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ABSTRACT
In this paper, we give a simple scheme for identifying ε-
approximate frequent items over a sliding window of size n.
Our scheme is deterministic and does not make any assump-
tion on the distribution of the item frequencies. It supports
O(1/ε) update and query time, and uses O(1/ε) space. It
is very simple; its main data structures are just a few short
queues whose entries store the position of some items in the
sliding window. We also extend our scheme for variable-size
window. This extended scheme uses O(1/ε log(εn)) space.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity

General Terms
Algorithms, Theory

Keywords
Data Mining, Streaming Algorithms, Frequent Items, Net-
work Monitoring

1. INTRODUCTION
A flow in a network can be modeled as a continuous

stream of items such as source/destination addresses of the
TCP/UDP packets. Identifying frequent items in such stream
has found important applications in network monitoring and
data mining. Since the items are time sensitive, we are only
interested in identifying those frequent items in a sliding
window covering the last n items seen so far from the stream.
This motivates the following ε-approximate frequent items
problem, which is formulated by Arasu and Manku [2]: Let
θ and ε be user-specified threshold and relative error bound.
We are asked to maintain some data structure that allows
us to produce, at any time, a set B of items that satisfies
the following properties:
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• B only contains items that occur at least (θ−ε)n times
in a sliding window that covers the most recently seen
n items of the data stream and

• any item that occurs more than θn times in the window
must be in B.

This problem is difficult because of the high-speed traffic
of a network. We need to handle a huge volume of items
from the stream, usually in the order of gigabytes a second,
and as the stream passes we have only a few nanoseconds
to react to each item. Thus, any feasible scheme for solving
the problem must satisfy the following requirements:
Small memory: Note that there are gigabytes of data in
the sliding window and we cannot store them in hard disk
because of its long access time. Furthermore, the sensors
used in monitoring the networks are relatively cheap and
have small main memory. Thus, the memory used by the
scheme must be much smaller than the size of the sliding
window.
Extremely fast update and query time: Since we only
have several nanoseconds to react to an item, we can afford
to update a small number of counters or indexed variables.

There are many algorithms for identifying frequent items
[3,4,7,8,14,15,17] and other statistics [1,9,12,13] in the en-
tire data stream. Many of them use random sampling; they
make assumptions on the distribution of the item frequencies
and the quality of their results are only guaranteed proba-
bilistically. Recently, Karp, Shenker and Papadimitriou [15],
and independently, Demaine, López-Ortiz and Munro [6], re-
discovered a deterministic algorithm of Misra and Gries [18]
(the MG algorithm), which can easily be adapted to find ε-
approximate frequent items in the entire data stream with-
out making any assumption on the distribution of the item
frequencies. The MG algorithm is simple and elegant; it
needs 1/ε simple counters to count the items in the stream.
The update operation involves only the increment (i.e., +1)
or decrement (i.e., -1) of some of these counters.

For identifying frequent items over sliding window, Go-
lab, DeHaan, Demaine, López-Ortiz and Munro [10] gave
some heuristics for the problem and showed empirically that
they worked well. Later, Golab, DeHaan, López-Ortiz and
Demaine [11] gave an algorithm for the problem when the
item frequencies are multinomially-distributed. Arasu and
Manku [2] gave the first deterministic scheme for finding
ε-approximate frequent items; it supports O( 1

ε
log 1

ε
) query

and update time and uses O( 1
ε

log2( 1
ε
)) space. Their scheme

divides the sliding window into a collection of possibly over-
lapping sub-windows with different sizes. As the sliding win-



dow shifts, it applies the MG algorithm to each of these sub-
windows to find the frequent items in these sub-windows.
These sub-windows are organized cleverly into levels so that
whenever there is a query on the frequent items, we can
traverse these web of sub-windows efficiently to identify the
items to be put in the solution.

In this paper, we improve Arasu and Manku’s result. We
give a deterministic scheme for the ε-approximate frequent
items problem that supports O( 1

ε
) update and query time,

and reduces the space requirement from O( 1
ε

log2( 1
ε
)) to

O( 1
ε
). More importantly, our scheme is much simpler; it

has about twenty lines of codes. It uses only O( 1
ε
) simple

variables and O( 1
ε
) queues, and the total length of these

queues is O( 1
ε
). To update these data structures when the

window slides, we need only to increment/decrement some
of the variables for most cases, and we seldom need to insert
or delete entries in the queues.

Our scheme is also based on the MG algorithm. However,
unlike Arasu and Manku’s scheme, which uses the MG al-
gorithm as a black box to build complicated structures for
solving the problem, we adapt the MG algorithm directly to
solve the ε-approximate frequent items problem. Roughly
speaking, we replace the 1

ε
simple counters used in the MG

algorithm by some “window counters” that count the items
over the sliding window. At first glance, our approach does
not appear to be promising. ¿From a result of Datar, Gionis,
Indyk and Motwani [5], we know that any deterministic or
randomized algorithm for counting the number of any par-
ticular item over a sliding window needs at least Ω( 1

ε
log n)

space; this suggests that one window counter already needs
Ω( 1

ε
log n) space. Our approach needs 1

ε
window counters

and hence Ω(( 1
ε
)2 log n) space, which is much larger than

the O( 1
ε

log2( 1
ε
)) space used by Arasu and Manku’s scheme.

