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Abstract

In this paper, we introduce the Significant One Counting

problem. Let ε and θ be respectively some user-specified

error bound and threshold. The input of the problem is a

stream of bits. We need to maintain some data structure

that allows us to estimate the number of 1-bits in a sliding

window of size n such that whenever there are at least

θn 1-bits in the window, the relative error of the estimate

is guaranteed to be at most ε. When θ = 1/n, our

problem becomes the Basic Counting problem proposed by

Datar et al. [ACM-SIAM Symposium on Discrete Algorithms

(2002), pp. 635–644]. We prove that any data structure for

the Significant One Counting problem must use at least

Ω( 1

ε
log2 1

θ
+ log εθn) bits of memory. We also design a data

structure for the problem that matches this memory bound

and supports constant query and update time. Note that

for fixed θ and ε, our data structure uses O(log n) bits of

memory, while any data structure for the Basic Counting

problem needs Ω(log2 n) bits in the worst case.

1 Introduction

Data streams are common in many applications such
as network monitoring, telecommunications and finan-
cial monitoring. For example, data packets in network
monitoring and stock transactions in financial monitor-
ing are received and processed in the form of a data
stream. There are many data structures and algo-
rithms proposed for estimating statistics of data streams
[3, 10, 11, 12, 13, 15, 16, 17]. Because of practical con-
siderations, any algorithm for data streams must satisfy
the following requirements: (1) it can only process the
stream in one pass; (2) it uses a very small amount of
working memory; and (3) it has small update and query
times.

This paper focuses on the sliding window model for
data stream algorithms [6]. In this model, the data
stream is infinite. The data items in the stream are
received one by one, and the statistics are computed
over a sliding window of size n (not over the whole
stream), which covers the n most recent data items
received. Many problems related to sliding window
have been proposed and studied [1, 2, 6, 7, 14]. One
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such problem is the Basic Counting problem, which
asks for designing some data structure that allows us
to estimate, at any time, the number of 1-bits in
the sliding window such that the relative error of the
estimate is bounded by ε, i.e., an estimate m̂ of the
actual number m of 1-bits such that m − εm ≤ m̂ ≤
m + εm. Datar et al. [6] gave the first solution for the
problem. Their data structure uses O( 1

ε log2(εn)) bits of
memory and has O(log n) update time and O(1) query
time. They also proved that any data structure for the
problem must use Ω( 1

ε log2(εn)) bits of memory. Later,
Gibbons et al. [14] gave an improved data structure for
the problem; it uses the same O( 1

ε log2(εn)) bits of
memory and has O(1) query time, but the update time
is reduced to O(1). Note that the data structure of
Gibbons et al. has optimal time and space complexity.
Unfortunately, the Θ(1

ε log2(εn)) memory requirement
is still too much to be practical in many applications.

In this paper, we break the Θ(1
ε log2(εn)) memory

requirement barrier, not by giving a better data struc-
ture (which is impossible), but by defining a new prob-
lem. After analyzing the lower bound proof of Datar
et al., we observe that the Θ( 1

ε log2(εn)) bound comes
from the fact that any correct data structure should
cover all cases; in particular, it needs to guarantee the
relative error bound even when the window has only a
few 1-bits. However, this is not a requirement for many
applications. For these applications, if the actual num-
ber of 1-bits in the window is small, it is enough to
know that it is small and an estimate with a bounded
relative error is not required. For example, in telecom-
munications, it is usually the case that users with usage
above some threshold are charged by usage while the
rest are charged by some fixed rate. Thus, we need
good usage estimate for a user only when the number
of his/her calls is larger than the threshold. Another
example is in financial monitoring: microfinance insti-
tutions want good estimates only for stocks with lots of
recent transactions; they are not interested in those with
few transactions. These applications are called thresh-
old accounting in [9], and for them we introduce the
Significant One Counting problem, which is defined as
follows:

Given a stream of bits, maintain some data



structure that allows us to make, at any time,
an estimate m̂ of the number m of 1-bits in the
sliding window (of size n) such that if m ≥ θn,
we have |m̂ − m| ≤ εm.

Here, 0 < θ < 1 and 0 < ε < 1 are two user-specified
values. We call θ the threshold and ε the relative error
bound. We assume that ε ≥ 1

θn ; otherwise the error
bound will force us to find the exact number of 1-bits
in the stream. Note that when θ = 1/n, our problem
becomes the Basic Counting problem. We prove in this
paper a lower bound on the size of any data structure
for the Significant One Counting problem. We show
that any data structure for the problem must have size
at least Ω( 1

ε log2 1
θ +log εθn) bits. Furthermore, we give

an optimal data structure for the problem. It has the
following properties:

1. It has constant update and query time.

2. It uses O( 1
ε log2 1

θ + log εθn) bits of memory, which
matches the lower bound.

3. It allows us to find an estimate m̂ of the number m
of 1-bits in the sliding window such that

• if m ≥ θn, we have m ≤ m̂ ≤ m + εm, and

• if m < θn, we have m ≤ m̂ ≤ m + εθn.

