earliest
time greater than ti−1 such that denOA(ti−1, ti) =
maxt′>ti−1

denOA(ti−1, t
′). We call each of the interval

(ti, ti+1] a critical interval.
OAcut schedules jobs according to OA. At any time

t, let us consider the complete (future) schedule of OA,
assuming no more jobs will arrive. If OA schedules a
job J to run during [t′, t′′] at speed s, then, OAcut will
run J during [t′, t′′] at speed min{s, T}. We say that OA
assigns (t′′−t′)·min{s, T} units of work of J to OAcut in
(t′, t′′]. For any ti, tj , let wi,j be the amount of work OA
assigns to OAcut in [ti, tj]. Let si = wi,i+1/(ti+1 − ti).
Then, s0 is the speed of OAcut at time t, and si will be
the speed of OAcut from ti to ti+1.

Finally, we assume that when a job J arrives,
OPT admits J if OPT will complete J , and discards J
immediately otherwise. Let w′

i,j be the amount of work
remaining in OPT at time t for the admitted jobs with
deadline in (ti, tj]. We define the potential function

Φ(t) = α
∑

i≥0 sα−1
i (wi,i+1 − αw′

i,i+1) .

We call the work for jobs in Io the busy work. At
any time t, let wbusy be the total amount of busy work
OA assigns to OAcut , plus the amount of busy work
OAcut has done up to now. We define a second potential
function

Γ(t) = α2Tα−1wbusy .

Lemma 4.4. At any time t, let E(t) be the total energy

usage of OAcut up to time t. Let E′(t) be that for OPT.

Let Φ(t) and Γ(t) be the values of the potential functions

calculated at time t. Then,

E(t) + Φ(t) ≤ ααE′(t) + Γ(t) .

Lemma 4.4 is true before any job is released. In the
Appendix, we will show that

• Between job arrivals, the rate of change of E(t) +
Φ(t) is at most that of ααE′(t) + Γ(t).

• When a job arrives, the change in Φ is at most the
change in Γ.

Then we can prove by induction on time that Lemma 4.4
is true throughout the scheduling of I.

Theorem 4.1. FSA(OAT) is (αα + α24α)-competitive

on energy.

Proof. Let t be the time equal to the latest deadline
of jobs in I. At t, Φ(t) = 0 and Γ(t) ≤ α2Tα|Po|,
where |Po| is the total length of the overloaded periods.
So the total energy usage of OAcut is at most ααE′ +
α2Tα|Po|, where E′ is the total energy usage of OPT.
By Lemma 4.3, E′ ≥ (T/4)α|Po|. Thus, energy usage of
OAcut is at most (αα + α24α) times that of OPT.

Energy usage of FSA(OAT) is the same as that of
OAcut , so the theorem follows. �

5 Speed relaxation

In this section we study the case that the maximum
processor speed for the optimal offline algorithm is T
while for the online algorithm is (1 + ǫ)T . We give
another FSA algorithm, denoted as FSA′ and show
that, when coupled with a speed function OAT′(t) =
min{OA(t), (1 + ǫ)T}, FSA′ is (1 + 1/ǫ)-competitive
on throughput and (1 + ǫ)α(αα + α24α)-competitive on
energy usage. FSA′ uses a simple admission test that
admits a new job if and only if the new job plus the
admitted list of jobs is (1 + ǫ)T -speed admissible. In
other words, FSA′ always guarantees that after each job
arrival the admitted list of jobs is full-speed admissible.
Therefore, by Theorem 3.1 in Section 3, we can see that
FSA′ is honest. The remaining of the section is devoted
to prove, as in Theorem 5.1, that FSA′ has the claimed
competitive ratio.

Theorem 5.1. FSA′ is (1 + 1/ǫ)-competitive on

throughput and (1 + ǫ)α(αα + α24α)-competitive.

Competitive on throughput. We state, precisely,
the criteria for admitting a job. Let wFSA’(J, t) denote
the remaining work of job J at time t in the schedule
by FSA′. Let S denote the admitted list of jobs
at time t. For any t and t′ where t < t′, define
w[t, t′] =

∑

J∈S and d(J)≤t′ wFSA’(J, t), which is the total

remaining work at t for jobs in S with deadlines at
most t′. When a job J arrives, if J plus the jobs in
S is full-speed admissible, J is admitted. Precisely, J

is admitted if and only if maxt′≥d(J)

{

w[r(J),t′]+w(J)
t′−r(J)

}

≤

(1+ǫ)T. Lemma 5.1 follows directly from fact that FSA′

is honest.