We observe that to solve the problem using our approach,
we do not need the window counters to be accurate at all
time; we only need them to give good estimates for items
with high frequencies in the window. This relaxation of
the requirement enables us to design a very simple data
structure called λ-counters as the window counters. Be-
cause of their simplicity, we can decrement the value of λ-
counters easily. (The decrement operation is important to
the MG algorithm.) By replacing the simple counters by the
λ-counters, and together some simple adaptation, we have a
simple deterministic scheme for the ε-approximate frequent
items problem.

We note that the λ-counter is just a simple variant of
the window counter given in [16], which uses an optimal of
O( 1

ε
log2 1

θ
+ log εθn) bits to solve the following significant

one counting problem: Given a stream of bits, maintain
some data structure that allows us to make, at any time, an
estimate m̂ of the number m of 1-bits in the sliding window
of size n such that if m ≥ θn, we have |m̂−m| ≤ εm. The
λ-counter is less efficient in space; it may use O( 1

ε
log n) bits

(or O( 1
ε
) words) in the worst case.

Although our scheme is simple, its correctness proof is not.
The main difficulty comes from the following two differences
between simple counters (which are used in the MG algo-
rithm) and window counters (which are used by our scheme):
(i) while simple counters count accurately, window counters
can only give some estimates on the 1-bits in the sliding
window, and (ii) while we have full control of the simple
counters, we have little control of the window counters; their

values change when the sliding window shifts. Hence, it is
difficult to prove that our scheme still makes good estimates
of the item frequencies under these uncertainties.

Our paper also handles the case when the sliding window
can change its size. By adapting a technique given in [2], we
show that our scheme for fixed window can be extended to
identify frequent items in a sliding window whose size can
be changed by the user. As pointed out in [2], fixed- and
variable-size window capture the essential features of many
common types of windows. In particular, given schemes
for fixed- and variable-size window, we can extend them to
handle time-based window.

The paper is organized as follows. We describe the MG
algorithm and explain why it is correct in Section 2. In
Section 3, we give an overview of our algorithm. In Sec-
tions 4 and 5, we give details on the λ-counters and proves
some important properties about them. Section 6 describes
our scheme for identifying ε-approximate frequent items and
proves its correctness. Finally, in Section 7, we describe how
to extend our scheme to solve the problem for sliding win-
dow with variable size.

2. THE MG ALGORITHM
Note that the original MG algorithm is only for the special

case when the relative error bound ε is equal to the threshold
θ. For general ε, we can modify the algorithm as follows:

We keep a counter for each possible item and
initialize them to 0. When a new item is read,
we increment its counter, and if after the incre-
ment there become more than 1

ε
counters with

value greater than 0, each of these counters will
be decrement once. When all the n items in the
data stream is read, we return the set B of items
whose counters have value at least (θ − ε)n.

Note that at any time, there are only O( 1
ε
) counters with

value greater than 0, and since we do not need to keep phys-
ically those counters with value 0, the algorithm uses O( 1

ε
)

space. For proof of correctness, we note that for any item
x ∈ B, x occurs at least (θ−ε)n times in the stream because
(i) the counter of x has value at least (θ − ε)n, and (ii) this
counter is initially 0 and we will increment it only when a
new x is read. To show that any item x that occurs more
than θn times must be in B, note that whenever we decre-
ment the counter of x, we will take away 1

ε
+1 units because

we decrement 1
ε

other counters as well. Since there are only
n items, we have only n units to be taken away. It follows
that we can decrement x’s counter at most n/( 1

ε
+ 1) < εn

times. On the other hand, we will increment the counter of
x more than θn times because x occurs more than θn times.
Therefore, when the algorithm terminates, the counter of x
has value at least (θ − ε)n and by design, it is in B.

3. OVERVIEW OF OUR ALGORITHM
Roughly speaking, our algorithm is obtained by replacing

all the counters in the algorithm described in Section 2 by
some window counters. In other words, we associate each
item with a window counter that counts the number of its
occurrences in the sliding window. These window counters
have an absolute error of O(εn) where n is the size of the
window. Futhermore, for each item x, we guarantee that at
any time, the window counter for x has size O(nx

εn
) where



position 1 2 3 4 5 6 7 8 9 10 11 12
bit stream 1 0 1 1 1 1 1 1 1 1 0 0

sampled 1-bit
√ √ √

λ-block 1 2 3 4
window W23

position 13 14 15 16 17 18 19 20 21 22 23
bit stream 0 1 0 0 1 0 1 1 1 1 1

sampled 1-bit
√ √

λ-block 5 6 7 8
window W23

Figure 1: An example with λ = 3 and window size n = 15.

nx is the number of occurences of x in the window at that
time. Since the size of window is n, we have

∑
x nx = n and

hence these window counters use totally O(
∑

x
nx
εn

) = O( 1
ε
)

space.
We now give some rough and asymptotical arguments to

explain intuitively why our algorithm is correct; we will give
a formal and detailed proof in Section 6. Note that by de-
sign, the counter for any item x ∈ B has value at least
(θ − ε)n, and since the counter has absolute error O(εn),
we conclude that x occurs at least Ω((θ − ε)n) times in the
sliding window. To see that every item x that occurs more
than Ω(θn) times must be in B, we argue, as in the correct-
ness proof of the MG algorithm, that we will decrement x’s
counter O(εn) times. Since we still take away Ω( 1

ε
) units for

each decrement of the counter, the key of our argument is to
prove that there are at most O(n) units for the decrement
operations to take away. This bound of O(n) units is not
surprising (though a rigorous proof is not trivial) because (i)
we have executed n increment operations for the n items in
the sliding windows, and (ii) there are O( 1

ε
) window coun-

ters greater than zero and the total absolute error they can
make is O( 1

ε
εn) = O(n).