Note that our data structure has better relative error
guarantees than what is required by the problem. Fur-
thermore, our data structure becomes an optimal data
structure for the Basic Counting problem when we set
θ to 1/n. On the other hand, for any fixed θ, our data
structure has size only O( 1

ε + log(εn)) bits.
Our data structure is simple and easy to implement,

and can be used directly to solve a practical problem on
data stream, namely finding frequent items in a sliding
window. The problem is an extension to the classical
problem of finding frequent items in the entire data
stream, which has been studied extensively [4, 5, 8, 18,
19, 20] and is defined as follows: Let Σ be a set of t
items and 0 < θ < 1 be a constant. The input of the
problem is a data stream of items in Σ. The problem
asks for designing some data structure that allows us to
determine, at any time, the set of frequent items in the
stream, i.e., those items whose number of occurrences
in the stream is no less than θN where N is the total
number of items currently in the stream. It is easy to
see that at any time, there can be at most 1/θ frequent
items. Karp et al. [19] proved that any data structure
solving the problem needs at least Ω(t log N

t ) bits of
memory. Demaine et al. [8] and Karp et al. [19] described
data structures that allow us to identify a set of at
most 1/θ items that contains all the frequent items.

However, this set may also contain non-frequent items
whose number of occurrences in the stream is much
smaller than θN .

Instead of finding the frequent items in the entire
stream, we are interested in finding the frequent items
in the sliding window of size n, i.e., those items that
occur no less than θn times in the window. We can
use our data structure for the Significant One Counting
problem to identify these frequent items as follows: Let
0 < ε < 1 be some fixed constant.

We maintain t instances of our data structure
for Significant One Counting (with threshold
θ and relative error bound ε), one for each
item in Σ. When an item e is received, the
data structure for e is updated as if a 1-bit
was received, and all the other data structures
are updated as if a 0-bit was received. When
there is a query on the set of frequent items,
we return the set S of items whose estimates
are no less than θn.

Note that by definition, every frequent item appears
no less than θn times in the sliding window, and by
Property (3) of our data structure, its estimate is
no less than θn. Hence, the set S includes all the
frequent items. Furthermore, it is easy to verified
that (i) |S| ≤ 1

(1−ε)θ and (ii) for any non-frequent

item in S, its number of occurrences in the sliding
window is at least (1 − ε)θn. Since θ and ε are fixed
constants, each of the t data structures uses O( 1

ε log2 1
θ +

log(εθn)) = O(log n) bits and the whole implementation
uses O(t log n) bits. Finally, we note that in addition
to identifying the set of frequent items, our solution
also gives estimates of the number of occurrences of
the frequent items with a bounded relative error; this
property is important for application such as usage-
based pricing in telecommunications [9].

Our paper is organized as follows. In section 2,
we prove a lower bound of Ω(1

ε log2 1
θ + log εθn) bits

of memory for any (deterministic) data structure for
the Significant One Counting problem. In section 3, we
introduce a one-level data structure. In section 4, we
improve the memory usage by using a multi-level data
structure. We present our optimal data structure in
section 5.

2 Lower Bound

In this section, we derive two lower bounds on the size
of any data structure for the Significant One Counting
problem; one is Ω(log εθn) and the other is Ω(1

ε log2 1
θ ).

Combining these two results we conclude a lower bound
of Ω(1

ε log2 1
θ +log εθn), which is claimed in the previous

section. Note that our results have assumed some



block of 2jB bits block of 2j−1B bits · · · block of 2iB bits · · · block of B bits

· · · sub-blocks of 2i bits · · · sub-blocks of 2i bits · · ·

Figure 1: The bits in the sliding window are listed from left to right, where the rightmost bit is the most recent bit, and
divided into different blocks. A block of size 2iB is further divided into B contiguous sub-blocks of size 2i bits.

bounds on the values of the threshold θ and the relative
error bound ε.

Lemma 2.1. Suppose that θ ≤ 1
2 and ε ≤ 1

5 . Then, any
data structure for the Significant One Counting problem
with threshold θ and relative error bound ε has size
Ω(log εθn) bits.

Proof. Suppose that the data stream has a sequence of
n 0-bits followed by a sequence P of εθn 1-bits. For the
sake of contradiction, assume that the data structure
uses o(log εθn) bits of memory. Thus, there are two 1-
bits in sequence P , say the x-th 1-bit and the (x+y)-th
1-bit where x, y ∈ [1, εθn − 1], such that when they are
received, the memory states are the same, denoted by
M .

When the x-th 1-bit is received, since x < εθn < n,
the actual number of 1-bits in the sliding window is
m1 = x. Consider that following this x-th 1-bit is
yδ 1-bits, where δ = d(4εθn)/ye. Note that after the
arrivals of each y 1-bits, the memory state will also be
M . After the arrivals of the yδ 1-bits, the memory state
is therefore M . Since θ ≤ 1

2 and ε ≤ 1
5 , it follows that

x + yδ ≤ x + (4εθn + y) < 6εθn < n. Thus, the actual
number of 1-bits in the sliding window is m2 = x + yδ.