Lemma 5.1. For any t and t′ where t < t′, FSA′ must

complete at least w[t, t′] work in [t, t′].

Lemma 5.2. If a job J is not admitted by FSA′ at

r(J), the total work completed by FSA′ in any set

of disjoint intervals {[x1, y1], [x2, y2], . . . , [xk, yk]}, with

r(J) ≤ x1 < x2 < . . . < xk and yk ≤ d(J) and
∑k

i=1 (yi − xi) ≥ w(J)/T , is at least ǫ · w(J).

Proof. We prove by contradiction. Suppose there
is a set of disjoint intervals V = {[x1, y1], [x2, y2],
. . . , [xk, yk]}, with r(J) ≤ x1 < x2 < . . . < xk

and yk ≤ d(J) and
∑k

i=1 (yi − xi) ≥ w(J)/T , such
that FSA′ completes less than ǫ · w(J) within the in-
tervals. Since J is not admitted, there exists a t′

such that (w[r(J), t′] + w(J))/(t′ − r(J)) > T (1 + ǫ),
i.e., w[r(J), t′] > T (1 + ǫ)(t′ − r(J)) − w(J). By
Lemma 5.1, FSA′ must complete at least w[r(J), t′] >
T (1 + ǫ)(t′ − r(J)) − w(J) work in [r(J), t′]. However,
since t′ ≥ d(J), V ⊆ [r(J), t′]. Then the total work
that FSA′ can complete in [r(J), t′] − V is at most
T (1 + ǫ)(t′ − r(J) − w(J)/T). Since FSA′ completes
less than ǫ · w(J) work in V , the total work that FSA′

can complete in [r(J), t′] is at most T (1 + ǫ)(t′ − r(J)−
w(J)/T) + ǫ ·w(J) = T (1 + ǫ)(t′ − r(J))−w(J), which
is a contradiction. �

Lemma 5.3. FSA′ is (1 + 1/ǫ)-competitive on through-

put.

Proof. Let OPT denote an optimal schedule that maxi-
mizes the throughput with maximum speed T . Let N be
the set of jobs that is completed in OPT but not admit-
ted by FSA′. For each job J ∈ N , let J be scheduled in
the disjoint intervals [x1, y1], [x2, y2], . . . , [xk, yk] in OPT

with r(J) ≤ x1 < x2 < . . . < xk. Then yk ≤ d(J)

and
∑k

i=1 (yi − xi) ≥ w(J)/T . By Lemma 5.2, FSA′

completes at least ǫ · w(J) work in these disjoint in-
tervals. Since the sets of corresponding intervals for
all jobs completed in OPT, in particular those jobs in
N , are disjoint, the total work completed by FSA′, de-
noted by wf , is at least ǫ ·

∑

J∈N w(J). On the other
hand, the total work completed in OPT is at most
wf +

∑

J∈N w(J) ≤ wf + wf/ǫ = (1 + 1/ǫ)wf . Thus,
the theorem follows. �

Competitive on energy usage. It is clear that the
energy incurred by OAT′ is at most (1 + ǫ)α times that

incurred by OAT defined in Section 3. By Theorem 4.1
in Section 4, we have proved that the energy usage
incurred by OAT is at most αα + α24α times that
of the optimal schedule with maximum speed at T .
Thus, the energy usage by FSA′(OAT′) is at most
(1 + ǫ)α(αα + α24α) times that of the optimal schedule
with maximum speed at T . In other words, FSA′ is
(1 + ǫ)α(αα + α24α)-competitive on energy usage.

Appendix. Analysis of the potential functions

This appendix proves Lemma 4.4. We will show that

• At any time between job arrivals, the rate of change
of E(t) + Φ(t) is at most the rate of change of
ααE′(t) + Γ(t).

• When a job arrives, the change in Φ is at most the
change in Γ.

Thus, we can prove by induction on time that
Lemma 4.4 is true at any time. In the following, we
focus at a time t and consider the complete (future)
schedule of OA. Recall that t0, t1, . . . are the time
calculated at time t such that t0 = t and ti, i ≥ 1 are the
boundaries of the critical intervals. wi,j is the amount
of work OA assigns to OAcut in [ti, tj] and w′

i,j is the
amount of work remaining in OPT for the admitted jobs
with deadline in (ti, tj]. Finally, si = wi,i+1/(ti+1 − ti).