4. λ-SNAPSHOT
Let λ be any fixed positive integer that is smaller than

the sliding window size n. In this section, we describe a
simple sampling technique, the λ-snapshot, for estimating
the number of 1-bits in a bit stream over some sliding win-
dow. Roughly speaking, λ-snapshot just samples every other
λ 1-bits in the stream.

Consider any stream f = b1b2b3 · · · of bits (i.e., bi ∈
{0, 1}). We sample the 1-bits in f as follows: a 1-bit in
f is a sampled 1-bit if it is the (iλ)th 1-bit in f for some
i ≥ 1. For example, the (λ)th 1-bit, the (2λ)th 1-bit and
the (3λ)th 1-bit are all sampled 1-bits. Note that between
any two consecutive sampled 1-bits bi and bj (i < j), there
are exactly (λ− 1) 1-bits. We say that these (λ− 1) 1-bits,
together with the sampled 1-bit bj , are represented by bj ,
and bj is the representative of these λ bits.

Each bit of f is associated with a position: the first bit
b1 is at position 1, b2 position 2, and for any i ≥ 1, bit bi

is at position i. Given any 1 ≤ i ≤ j, we let [i..j] denote
the window of positions i, i + 1, . . . , j. Recall that n is the
size of the sliding window. For any p, we let Wp denote the
window [(p−n + 1)..p], the one that ends at position p. We
let Wp = [1..p] if p ≤ n.

We divide the positions into blocks of λ positions called λ-
blocks, and we index them sequentially: the first block [1..λ]
is a λ-block with index 1, the second block [(λ + 1)..2λ] is a
λ-block with index 2, and for any i ≥ 1, [((i− 1)λ + 1)..iλ]

is a λ-block with index i. We say that a λ-block B = [((i−
1)λ+1)..iλ] is significant for the window Wp = [(p−n+1)..p]
if

1. B falls in or overlaps with Wp, i.e., [(i− 1)λ+1)..iλ]∩
[(p− n + 1)..p] 6= ∅, and

2. B covers one sampled 1-bit.

For example, in Figure 1, the λ-blocks 3, 4 7 and 8 are sig-
nificant for window W23.

Definition 1. The λ-snapshot S of bit stream f over
window Wp is the pair (Q, `) where Q is the queue of sig-
nificant λ-block for Wp, and ` is the number of 1-bits in Wp

that have positions after the last sampled 1-bit in Wp. The
value of the λ-snapshot S is defined to be v(S) = λ|Q| + `
where |Q| is the size of Q.

For example, in Figure 1, the λ-snapshot of the bit stream
over window W23 is (Q, `) = (〈3, 4, 7, 8〉, 1). The following
lemma shows that λ-snapshot gives a good estimate on the
number of 1-bits in a window.

Lemma 2. Let S be the λ-snapshot of f over window Wp.
Suppose that f has m 1-bits in Wp. Then, we have m ≤
v(S) ≤ m + 2λ.

Proof. It is obvious that m ≤ v(S). To prove v(S) ≤
m + 2λ, we consider two cases. If |Q| ≤ 1, then v(S) =
λ|Q|+ ` < 2λ ≤ m + 2λ (because ` < λ).

Suppose that |Q| > 1. Let B1 and B2 be the first two
blocks in Q (i.e., B1 and B2 have the smallest indices in
Q). Let P be the set of blocks in Q that are not equal to
B1 or B2. Note that for any block B ∈ P , the λ 1-bits
represented by the sampled 1-bit in B are all in Wp because
they are after the sampled 1-bit of B2, which must be in
Wp. It follows that the (|Q| − 2)λ 1-bits represented by the
sampled 1-bit in some B ∈ P are all in Wp. Together with
the ` 1-bits in Wp that are not represented by any sampled
1-bit in Wp, we conclude (|Q|−2)λ+` ≤ m, or equivalently,
v(S) = |Q|λ + ` ≤ m + 2λ. The lemma follows.

5. THE λ-COUNTER
In this section, we describe a simple data structure, the

λ-counter C, that estimates the number of 1-bits in the bit
stream f = b1b2 · · · over the sliding window by the value
of the corresponding λ-snapshot. It supports the operation
shift() that allows us to maintain the λ-snapshot of f over
the sliding window; when a new bit bp arrives, we execute
C.shift(bp) to update the λ-snapshot of f over Wp−1 to the
one over Wp.



The main components of C is a queue Q and a variable
` for storing a λ-snapshot. To speed up the update time,
Q is implemented as a deque, which allows us to remove
an entry from both end of Q (using the operation pop head
and pop tail), and to append an entry to the end (using the
operation push tail). To keep track of the λ-blocks, C also
has two auxiliary variables curblk and offset, where curblk
stores the index of the current block (i.e., the block having
some positions in the sliding window, and some other after
the sliding window) and offset stores the number of positions
in the current block that are after the first position of the
current block. We give below the implementation of shift().
Initially, the queue Q is empty, and the variables `, curblk
are equal to 0 while offset is equal to λ− 1.