Consider the two cases that a sequence S of (θn−x)
1-bits are received after (i) the xth 1-bit is received, and
(ii) the yδ 1-bits following the x-th 1-bit are received.
For (i), the actual number of 1-bits in the sliding window
is m′

1 = m1 + (θn − x) = x + (θn − x) = θn. For (ii),
since θ ≤ 1

2 and ε ≤ 1
5 , we have m2+(θn−x) = x+yδ+

(θn − x) = θn + yδ < θn + 4εθn + y < θn + 5εθn ≤ n
and the actual number of 1-bits in the sliding window
is thus m′

2 = m2 + (θn − x) = θn + yδ ≥ θn + 4εθn.
Note that when using the data structure to estimate the
number of 1-bits of the data streams described in (i) and
(ii), both streams will cause the data structure change
to memory state M immediately before receiving the
sequence S. Then, after receiving the whole sequence
S, we should return the same estimate. Thus the data
structure will give an estimate with absolute error at
least |m′

1 −m′

2|/2 ≥ (4εθn)/2 = 2εθn for one of the two
streams. Consequently, the relative error is at least

2εθn

max{m′

1,m
′

2}
=

2εθn

θn + yd 4εθn
y e

>
2εθn

θn + 4εθn + y

>
2εθn

θn + 5εθn
≥

2εθn

2θn
= ε

which contradicts that the relative error of the estimate
is no more than ε. Therefore, Ω(log εθn) bits of memory
is required.

The proof of the following lemma adapts the proof
techniques given in [6].

Lemma 2.2. Suppose that θ ≤ 1
16 and ε ≥ 1

4θn . Any
data structure for the Significant One Counting prob-
lem with threshold θ and relative error bound ε uses
Ω( 1

ε log2 1
θ ) bits of memory.

Proof. Let ε = 1
k for some integer k. Since ε ≥ 1

4θn ,
k ≤ 4θn. We list the bits in the stream from left to
right, where the rightmost bit is the most recent bit. A
window of size n is divided from right to left into blocks
of size B, 2B, 4B, 8B, ..., 2jB, where B ≥ k

4 and
j = blog n

B c − 1. For a block of size 2iB, it is further
divided into B contiguous sub-blocks of size 2i bits, as
shown in Figure 1.

Among the B blocks, k/4 of them are all 1-bits,
while the rest are all 0-bits. Let d = dlog(4θn

k + 1)e.

Note that d = dlog(4θn+k
k )e ≤ dlog(8θn

k )e. For a block

of size s > 2dB, there are
(

B
k/4

)

possible arrangements

for the k/4 sub-blocks of 1-bits in the B sub-blocks.
For a block of size s ≤ 2dB, k/4 sub-blocks of the B
sub-blocks are fixed to be the sub-blocks of 1-bits. Let
b denote the number of blocks of size larger than 2dB.

Therefore, there are
(

B
k/4

)b
possible arrangements for

the sub-blocks of 1-bits in those blocks of size s > 2dB.
Also, we have b ≥ j − d ≥ (blog n

B c − 1) − dlog(8θn
k )e >

((log n
B − 1) − 1) − (log 8θn

k + 1) = log( k
8θB ) − 3.

Consider any two of the
(

B
k/4

)b
arrangements, say

x and y. From right to the left, we can find the
first sub-block (the z-th sub-block in the block of size
2fB, where z ∈ [1, B] and f ∈ [d + 1, j]) such that
without loss of generality, it is the c-th sub-block of
1-bits, where c ∈ [1, k/4], in the block of size 2fB
in arrangement x, and it is a sub-block of 0-bits in
arrangement y. Assume, for the sake of contradiction,
that after receiving arrangements x and y respectively,
the memory states are the same, denoted by M . Then,
n − ((2f − 1)B + 2fz) 0-bits are input such that the
z-th sub-block in the block of size 2fB is the leftmost
sub-block in the sliding window. After receiving this
sequence of 0-bits, for arrangement x, the number of 1-
bits in the sliding window is m1 = (2f − 1)(k/4) + 2fc,



bit stream 1 0 1 1 1 1 1 1 1 1 0 0
stream position (sp) 1 2 3 4 5 6 7 8 9 10 11 12

1-rank 1 2 3 4 5 6 7 8 9
interesting 1-bit label 1 2 3

anchor label 1 2 3 4
Expired Sliding Window

bit stream 0 1 0 0 1 0 1 1 1 1 1
stream position (sp) 13 14 15 16 17 18 19 20 21 22 23

1-rank 10 11 12 13 14 15 16
interesting 1-bit label 4 5

anchor label 5 6 7
Sliding Window

Figure 2: An example bit stream with ω = 3 and sliding window of size n = 15.

while for arrangement y, the number of 1-bits in the
sliding window is m2 = (2f − 1)(k/4) + 2f (c − 1). As
the memory states in both cases are also M before
receiving the sequence of 0-bits, we should give the
same estimate after receiving the sequence of 0-bits.
Thus, we will give an estimate with an absolute error
at least |m1 − m2|/2 = 2f−1 for one of the two cases.
Consequently, the relative error is at least

2f−1

max{m1,m2}
=

2f−1

(2f − 1)(k
4 ) + 2fc

≥
2f−1

2f+1(k
4 ) − k

4

>
2f−1

2f−1 × k
=

1

k
= ε

which contradicts that the relative error of the estimate
is no more than ε. Thus, we have to differentiate

between any two of the
(

B
k/4

)b
arrangements.