Change of potential between job arrivals Note
that at time t, OAcut is working at speed s0. Let sopt

be the speed of OPT. Let Φ′ be the rate of change of Φ,
let Γ′ be that for Γ. We have the following lemma.

Lemma 5.4. At any time t between job arrivals, (s0)
α+

Φ′ ≤ αα(sopt)
α, and Γ′ = 0.

Proof. At the time t, OAcut is processing jobs with
deadlines in the first critical interval. Thus, w0,1 is
decreasing at the rate of s0. Let k be the smallest
number such that w′

k,k+1 > 0. We can assume WLOG
that OPT always executes the job with earliest deadline.
Thus, w′

k,k+1 is decreasing at a rate of sopt. Hence,

(s0)
α + Φ′ − αα(sopt)

α

= sα
0 + (−αsα−1

0 s0 + α2sα−1
k sopt) − ααsα

opt

≤ (1 − α)sα
0 + α2sα−1

0 sopt − ααsα
opt

= (1 − α)zα + α2zα−1 − αα where z = s0/sopt

For the last expression, it is −αα when z = 0, and
it is −∞ when z = ∞. If we set the derivative to 0,
we have z = α, where the expression equals 0. So, the
expression is non-positive.

For Γ, we note that when no job arrives, the amount
of busy work assigned to OAcut plus the amount of busy
work done is a constant, and Γ′ = 0. �

Change of potential when a job arrives Assume
that a job arrives at time t. Let ∆Φ be the change in Φ
due to J and let ∆Γ be that for Γ.

Lemma 5.5. At any time t when a job arrives, ∆Φ ≤
∆Γ.

The arrival of J changes the schedule of OA, and
it may changes critical intervals and the work assigned
to OAcut . In the following, we first prove the lemma in
a special case where the schedule of OA is not changed
much. Then, we will prove the lemma in the general
case.

Simple case. Recall that d(J) and w(J) are the
deadline and work of J , respectively. Let Ii = (ti, ti+1]
be a critical interval before J arrives, such that ti <
d(J) ≤ ti+1. We first consider the simple case that Ii

remains a critical interval after J arrives and J only
increases the density of Ii but not other intervals. Let
di be the original density of Ii before J arrives, and d′i be
that after. We first consider the case that di < d′i ≤ T .

Lemma 5.6. Assume di < d′i ≤ T . (1) If time t is in

Pu, then ∆Φ ≤ 0 and ∆Γ = 0. Otherwise, time t is

in an overloaded period λ, (2a) if d(J) is in λ, then

∆Φ ≤ α2Tα−1w(J) and ∆Γ = α2Tα−1w(J); (2b) if

d(J) is outside λ, then ∆Φ ≤ 0 and ∆Γ = 0.

Proof. (1) If the time t is in Pu, then J is in Iu and
OPT admits J . Therefore,

∆Φ = α
(wi,i+1 + w(J)

ti+1 − ti

)α−1
(

(wi,i+1(5.1)

+w(J)) − α(w′
i,i+1 + w(J))

)

−

α
(wi,i+1

ti+1 − ti

)α−1
(

wi,i+1 − αw′
i,i+1

)

.

The above expression is non-positive by putting q =
wi,i+1, δ = w(J) and r = w′

i,i+1 to Lemma 5.7 below.
The assignment of busy work in OAcut is not changed,
so ∆Γ = 0.

(2a) If d(J) is in the same busy period λ as time t, then
OPT may not admit J .

∆Φ ≤ α
(wi,i+1 + w(J)

ti+1 − ti

)α−1(
wi,i+1 + w(J) − αw′

i,i+1

)

−α
(wi,i+1

ti+1 − ti

)α−1
(wi,i+1 − αw′

i,i+1)

≤
α

(ti+1 − ti)α−1

(

(wi,i+1 + w(J))α − wα
i,i+1

)

=
α

(ti+1 − ti)α−1
w(J)

(

(wi,i+1 + w(J))α−1 + . . .