C.shift(b) :

1: offset ← (offset + 1) mod λ
2: if offset = 0 then
3: curblk ← curblk + 1
4: if head[Q]×λ ≤ ((curblk− 1)×λ+ offset+1)−n then
{i.e., the head of Q is expired}

5: pop head(Q)
6: if b = 1
7: ` ← (` + 1) mod λ
8: if ` = 0 then {i.e., bit b is a sampled 1-bit}
9: push tail(Q, curblk)

(Note that a data stream is potentially infinite. To ensure
that the index of a λ-block can be stored in the variable
curblk, we may store the index as a modulo 2dn/λe number
without any ambiguity.)

Fact 3. Suppose that C stores the λ-snapshot of f over
window Wp−1 and the bit of f at position p is bp. Then,
after executing C.shift(bp), C stores the λ-snapshot of f over
window Wp.

Define the value v(C) of C to be the value of the λ-snapshot
that stores in C. The following lemma shows that C can
count f over the sliding window with good accuracy.

Lemma 4. Let f = b1b2b3 · · · be a bit stream and C be
a λ-counter whose value is zero initially. Suppose that we
count the bits of f by executing the operations C.shift(b1),
C.shift(b2), · · · sequentially. Then, immediately after execut-
ing C.shift(bp) for any p ≥ 1, we have mp ≤ v(C) ≤ mp +2λ
where mp is the number of 1-bits of f in Wp.

Proof. It can be proved easily by mathematical induc-
tion using Lemma 2 and Fact 3.

Besides using λ-counters to count the items in a data
stream, our scheme for the ε-approximate frequent items
problem also needs to decrement the value of some λ-counters
whose values are greater than 0. In the rest of this section,
we describe how to implement this operation and prove the
invariant maintained by this operation. The idea for im-
plementing the decrement operation is as follows. Suppose
that the λ-counter C has executed C.shift(b1), C.shift(b2),
. . . , C.shift(bp) to count the bit stream f = b1b2 . . . bp. Fur-
thermore, suppose that the value of C is not zero. To decre-
ment C, we modify its content such that C becomes storing
the λ-snapshot of the stream obtained from f by replacing
the last 1-bit of f with a zero. We give below the details of
the implementation.

C.decrement():

1: if ` > 0 then
2: ` ← `− 1
3: else {i.e., ` = 0}
4: pop tail(Q)
5: ` ← λ− 1

Fact 5. Suppose that the λ-counter C is storing the λ-
snapshot of some bit stream f over window Wp and v(C) >
0. Then, after executing C.decrement(), we have (i) the
value of C is decremented by exactly 1, and (ii) C stores the
λ-snapshot of the bit stream f ′ over Wp where f ′ is obtained
by replacing the last 1-bit of f at or before position p with
the bit 0.

For ease of future referencing, we call the position of this last
1-bit of f the position of replacement by C.decrement().

Consider any sequence σ of C.decrement() and C.shift()
operations on λ-counter C. Let C.shift(b1) C.shift(b2) · · ·
C.shift(bp) be the subsequence of shift operations in σ. We
say that σ is associated with the bit stream f = b1b2 . . . bp.
The following lemma describes an invariant that is impor-
tant to the correctness of our scheme.

Lemma 6. Let σ = σ1σ2 · · ·σk be a sequence of opera-
tions on an initially zero λ-counter C. Suppose that σ is
associated with the bit stream f = b1b2 · · · bp. Furthermore,
suppose that there is a C.decrement() operation only when
v(C) > 0. Then, after the last operation σk, C is storing
the λ-snapshot of some stream f ′ = b′1b

′
2 · · · b′p over window

Wp where b′i ≤ bi for all 1 ≤ i ≤ p.

Proof. To prove the lemma by mathematical induction,
we note that it is obviously true for k = 0. Suppose that
it is true for any integer smaller than k and consider the
sequence of operations σ = σ1σ2 · · ·σk, which is associated
with the bit stream f = b1b2 · · · bp.

We consider two cases. Suppose that σk is a shift op-
eration. Then it must be C.shift(bp), and the sequence
α = σ1σ2 · · ·σk−1 is a sequence associated with the stream
g = b1b2 · · · bp−1. By the induction hypothesis, C stores the
λ-snapshot S of some stream g′ = b′1b

′
2 . . . b′p−1 over win-

dow Wp−1 where b′i ≤ bi for all 1 ≤ i < p − 1. Then,
by Fact 3, the execution of the remaining shift operation
C.shift(bp) will transform S to a λ-snapshot of the stream
b′1b

′
2 · · · b′p−1b

′
p = b′1b

′
2 · · · b′p−1bp over window Wp. Obviously

b′i ≤ bi for all 1 ≤ i ≤ p.
Suppose that σk is the operation C.decrement(). Then,

the sequence α = σ1σ2 · · ·σk−1 is associated with the stream
f = b1b2 . . . bp, and by the induction hypothesis, after ex-
ecuting σk−1, C stores the λ-snapshot S of some stream
g = b′1b

′
2 · · · b′p over window Wp where b′i ≤ bi for all 1 ≤

i ≤ p. By Fact 5, the execution of the remaining oper-
ation σk = C.decrement() in σ will transform S to the
λ-snapshot of stream g′ over Wp where g′ = c1c2 · · · cp is
obtained from g by replacing the last 1-bit of g with 0. Obvi-
ously, ci ≤ b′i ≤ bi for all 1 ≤ i ≤ p. The lemma follows.