Therefore, the required memory is at least

log

(

B
k
4

)b

≥ log

(

B
k
4

)kb/4

>
k

4

(

log

(

k

8θB

)

− 3

)(

log
4B

k

)

=
k

4

(

log
k

64θB

)(

log
4B

k

)

Since θ ≤ 1
16 and B ≥ k

4 , by choosing B = k
16

√

1
θ , the

required memory is more than

k

4
log2

(

1

4

√

1

θ

)

=
k

16
log2

(

1

16θ

)

Therefore, Ω( 1
ε log2 1

θ ) bits of memory is required.

Combining the above two lemmas, we have the following
theorem.

Theorem 2.1. Suppose that θ ≤ 1
16 and 1

4θn ≤ ε ≤ 1
5 .

Any data structure for the Significant One Counting
problem with threshold θ and relative error bound ε
requires Ω( 1

ε log2 1
θ + log εθn) bits of memory.

3 A One-Level Data Structure

In this section, we describe a simple data structure for
the Significant One Counting problem. First, we need
some definitions. Consider any bit stream. Each bit in
the stream has a stream position (sp), the first bit of the
stream has sp = 1, the second one has sp = 2, and etc.
Each 1-bit has a 1-rank, which is its rank among all the
1-bits. Figure 2 shows an example bit stream. Given a
positive integer ω, a 1-bit with its 1-rank divisible by ω
is called an interesting 1-bit (with respect to ω). Each
interesting 1-bit has an interesting 1-bit label to denote
its rank among all the interesting 1-bits. In Figure 2,
we have ω = 3. The 1-bit in sp 10 has 1-rank 9, which
is divisible by ω. Thus, it is an interesting 1-bit. As it
is the third interesting 1-bit, its interesting 1-bit label
is 3. Recall that n is the size of the sliding window. If
p is the current sp, i.e., the most recent sp, those bits
with sp in [p− n + 1, p] are in the sliding window while
other bits with sp less than p − n + 1 are expired.

3.1 Basic Idea Given the bit stream, the size n of
the sliding window and a positive integer ω, we can
estimate the number of 1-bits in the sliding window with
a bounded absolute error as follows:

We store the (interesting 1-bit label, sp) pairs
of all interesting 1-bits (with respect to ω) in
the sliding window in a linked list and keep
a variable count to count the number of 1-
bits arrived after the last interesting 1-bit (or
the beginning of the stream if there is no such
interesting 1-bit). Let s denote the size of the
linked list. The estimate m̂ of the number of
1-bits is computed by m̂ = s × ω + count.

For instance, in Figure 2, the linked list contains the
(interesting 1-bit label, sp) pairs of all interesting 1-
bits in the sliding window, i.e., 〈(3, 10), (4, 19), (5, 22)〉.
The size s of the linked list is 3. As there is one 1-
bit arrived after the last interesting 1-bit with label
5, the variable count is 1. Therefore, the estimate



m̂ = s × ω + count = 3 × 3 + 1 = 10.
Intuitively, an interesting 1-bit b in the linked list

represents ω 1-bits between its previous interesting 1-bit
bp (not including the 1-bit bp) and the interesting 1-bit
b (including the 1-bit b). A 1-bit in the sliding window
will either be counted by s×ω or count, and this implies
m̂ ≥ m. To get an upper bound on m̂, we note that if
count counts an expired 1-bit, there is no interesting 1-
bit in the sliding window and thus we have s = 0. As
count ≤ ω − 1, m̂ counts at most ω − 1 expired 1-bits,
so that m̂ < m+ω. If count does not count any expired
1-bit, since only the least recent interesting 1-bit bl in
the sliding window can represent expired 1-bits and bl

is not expired, s×ω counts at most ω−1 expired 1-bits.
Therefore, we also have m̂ < m + ω. In conclusion, we
have m ≤ m̂ < m + ω and the absolute error of the
estimate m̂ is at most ω.

The above method can be generalized: A linked
list with dilution i stores the (interesting 1-bit label,
sp) pairs of all interesting 1-bits in the sliding window
with its interesting 1-bit label divisible by 2i. We keep
three auxiliary variables: pos is the current sp, nb is the
number of interesting 1-bits in the stream and count is
the number of 1-bits arrived after the last interesting
1-bit (or the beginning of the stream if there is no such
interesting 1-bit). For a linked list with dilution i, let s
be the size of the linked list and nb′ be the interesting
1-bit label in the tail of the linked list, i.e., the most
recent interesting 1-bit in the linked list. If there is no
such interesting 1-bit, we set nb′ = 0. The estimate m̂
is computed by m̂ = s × 2iω + (nb − nb′) × ω + count.

For instance, in Figure 2, the linked list with dilution
2 contains the (interesting 1-bit label, sp) pairs of
all interesting 1-bits in the sliding window with its
interesting 1-bit label divisible by 2, i.e., 〈(4, 19)〉. Thus,
we have s = 1 and nb′ = 4. Also, the auxiliary variables
are pos = 23, nb = 5 and count = 1. Therefore, the
estimate is m̂ = s × 2ω + (nb − nb′) × ω + count =
1 × 6 + (5 − 4) × 3 + 1 = 10.