+(wi,i+1)
α−1

)

≤ α2Tα−1w(J) since
wi,i+1+w(J)

ti+1−ti
≤ T

Consider the busy work originally assigned to OAcut

and the new busy work of J . They will be assigned
to OAcut . So wbusy increases by w(J), and ∆Γ =
α2Tα−1w(J).

(2b) If d(J) is outside λ, then J is in Iu and OPT admits
J . By Equation (5.1), ∆Φ is non-positive. Since the
final density of Ii is at most T , any busy work originally
assigned to OAcut in (ti, ti+1] remains. So, ∆Γ = 0. �

Lemma 5.7. [2] Let q, r, δ ≥ 0 and α ≥ 1. Then

(q + δ)α−1(q + δ − α(r + δ)) − qα−1(q − αr) ≤ 0.

We also consider the case that J only increases the
density of Ii, but the original density is already at least
T .

Lemma 5.8. Assume T ≤ di < d′i. (1) If time t is

in Pu, then ∆Φ ≤ 0 and ∆Γ = 0. Otherwise, time t
is in a overloaded period λ, (2a) if d(J) is in λ, then

∆Φ ≤ 0 and ∆Γ ≥ 0; (2b) if d(J) is outside λ, then

∆Φ = −α2Tα−1w(J) and ∆Γ ≥ −α2Tα−1w(J).

Proof. (1) If time t is in Pu, then J is in Iu. OPT

admits J and w′
i,i+1 is increased by w(J). Since the

density of Ii is at least T , wi,i+1 is not changed by J ,
and si remains T . Thus, ∆Φ < 0. Γ is not changed
because the assignment of busy work in OAcut is not
changed.

(2a) Since the density of Ii is at least T , wi,i+1 is not
changed by J , and si remains T . d(J) is in Po, so OPT

may or may not admit J , but in either case, ∆Φ ≤ 0. J
is in Io and the amount of busy work assigned to OAcut

may only increase. So ∆Γ ≥ 0.

(2b) Since the density of Ii is at least T , wi,i+1 is not
changed by J , and si remains T . d(J) is outside λ,
so J is in Iu and OPT admits J . w′

i,i+1 increases by

w(J), so ∆Φ = −α2Tα−1w(J). Due to the increase in
density of Ii, amount of busy work assigned to OAcut

may decrease. But the decrease in busy work is at most
w(J). Thus, ∆Γ ≥ −α2Tα−1w(J). �

So, we can show that Lemma 5.5 is true in the
following simple case.

Lemma 5.9. At any time when a job arrives, if it only

increases the density of a single critical interval, then

∆Φ ≤ ∆Γ.

Proof. Let Ii be that critical interval, with initial den-
sity di and final density d′i. If di < d′i ≤ T or
T ≤ di < d′i, then Lemma 5.6 and Lemma 5.8 show
that ∆Φ ≤ ∆Γ. If di < T < d′i, we can divide J into
two jobs J1 and J2, with same arrival time and deadline,

and w(J1) = (T − di)|Ii|, w(J2) = w(J) − w(J1). The
arrival of J can be simulated by J1’s arrival followed
by J2’s arrival. By Lemma 5.6 and 5.8, we know that
∆Φ ≤ ∆Γ. �

General case. With Lemma 5.9, we can show that
whenever a job arrives, ∆Φ ≤ ∆Γ.

Proof of Lemma 5.5. Assume a job J is released. Let
(ti, ti+1] be a critical interval before J arrives, such that
ti < d(J) ≤ ti+1. If J only increases the density of this
critical interval, ∆Φ ≤ ∆Γ by Lemma 5.9.

Otherwise, we can imagine the size of J as increas-
ing from 0 to w(J). For some size x ≤ w(J), one of the
following events must occur.

• (ti, ti+1] remains a critical interval and its density
becomes equal to that of (ti−1, ti].

• (ti, ti+1] splits into a number of critical intervals
(ti, t

′
1], (t

′
1, t

′
2], . . . , (t

′
r, ti+1].

We can divide J into two jobs J1 and J2 such that
they have the same arrival time and deadline as J ,
and w(J1) = x and w(J2) = w(J) − x. The effect of
J ’s arrival on the potential functions is identical to the
arrival of J1, followed by the arrival of J2.

In the first case, J1 affects only a single critical in-
terval, so ∆Φ ≤ ∆Γ by Lemma 5.9. In the second case,
we can consider the change in potential as increasing
the density of Ii followed by splitting it into multiple
critical intervals. The splitting of Ii does not affect the
potential function values, so ∆Φ ≤ ∆Γ by Lemma 5.9.