6. A SCHEME FOR THE ε-APPROXIMATE
FREQUENT ITEMS PROBLEM

Recall that the problem ε-approximate frequent items prob-
lem asks for a set B of items in a data stream f over a sliding



window of size n such that (i) every item in B must occur
at least (θ − ε)n times in the window, and (ii) any item
that occurs more than θn times in the window must be in
B. In this section, we describe a simple and efficient scheme
for the problem. For ease of discussion, we first describe a
scheme that uses |Π| λ-counters where Π is the set of pos-
sible items. Then, we explain that most of these counters
are unnecessary and our scheme needs at most 4

ε
counters.

Finally, we prove that our scheme supports O( 1
ε
) query and

update time and uses O( 1
ε
) space.

In the rest of this section, we let λ = εn/8.1 Thus, the λ-
counters maintain (εn/8)-snapshot of some bit stream. Let
f = e1e2e3 · · · be a stream of items in Π. For any e ∈ Π,
define fe = b1b2b3 · · · to be the bit stream where for any
i ≥ 1, bi = 1 if ei = e, and 0 otherwise. For any item
e ∈ Π, let ne(Wp) be the number of 1-bit in fe over Wp. Let
|Wp| be the total number of positions in Wp. The next fact
follows directly from definitions.

Fact 7. For any window Wp,
∑

e∈Π ne(Wp) = |Wp|.
In our scheme, we have, for every item e ∈ Π, a λ-counter Ce

for counting the bit stream fe, or equivalently, for counting
the item e in the input stream f . Initially, all these counters
have value zero. Below, we give the implementation of the
update and query procedure for our scheme.

Update(e) :

1: Ce.shift(1)
2: for all x ∈ Π− {e} do Cx.shift(0)
3: if there are more than 4/ε items x with v(Cx) > 0 then
4: for all x ∈ Π with v(Cx) > 0 do Cx.decrement()

Query()

1: for all e ∈ Π do
2: if v(Ce)− 2λ ≥ (θ − ε)n then
3: output (e, v(Ce)− 2λ)

To count the items in f = e1e2e3 · · · , we execute Update(e1),
Update(e2), Update(e3), · · · . We execute Query() to return
the set of items, together with our estimate on their fre-
quencies, requested by the problem. Recall that all the λ-
counters have value zero initially. Since (i) each Update()
operation will increase the value of at most one counter by
one and (ii) after each update, we will decrement the coun-
ters as soon as there are more than 4

ε
counters greater than

0, we have the following fact.

Fact 8. After any Update operation, there are at most
4
ε

counters with value greater than 0.

When Line 4 of Update() is executed, Cx.decrement() is ex-
ecuted for 4

ε
+ 1 items x. We call these 4

ε
+ 1 decrement

operations the batch of decrements associated with this up-
date operation. The following lemma shows that we cannot
make too many batches of decrements.

Lemma 9. Consider any window Wp = [p − n + 1..p].
Suppose that during the execution of sequence of update op-
erations Update(ep−n+1), Update(ep−n+2), · · · , Update(ep),
1To simplify notation, we assume that εn/8 and 4/ε are
integers. In case they are not integers, our scheme can be
easily changed to adapt the case. Also, we assume that
εn ≥ 8; otherwise, we can do exact counting by storing all
the n items in the sliding window and using only n < 8/ε
counters. This approach uses O(1/ε) space.

we have executed d batches of decrements. Then, we have
d < 3εn/4.

Proof. Note that after counting the first p−n items in f ,
we have executed the operations Update(e1), Update(e2), · · · ,
Update(ep−n). Correspondingly, we have executed, for each
item e, a sequence σe of shift and decrement operations
on the counter Ce, and this sequence is associated with the
bit stream fe = b1b2 · · · bp−n where bi = 1 if ei = e, and
0 otherwise. By Lemma 6, Ce stores the λ-snapshot of the
bit stream f ′e = b′1b

′
2 · · · b′p−n over Wp−n, where b′i ≤ bi for

each 1 ≤ i ≤ p − n. Let n′e(Wp−n) be the number of 1-
bits of f ′e over Wp−n. Together with Lemma 2, we conclude
that after executing σe, we have v(Ce) ≤ n′e(Wp−n) + 2λ ≤
ne(Wp−n) + 2λ. Therefore,

∑
e∈Π v(Ce) =

∑
e∈Π,v(Ce)>0 v(Ce)

≤ ∑
e∈Π,v(Ce)>0(ne(Wp−n) + 2λ),

and together with Facts 7 and 8, we conclude that just after
executing Update(ep−n), the total value of the counters is
∑

e∈Π v(Ce) ≤ |Wp−n|+( 4
ε
)2λ = |Wp−n|+( 4

ε
) εn

4
≤ 2n. (1)

Note that for each p − n + 1 ≤ i ≤ p, Update(ei) will
execute Ce.shift(1) for exactly one item e, and Ce.shift(0)
for the remaining items. Since Ce.shift(1) will increase the
value of Ce by at most 1 (sometimes it may even decrease its
value), and Ce.shift(0) will not increase its value, the n oper-
ations Update(ep−n+1), Update(ep−n+2), . . . , Update(ep) will
increase the total value of the counters by at most n. To-
gether with (1), and the fact that one batch of decrements
will decrease 1+4/ε units from the counters and all counters
are always non-negative, we conclude d(4/ε+1) ≤ 2n+n =
3n or equivalently, d < 3εn/4. The lemma follows.