Lemma 3.1. The linked list with dilution i returns an
estimate m̂ of the number m of 1-bits in the sliding
window such that m ≤ m̂ ≤ m + 2iω, i.e., the absolute
error of the estimate is at most 2iω.

Proof. Intuitively, an interesting 1-bit b in a linked list
with dilution i represents 2iω 1-bits between its previous
interesting 1-bit bp with interesting 1-bit label divisible
by 2i (not including the 1-bit bp) and the interesting
1-bit b (including the 1-bit b). Let count′ denote the
number of 1-bits arrived after the interesting 1-bit with
label nb′ (or the beginning of the stream if nb′ = 0). We
have count′ = (nb − nb′) × ω + count.

A 1-bit in the sliding window will either be counted

by s × 2iω or count′, and this implies m̂ ≥ m. To get
an upper bound on m̂, we note that if count′ counts an
expired 1-bit, there is no interesting 1-bit in the sliding
window and s = 0. Since count′ ≤ (2i −1)ω +(ω−1) <
2iω, we have m̂ < m + 2iω. Suppose that count′

does not count any expired 1-bit. As only the least
recent interesting 1-bit bl in the linked list can represent
expired 1-bits and bl is not expired, s × 2iω counts at
most 2iω − 1 expired 1-bits. Therefore, we also have
m̂ < m+2iω. In conclusion, we have m ≤ m̂ < m+2iω
and the absolute error is at most 2iω.

Since the sliding window is of size n, we can
represent a sp in the sliding window by a modulo 2n
number without ambiguity. Also, there are at most
dn/ωe interesting 1-bits in the sliding window so that an
interesting 1-bit label can be represented by a modulo
d2n/ωe number. Therefore, a sp needs O(log n) bits
and an interesting 1-bit label needs O(log(n/ω)) bits.
Hence, each (interesting 1-bit label, sp) pair in the
linked list needs O(log(n/ω) + log n) = O(log n) bits
of memory.

To further reduce the memory usage, notice that
the difference of the sp of two consecutive interesting 1-
bits is no less than the difference of their 1-ranks, i.e., ω.
If there is an interesting 1-bit in sp p, there is no other
interesting 1-bit in the sp range [(d p

ω e−1)ω+1, (d p
ω e)ω].

Therefore, for an interesting 1-bit in sp p, we can use
p′ = d p

ω e to denote its position in the stream without
ambiguity, and we will define the set of all possible p′ as
anchors. As p is a modulo 2n number, the memory to
represent the position of an interesting 1-bit can then
be reduced from O(log n) bits to O(log(n/ω)) bits and
each pair in the linked list needs only O(log(n/ω)) bits
of memory.

Given a positive integer ω, if a sp is divisible by
ω, this sp is defined as an anchor. Each anchor has
an anchor label for identification of different anchors.
In Figure 2, when ω = 3, those sp’s divisible by ω
(e.g. 3, 6, 9) are anchors. The first anchor (sp 3) has
an anchor label 1.

For an interesting 1-bit in sp p, we use the anchor
label d p

ω e to denote its position. For instance, in Figure
2, we use the anchor with anchor label d 4

3e = 2 to denote
the position of the interesting 1-bit in sp 4. Intuitively,
we shift the sp p of an interesting 1-bit to the next
anchor pa, i.e., sp pa = d p

ω eω. Let pc be the current
sp and assume pc is not an anchor. If an interesting
1-bit b arrives after the last anchor, the position of b
is the anchor label p′ = dpc

ω e. Since pc < dpc

ω eω, we
will denote the position of this interesting 1-bit by the
anchor p′ω with anchor label p′, which does not occur
yet and is not considered expired. Since there are at
most dn

ω e + 1 anchors which are not expired, we use a



modulo (d 2n
ω e+2) number to represent the anchor label.

3.2 The One-Level Data Structure We keep four
auxiliary variables: na is the number of anchors in the
stream, dp is the difference of the last anchor and the
current sp, nb is the number of interesting 1-bits in the
stream and count is the number of 1-bits arrived after
the last interesting 1-bit (or the beginning of the stream
if there is no such interesting 1-bit).

A linked list with dilution i now stores the (inter-
esting 1-bit label, anchor label) pairs of all interesting
1-bits in the sliding window with its interesting 1-bit
label divisible by 2i. For a linked list with dilution i, we
compute the estimate by the same way as before. Let s
be the size of the linked list and nb′ be the interesting
1-bit label in the tail of the linked list. If there is no
such interesting 1-bit, we set nb′ = 0. The estimate m̂
is computed by m̂ = s × 2iω + (nb − nb′) × ω + count.

For instance, in Figure 2, a linked list with dilution
2 contains the (interesting 1-bit label, anchor label) pair
of all interesting 1-bits in the sliding window with the
interesting 1-bit label divisible by 2, i.e., 〈(2, 3), (4, 7)〉.
(The interesting 1-bit with interesting 1-bit label 2 is
included since the anchor with anchor label 3, i.e., sp 9,
is in the sliding window.)