We can repeat the process until we used up all the
w(J) units of work of J . �

Proof of Lemma 4.4 Finally, we can prove Lemma 4.4
using Lemma 5.4 and 5.5.

Proof of Lemma 4.4. Let t0 = 0 be the time before any
job arrives. Obviously, the lemma is true at t0. For
i ≥ 1, let ti be the earliest time after ti−1 such that
a job arrives. Assume the lemma is true at time ti−1,
then the lemma remains true for all time before the job
arrives at ti, and it remains true after the job arrives at
ti, by Lemma 5.4 and 5.5. Thus, by induction on time,
the lemma is true at any time t. �

References

[1] S. Albers and H. Fujiwara. Energy-efficient algorithms
for flow time minimization. In Proc. STACS, 621–633,
2006.

[2] N. Bansal, T. Kimbrel, and K. Pruhs. Dynamic speed
scaling to manage energy and temperature. In Proc.

FOCS, pages 520-529, 2004.

[3] N. Bansal and K. Pruhs. Speed scaling to manage
temperature. In Proc. STACS, pages 460–471, 2005.

[4] S. Baruah, G. Koren, B. Mishra, A. Raghunathan,
L. Rosier, and D. Shasha. On-line scheduling in the
presence of overload. In Proc. FOCS, pages 100–110,
1991.

[5] D.M. Brooks, P. Bose, S.E. Schuster, H. Jacobson,
P.N. Kudva, A. Buyuktosunoglu, J.D. Wellman, V.
Zyuban, M. Gupta, and P.W. Cook. Power-aware
microarchitecture: Design and modeling challenges
for next-generation microprocessors. IEEE Micro,
20(6):26–44, 2000.

[6] D. P. Bunde. Power-aware scheduling for makespan
and flow. In Proc. SPAA, 2006, to appear.

[7] M. L. Dertouzos. Control robotics: the procedural
control of physical processes. In Proc. IFIP Congress,
pages 807–813, 1974.

[8] D. Grunwald, P. Levis, K. I. Farkas, C. B. Morrey, and
M. Neufeld. Policies for dynamic clock scheduling. In
Proc. OSDI, pages 73–86, 2000.

[9] S. Irani, R. K. Gupta, and S. Shukla. Algorithms for
power savings. In Proc. SODA, pages 37–46, 2003.

[10] S. Irani and K. Pruhs. Algorithmic problems in power
management. SIGACT News, 2005.

[11] W.C. Kwon and T. Kim. Optimal voltage allocation
techniques for dynamically variable voltage processors.
ACM Transactions on Embedded Computing Systems,
4(1):221-230, 2005.

[12] G. Koren and D. Shasha. Dover : An optimal on-line
scheduling algorithm for overloaded uniprocessor real-
time systems. SIAM J. Comput., 24(2):318–339, 1995.

[13] M. Li, B.J. Liu, and F.F. Yao. Min-energy voltage al-
locations for tree-structured tasks. In Proc. COCOON,
pages 283–296, 2005.

[14] M. Li and F. Yao. An efficient algorithm for computing
optimal discrete voltage schedules. SIAM J. Comput.,
35(3):658–671, 2005.

[15] P. Pillai and K. G. Shin. Real-time dynamic voltage
scaling for low-power embedded operating systems. In
Proc. SOSP, pages 89–102, 2001.

[16] K. Pruhs, P. Uthaisombut, and G. Woeginger. Getting
the best response for your erg. In Proc. SWAT, pages
14–25, 2004.

[17] K. Pruhs, R. van Stee, and P. Uthaisombut. Speed
scaling of tasks with precedence constraints. In Proc.

WAOA, pages 307–319, 2005.
[18] H.S. Yun and J. Kim On energy-optimal voltage

scheduling for fixed-priority hard real-time systems.
ACM Transactions on Embedded Computing Systems,
2(3): 393-430, 2003.

[19] M. Weiser, B. Welch, A. Demers, and S. Shenker.
Scheduling for reduced CPU energy. In Proc. OSDI,
pages 13–23, 1994.

[20] F. Yao, A. Demers, and S. Shenker. A scheduling
model for reduced CPU energy. In Proc. FOCS, pages
374–382, 1995.