We are now ready to show the value of Ce is a good es-
timate of the number of items e in the data stream f over
the sliding window.

Lemma 10. Suppose that we have executed the sequence
of operations σ = 〈Update(e1), Update(e2), . . . , Update(ep)〉.
Then, for any item e ∈ Π, the number ne(Wp) of items e in
the stream f = e1e2 · · · ep over Wp is related to the value of
Ce as follows: ne(Wp)− εn < v(Ce)− 2λ ≤ ne(Wp).

Proof. Let fe = b1b2 · · · bp. By Lemma 6, after execut-
ing σ, Ce is storing the λ-snapshot of some stream f ′e =
b′1b

′
2 · · · b′p, and by Lemma 2 we conclude

n′e(Wp) ≤ v(Ce) ≤ n′e(Wp) + 2λ,

where n′e(Wp) is the number of 1-bits of f ′e over the window
Wp. Lemma 6 asserts that b′i ≤ bi and this implies that
n′e(Wp) ≤ ne(Wp). Note that the Ce.decrement operations
resulted from Update(e1), · · · , Update(ep−n) have positions
of replacements before position p−n + 1, and by Lemma 9,
there are d < 3εn/4 operations Ce.decrement() resulted
from Update(ep−n+1), . . . , Update(ep). There are thus at
most d positions in [p− n + 1..p] such that the correspond-
ing 1-bit of fe will be replaced by 0 by some Ce.decrement()
operations. This follows that n′e(Wp) ≥ ne(Wp)−d. Putting
everything together, we have

ne(Wp)−d ≤ n′e(Wp) ≤ v(Ce) ≤ n′e(Wp)+2λ ≤ ne(Wp)+2λ,

and since d+2λ < 3εn/4+εn/4 = εn, the lemma follows.



The following lemma asserts that Query() will always return
the correct set of items for the ε-approximate frequent items
problem.

Theorem 11. Suppose that we have executed Update(e1),
Update(e2), . . . , Update(ep). Then, Query() will return a
set B of items such that (i) every item in B must occur at
least (θ − ε)n times in Wp, and (ii) any item that occurs
more than θn times in Wp must be in B.

Proof. Note that an item e returned by Query() must
have v(Ce) − 2λ ≥ (θ − ε)n, and by Lemma 10, we have
v(Ce)− 2λ ≤ ne(Wp). Thus, ne(Wp) ≥ (θ − ε)n, or equiva-
lently, it occurs at least (θ− ε)n times in Wp. On the other
hand, if an item e is not in B, then v(Ce)− 2λ < (θ − ε)n,
and by Lemma 10, we have ne(Wp) − εn ≤ v(Ce) − 2λ. It
follows that ne(Wp) < θn. Therefore, any item that occurs
more than θn times in Wp must be in B.

In the rest of this section, we analyze the query and up-
date time of our scheme, and the space used by our scheme.
In our simple implementation, we maintain |Π| λ-counters.
Note that for any counter C with value 0, the queue C.Q
must be empty and C.` = 0. Furthermore, the variables
C.curblk and C.offset are for maintaining the λ-blocks and
can be shared by all counters. Also, we will never decre-
ment a counter with value 0. We conclude that we do not
need to store physically any counter with value 0. By Fact 8,
there are at most 4

ε
counters greater than 0 after any Update

operations. Thus, we only need to keep 4
ε

λ-counters.2

Theorem 12. Our scheme needs O( 1
ε
) time for update

and query, and uses O( 1
ε
) space.

Proof. For Update(), there are 4
ε

counters to be up-
dated, and updating each counter takes constant time, while
for Query(), we need to compute the value of 4

ε
counters,

and each value can be computed at constant time. Thus,
our scheme needs O( 1

ε
) time for update and query.

To estimate the space requirement, suppose that we have
executed Update(e1), Update(e2), . . . , Update(ep), and the
sliding window is currently at Wp. Suppose that there are
now k counters C1, C2, . . . , Ck with value greater than zero.
Note that k ≤ 4

ε
and each of these counters has only three

variables. Hence, to prove the total space is O( 1
ε
), it suffices

to show that total size of the queues in these k variables is
O( 1

ε
).

For each 1 ≤ i ≤ k, let Qi = Ci.Q be the queue main-
tained by the counter Ci, and let fi be the bit stream asso-
ciated with Ci. By Lemma 6, Ci is storing the λ-snapshot of
some stream f ′i over Wp. ¿From the proof of Lemma 2, we
know that at least λ(|Qi| − 2) bits of f ′i are in Wp. Hence,

∑
1≤i≤k λ(|Qi| − 2) ≤ ∑

1≤i≤k n′i(Wp)

≤ ∑
1≤i≤k ni(Wp) ≤ |Wp| = n,

where ni(Wp) and n′i(Wp) are the number of bits of fi and
f ′i in Wp, respectively. Therefore, we have

∑
1≤i≤k |Qi| =

O(n/λ) = O(1/ε).