Since the variable pos is replaced by variables na
and dp, to determine whether the anchor with anchor
label nah in the head of the linked list is expired, the
current position p is first computed by p = na×ω + dp.
If nah × ω ≤ p − n, the head is expired. (Since the
anchor label is represented by a modulo (d 2n

ω e + 2)
number, the actual operation to determine whether nah

is expired is: if nah × ω > p, the head is expired when
(nah − (d 2n

ω e + 2)) × ω ≤ p − n; otherwise, the head
is expired when nah × ω ≤ p − n. For simplification,
operation for modulo numbers is not explicitly used.)

Theorem 3.1. For a linked list with dilution i, the
above procedure returns the estimate m̂ of the number
m of 1-bits in the sliding window such that m ≤ m̂ ≤
m + 2i+1ω, i.e., the absolute error of the estimate is at
most 2i+1ω.

Proof. If the current sp is p and the least recent anchor
a in the sliding window is sp pa, we have pa ≥ p−n+1.
Thus, only expired interesting 1-bits with sp at least
p−n+1− (ω− 1) = p−n−ω +2 can have its position
shifted to anchor a. As there is at most one interesting
1-bit in the sp range [p− n− ω + 2, p− n], at most one
expired interesting 1-bit will be treated as in the sliding
window.

In a linked list with dilution i, at most one expired
interesting 1-bit is stored in the linked list. Let s0 be the
number of interesting 1-bits in the sliding window with

label divisible by 2i, and m̂0 be the estimate obtained
from a linked list with dilution i by the procedure for
Lemma 3.1. Therefore, we have s0 ≤ s ≤ s0 + 1. Since
m̂ = s× 2iω +(nb−nb′)×ω + count ≥ s0 × 2iω +(nb−
nb′)×ω+count = m̂0, by Lemma 3.1, m̂ ≥ m̂0 ≥ m. On
the other hand, m̂ = s× 2iω + (nb−nb′)×ω + count ≤
(s0 + 1) × 2iω + (nb − nb′) × ω + count = m̂0 + 2iω.
By Lemma 3.1, it follows that m̂ ≤ m̂0 + 2iω ≤
m + 2iω + 2iω = m + 2i+1ω. Therefore, the absolute
error of the estimate is at most 2i+1ω.

By Theorem 3.1, the estimate obtained from a
linked list with dilution 0 has absolute error at most
2ω. Thus, for m ≥ n/2l, the relative error is at most
2ω/m ≤ 2ω/(n/2l) = 2l+1ω/n. Let ωl,ε be the value of
ω such that the relative error of the estimate is at most
ε for m ≥ n/2l. Therefore, we have 2l+1ωl,ε/n = ε, i.e.,
ωl,ε = εn/2l+1.

To solve the Significant One Counting problem, we
use a linked list with dilution 0. We set l = log(1/θ)
such that n/2l = θn and ωl,ε = εn/2l+1 = εθn/2.
For the auxiliary variables, na and nb need O(log n

ω ) =
O(log 2

εθ ) = O(log 1
εθ ) bits, and dp and count need

O(log ω) = O(log εθn) bits. Since each (interesting
1-bit label, anchor label) pair in the linked list needs
O(log n

ω ) = O(log 1
εθ ) bits and the size of the linked

list is at most dn
ω e = O( 1

εθ ), the linked list requires
O( 1

εθ log 1
εθ ) bits of memory. By storing the differences

of (interesting 1-bit label, anchor label) pairs in the
linked list except for the head of the list, the memory

can be reduced to O(log 1
εθ + 1

εθ log(2/εθ
1/εθ )) = O(log 1

εθ +
1
εθ ) = O( 1

εθ ) bits. Therefore, the total memory needed
is O( 1

εθ + log 1
εθ + log εθn) = O( 1

εθ + log εθn).

4 Improvement in Memory: A Multilevel Data

Structure

In the one-level data structure, the absolute error of the
estimate is 2ωl,ε = εθn regardless of the number m of
1-bits in the sliding window. In fact, if the number m
of 1-bits in the sliding window is large, i.e., m > θn, the
absolute error allowed is εm, which is larger than εθn.
In this section, we improve the memory. Throughout
our discussion, we assume that ω = ωl,ε, which is equal
to εn/2l+1. Recall that this value of ω guarantees that
the relative error of the estimate given by the one-
level data structure (with dilution 0) is at most ε for
m ≥ n/2l.

Lemma 4.1. If m ≥ n/2l−i, the estimate m̂ of the
number m of 1-bits in the sliding window obtained from
a linked list with dilution i has relative error at most ε.

Proof. By Theorem 3.1, the estimate m̂ has absolute
error at most 2i+1ω = 2i+1ωl,ε = (2i+1)(εn/2l+1) =



εn/2l−i. Therefore, if m ≥ n/2l−i, the relative error is
at most (εn/2l−i)/m ≤ ε.

Lemma 4.2. Let m be the number of 1-bits in the sliding
window. If a linked list with dilution i has size at least
dn/(2l−1ωl,ε)e+2 interesting 1-bits, then m ≥ n/2l−i−1.