2With this modification, the procedure Update(e) should
be changed as follows: just before line 1, if item e does not
have a λ-counter in all the 4

ε
λ-counters and there is some

λ-counter with 0 value, assign the λ-counter with 0 value to
item e. Also, lines 3 to 4 are changed to: If item e does not
have a λ-counter in all the 4

ε
λ-counters, for all item x that

has a λ-counter, we execute Cx.decrement().

7. EXTENDED SCHEME FOR VARIABLE-
SIZE SLIDING WINDOW

In the model of variable-size sliding window, the window
size n is a variable. n is increased by one when there is a
new item inserted into the window, while n is decreased by
one when the least recent item in the window is deleted from
the window, i.e., the item is expired.

Let h be the positive integer such that 2h−1 < n ≤ 2h.
In our algorithm, we keep h + 1 levels (level 0 to level h) of
instances of our scheme for fixed-size sliding window, where
level i (0 ≤ i ≤ h − 1) is of window size 2i and the level h
is of window size n. In the level i, if ε2i < 16, we do exact
counting in that level, i.e., storing the whole sliding window
of the stream and keeping exact counts for each item in the
sliding window. Otherwise, we use the scheme for sliding
window of fixed size 2i, which has λ = ε2i/16 and performs
the batch of decrements in Update(e) if there are more than
16/ε λ-counters with positive values.3

Note that if ε2h ≥ 16, the sliding window for level h is
of size n but we use the scheme for sliding window of fixed
size 2h in level h. Therefore, for each λ-counter C in level h,
when we remove expired item in the head of the deque, i.e.,
lines 4 and 5 in C.shift(b), the window size used is n instead
of 2h. Also, when the window size n is decreased, we have
to additionally check and remove expired items in the head
of the deque in all λ-counters in the level h.

The following is our extended scheme. Initially, since the
window size n is 0, there is not any level, i.e., h = −1.

For query, we return the estimate of the scheme instance
in the highest level, i.e., the level h. (If there is not any
level, we return 0 as the estimate of each item.)

When the window size n is decreased by one to n′, we
update as follows. If n′ = 2h−1, level h is removed so that
level h− 1 is the highest level; otherwise, if level h is doing
exact counting, we remove the expired item in the stored
stream and update the count of the corresponding item, else
we remove the expired head of the deque in all λ-counters
in level h.

When the window size n is increased by one to n′, there is
a new item e′ inserted to the sliding window. If n′ ≤ 2h, all
the h+1 levels are updated according to the scheme for fixed
size window. If n′ > 2h, we create the level h + 1 as follows.
If ε2h+1 < 16, then exact counting on the frequency of all
items in the sliding window is done in level h+1 by copying
the stream and exact counts stored in level h. (If h = −1,
the sliding window stored in level h + 1 is simply the new
item e′ and its count is 1.) Otherwise, we first create the
algorithm instance of level h + 1 which has sliding window
size n = 2h by using information from level h as follows and
then update all the h + 2 levels for inserting the new item
e′, i.e., increasing the window size by one to n′:

Case 1. If level h is doing exact counting, the whole sliding
window is stored, it is straightforward to create all the λ-
counters in level h+1 from the sliding window stored in level
h. Since level h is doing exact counting, we have ε2h < 16
and there are at most 2h < 16

ε
items with positive counts,

i.e., at most 16
ε

λ-counters in level h+1 have positive values.
Case 2. If level h is not doing exact counting, we create

level h + 1 from level h as follows. Let Qi,e, `i,e, curblki,
offseti and λi be the deque Ce.Q and variables Ce.`, curblk,

3Again, to simplify notation, we assume that ε2i/16 and
16/ε are integers.



position 1 2 3 4 5 6 7 8 9
bit stream f ′e 1 1 1 1 1 1 1 1 1

sampled 1-bit for λh-block
√ √ √

λh-block 1 2 3
sampled 1-bit for λh+1-block

√
λh+1-block 1 2

window W9

Figure 2: An example of the bit stream f ′e with λh = 3, λh+1 = 6 and window size n = 8.

offset and λ of the scheme instance in level i. Consider
the sliding window Wp = [p − n + 1..p], for any item e,
fe = b1b2 · · · bp where bi = 1 if ei = e; and 0 otherwise. In
the scheme instance of level h, recall that each λh-counter
Ce for item e stores the λh-snapshot of the bit stream f ′e =
b′1b

′
2 · · · b′p over Wp, where b′i ≤ bi for each 1 ≤ i ≤ p. Con-

ceptually, we create the λh+1-counters in level h + 1 such
that the λh+1-counter for item e stores the λh+1-snapshot
of the bit stream f ′e = b′1b

′
2 · · · b′p over Wp: (1) Since λh+1 =

ε2h+1/16 = 2λh, the size of the λ-block in level h + 1 is

double of that in level h. We set curblkh+1 = d curblkh
2

e.
If curblkh mod 2 6= 0, we set offseth+1 = offseth; other-
wise, we set offseth+1 = λh + offseth. (2) For each item e
with a positive value of its λh-counter in level h, we create a
corresponding λh+1-counter in level h + 1: All the items in
Qh,e with their deque indices (which starts from 1) divisible
by 2 are copied to Qh+1,e. If the λh-block index is q, the
λh+1-block index stored in Qh+1,e is dq/2e. If there are even
number of items in the deque Qh,e, we set `h+1,e = `h,e; oth-
erwise, we set `h+1,e = λh + `h,e. Since there are at most 16