Proof. Let s be the size of the linked list. Recall that
m̂ = s× 2iω + (nb−nb′)×ω + count. By Theorem 3.1,
if an estimate m̂ of m is obtained from a linked list with
dilution i, we have m ≤ m̂ ≤ m + 2i+1ωl,ε. It follows
that m ≥ m̂− 2i+1ωl,ε = s× 2iωl,ε + (nb−nb′)×ωl,ε +
count−2i+1ωl,ε ≥ (dn/(2l−1ωl,ε)e+2)×2iωl,ε+count−
2i+1ωl,ε ≥ n/2l−i−1.

We use the same set of auxiliary variables
{na, nb, dp, count} and set ω = ωl,ε as before. How-
ever, instead of keeping a linked list with dilution 0, we
keep l levels of linked list, numbered 0 to l − 1. The
level k linked list is a linked list with dilution k of size
at most dn/(2l−1ωl,ε)e+2, which keeps the (interesting
1-bit label, anchor label) pairs of the dn/(2l−1ωl,ε)e+ 2
most recent interesting 1-bits in the sliding window with
interesting 1-bit label divisible by 2k. For each level
i ∈ [0, l − 1] linked list, we introduce the variables pair
(nbi, nai), which is set to be the (interesting 1-bit la-
bel, anchor label) pair of most recent interesting 1-bit
removed from the linked list. Initially, (nbi, nai) is set
to (0, 0). To return an estimate m̂, we first find the
smallest level j which contains the most recent expired
interesting 1-bit in (nbj , naj) among all levels, i.e., naj

is the anchor label of the most recent expired anchor
among all levels. The estimate is then obtained from
the level j linked list: Let s be the size of the level j
linked list and nb′ be the interesting 1-bit label in the
tail of the level j linked list. If there is no such interest-
ing 1-bit, we set nb′ = 0. The estimate m̂ is computed
by m̂ = s × 2jω + (nb − nb′) × ω + count.

Theorem 4.1. Let l = log 1
θ (or equivalently ωl,ε =

εθn/2). The above procedure returns an estimate m̂ of
the number m of 1-bits in the sliding window with a
relative error at most ε for m ≥ θn and an absolute
error at most εθn for m < θn, using O( 1

ε log2 1
θ +

log εθn) bits of memory.

Proof. In the above procedure, if a level i ∈ [0, l − 1]
linked list has (nbi, nai) where nai is the anchor label of
an anchor in the sliding window, then the level i linked
list is truncated to have a size at most dn/(2l−1ωl,ε)e+2.
Note that when a linked list with dilution i ∈ [0, l−1] is
truncated, we can’t apply Theorem 3.1 and Lemma 4.1
on the estimate from this linked list. The number of
interesting 1-bits in the sliding window with interesting

1-bit label divisible by 2l−1 is at most dn/2l−1ωl,εe <
dn/2l−1ωl,εe + 2 . Therefore, the level l − 1 linked list
can store all the interesting 1-bits in the sliding window
with label divisible by 2l−1. Since the level l − 1 linked
list is not truncated, among all the levels, there is at
least one level (i.e., level l − 1) that Theorem 3.1 and
Lemma 4.1 can be applied on the estimate from that
level.

Note that the interesting 1-bit with label nbj is the
most recent expired 1-bit in the data structure and nbj is
divisible by 2j since it is removed from the level j linked
list. As naj is the anchor label of an expired anchor, the
level j linked list is not truncated so that Theorem 3.1
and Lemma 4.1 can be applied on the estimate from the
level j linked list. If j > 0, as nbj is divisible by 2j , nbj is
also divisible by 2j−1. Since level j is the smallest level
containing this interesting 1-bit, level j − 1 must keep
dn/2l−1ωl,εe+2 interesting 1-bits in the sliding window.
By Lemma 4.2, we have m ≥ n/2l−(j−1)−1 = n/2l−j .
Therefore, by Lemma 4.1, the estimate m̂ obtained from
the level j linked list has relative error at most ε. Note
that for j > 0, we have m ≥ n/2l−j ≥ n/2l−1 = 2(n/2l).
If j = 0, since ω = ωl,ε, the estimate obtained from
the level 0 linked list has relative error at most ε for
m ≥ n/2l. When ωl,ε = εn/2l+1 = εθn/2, we have
l = log(1/θ). Therefore, for m ≥ n/2l = θn, the
procedure returns an estimate m̂ with a relative error at
most ε. Also, for m < θn, the estimate is obtained from
the level 0 linked list, i.e., a linked list with dilution 0.
By Theorem 3.1, the absolute error of the estimate is at
most 2ω = 2ωl,ε = εθn.

The auxiliary variables still needs O(log 1
εθ +

log εθn) bits of memory. Since each (interesting 1-bit
label, anchor label) pair in the linked list and (nbi, nai)
for i ∈ [0, l − 1] need O(log n

ω ) = O(log 1
εθ ) bits and

the size of a linked list is at most dn/2l−1ωl,εe + 2 =
d 4

εe + 2 = O( 1
ε ), a level i linked list with (nbi, nai)

requires O(( 1
ε + 1) log 1

εθ ) = O( 1
ε log 1

εθ ) bits of mem-
ory. By storing the differences of (interesting 1-bit la-
bel, anchor label) pairs in the linked list except for the
head of the linked list, the memory can be reduced

to O(2 log 1
εθ + 1

ε log(2/εθ
4/ε )) = O( 1

ε log 1
θ ) bits. There-

fore, the total memory needed is O(( 1
ε log 1

θ )l + log 1
εθ +

log εθn + 1) = O( 1
ε log2 1

θ + log εθn) bits.

5 Improvement in Time: The Optimal Data

Structure

Note that by setting l = log 1
θ , the data structure

described in the last section takes O(l) = O(log 1
θ ) time

to answer a query because it takes O(l) time to find
the smallest level j containing the most recent expired
interesting 1-bit with label nbj among all the levels.



Also, for the per-item processing, we have to insert and
remove an interesting 1-bit to/from at most l levels,
which also costs O(l) = O(log 1

θ ) time. In this section,
we improve the per-item processing time and query time
to O(1) worst case.

In our optimal data structure, we let l = log 1
θ

and ω = ωl,ε, which is εθn/2. We still keep the set
of the four auxiliary variables {na, nb, dp, count} as
in Section 3.2 and keep the l levels of linked list as
in the last section. In addition, we use one more
auxiliary variable lb to store the interesting 1-bit label
of the most recent expired interesting 1-bit removed
from the l levels, which is 0 initially. We still have
ω = ωl,ε = εθn/2. The estimate m̂ is then computed
by m̂ = (nb − lb) × ω + count. Also, we insert an
interesting 1-bit only to the maximum level containing
it. Thus, the size of the level i ∈ [0, l − 2] linked list is
halved, i.e., 1

2 (dn/2l−1ωl,εe + 2), while the size of the
level l − 1 linked list is not changed. Furthermore, we
keep one more linked list L of (interesting 1-bit label,
anchor label) pairs of all the interesting 1-bit stored in
the l levels so that only O(1) time is needed to remove
an interesting 1-bit. The updating algorithm is shown
as follows, where ω = ωl,ε = εθn/2:

Initially, variables na, nb, dp, count and lb are
set to 0.

For per-item processing (when a bit b arrives):

1. Increment dp.

2. If dp = ω (i.e., 0 mod ω), increment na.

3. Check for expiration: If the head (nbh, nah) of
the linked list L has expired, i.e., nah × ω ≤
na × ω + dp − n, set lb = nbh and remove (nbh,
nah) from L and thus the corresponding level.

4. If b = 1, increment count.

5. If b = 1 and count = ω (i.e., count = 0 mod ω),

• Increment nb.

• Determine the largest level k such that nb is
a multiple of 2k.

• If the level k linked list reaches its the max-
imum size, remove its head from the level k
linked list and thus the linked list L at the
same time.

• If dp = 0, add (nb, na) to the tail of the level
k linked list and the tail of L; otherwise, add
(nb, na+1) to the tail of the level k linked list
and the tail of L.

For answering a query:

Return an estimate m̂ = (nb−lb)×ω+count =
(nb − lb) × (εθn/2) + count.

Theorem 5.1. The above query algorithm returns an
estimate m̂ of the number m of 1-bits in the sliding
window with a relative error at most ε, i.e., m ≤ m̂ ≤
m + εm, for m ≥ θn and an absolute error at most
εθn, i.e., m ≤ m̂ ≤ m + εθn, for m < θn using
O( 1

ε log2 1
θ +log εθn) bits of memory with O(1) per-item

processing and O(1) query time.

Proof. Let level j be the minimum level containing the
interesting 1-bit with label lb when it is expired. Let
nbt be the interesting 1-bit label in the tail of the
level j linked list. The level j linked list thus has size
s = (nbt−lb)/2j . By the procedure for Theorem 3.1, the
estimate from the linked list with dilution j is computed
by m̂ = s×2jω+(nb−nbt)×ω+count = ((nbt−lb)/2j)×
2jω + (nb − nbt) × ω + count = (nb − lb) × ω + count.
Therefore, the estimate is equal to that obtained from
the level j linked list. Note that in the proof of
Theorem 4.1, the interesting 1-bit with label nbj is the
most recent expired 1-bit in the data structure and
the interesting 1-bit with label nbj is removed from
the level j linked list. Thus, we have lb = nbj . By
Theorem 4.1, the above algorithm returns an estimate
m̂ of the number m of 1-bits in the sliding window with
a relative error at most ε, i.e., m ≤ m̂ ≤ m + εm,
for m ≥ θn and an absolute error at most εθn, i.e.,
m ≤ m̂ ≤ m + εθn, for m < θn.

As the variable lb needs O(log n
ω ) = O(log 1

εθ )
bits of memory, the set of auxiliary variables still
needs O(log 1

εθ + log εθn) bits of memory. Since each
(interesting 1-bit label, anchor label) pair in the linked
list needs O(log 1

εθ ) bits and the size of a linked list
remains O( 1

ε ), a linked list requires O( 1
ε log 1

εθ ) bits of
memory. By storing differences of (interesting 1-bit
label, anchor label) pairs in the linked list except for
the head of the linked list, the memory can be reduced

to O(log 1
εθ + 1

ε log(2/εθ
2/ε )) = O( 1

ε log 1
θ ) bits. Therefore,

the total memory needed is still O( 1
ε log2 1

θ + log εθn).
Moreover, in the algorithm, all operations in per-item
processing and query can be done in O(1) worst case
time.
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