ε
items with positive counts in level h, there are also at most
16
ε

λ-counters in level h + 1 with positive values.
Figure 2 shows an example bit stream f ′e where λh = 3

and window size n = 8. Suppose just before the new item
e′ arrives, the current position is 9. Note that in Figure 2,
position 1 is not the actual start of the stream and thus
there is a sampled 1-bit in position 1. In level h, we have
curblkh = 3, offseth = 2, Qh,e = 〈1, 2, 3〉 and `h,e = 2. Then
in level h + 1, we set curblkh+1 = d3/2e = 2, offseth+1 = 2,
Qh+1,e = 〈1〉 and `h+1,e = λh + 2 = 5.

In the rest of this section, we show that for any item e, the
estimate of its frequency obtained from the highest level h is
a good estimate of the number of items e in the data stream
f = b1b2 · · · bp over the sliding window Wp = [p − n + 1..p]
of variable-size n.

In level h, each λh-counter Ce for item e stores the λh-
snapshot of the bit stream f ′e,h = b′1b

′
2 · · · b′p over Wp, where

b′i ≤ bi for 1 ≤ i ≤ p. Only batch of decrements that occurs
when the current position is p′ where p − n + 1 ≤ p′ ≤ p
can change some b′i (p − n + 1 ≤ i ≤ p) from 1 to 0. Note
that for exact counting, we have the bit stream f ′e,h = fe.
The following lemma bounds the number of such batches
of decrements that occurs when the current position is p′

where p− n + 1 ≤ p′ ≤ p.

Lemma 13. For any item e, consider the bit stream f ′e,i =
b′i,1b

′
i,2 · · · b′i,p of a λi-counter in level i where 0 ≤ i ≤ h. For

any interval of size k2i bits in the sliding window Wp where
0 < k ≤ 1, let d denotes the number of batches of decrements
that occurs when the current position p′ is in that interval
and change some b′i,q (p − n + 1 ≤ q ≤ p) from 1 to 0. We

have d < ( 5+k
16

)(ε2i).

Proof. We prove it by induction on i. When i = 0,

we have ε20 ≤ 1 < 16, so we do exact counting on level i.
Therefore, the number d of batches of decrements in that
interval is 0 < ( 5+k

16
)(ε20).

Assume that in the bit stream f ′e,j for λj-counter of item
e in level j, the number of batches of decrements is less than
( 5+k

16
)(ε2j) for any interval of size k2j in the sliding window.

Consider the bit stream f ′e,j+1 for an item e in level j +1.

If ε2j+1 < 16, we do exact counting on level j + 1 and thus
the number d of decrement operations in that interval is
0 < ( 5+k

16
)(ε2j+1); otherwise, i.e., ε2j+1 ≥ 16, at the time

that level j + 1 is created, the bit stream f ′e,j+1 of item
e in level j + 1 is equal to the one f ′e,j of item e in level
j. Therefore, consider any interval in f ′e,j+1, there are two
intervals A and B, in which interval A is copied from level
j and interval B is produced after the level j + 1 is created,
i.e., by the scheme instance of level j + 1. There are two
possible cases for an interval I of size k2j+1 in f ′e,j+1:

Case 1. The first k12
j+1 bits of the interval I is in interval

A while the remaining k22
j+1 bits of the interval I is in

interval B, where k1 + k2 = k, k1 > 0 and k2 ≥ 0. Let
dA be the number of batches of decrements in interval A for
interval I, and dB be the number of batches of decrements in
interval B for interval I. Since k12

j+1 = 2k12
j , by induction

hypothesis, we have dA = ( 5+(2k1)
16

)(ε2j). For analysis of
dB , we use arguments similar to that in Lemma 9. Let
ne,i(Wp−n) be the number of 1-bits of fe over Wp−n and
n′e,i(Wp−n) be the number of 1-bits of f ′e,i over Wp−n. When

f ′e,j is copied to level j + 1, there are at most 2j items in
the sliding window in all the 16

ε
λj-counters in level j. Let

bit t be the first bit in interval B. Therefore, in level j + 1,
just before executing Update(t), there are at most 2j items
in the sliding window in all the 16

ε
λj+1-counters in level

j + 1. By similar arguments used in the proof of Lemma 9,
we have v(Ce) ≤ n′e(Wp) + 2λj+1 = ne(Wp) + ε2j+1/8 and
hence

dB <
2j + 16

ε
( ε2j+1

8
) + k22

j+1

16
ε

=
(5 + 2k2)ε2

j

16

Therefore, the number d of batches of decrements in I is

d = dA + dB <
(5 + 2k1)ε2

j

16
+

(5 + 2k2)ε2
j

16

=
(10 + 2k)ε2j

16
=

(5 + k)ε2j+1

16

Case 2. The interval I of size k2j+1 is in interval B only.
Just before executing Update on the first bit in interval I,
there are at most 2j+1 items in the sliding window in all
16
ε

window counters. By similar arguments in the proof in
Lemma 9, the number d of batches of decrements in in-

terval I is smaller than (2j+1 + 16
ε

( ε2j+1

8
) + k2j+1)/ 16

ε
=

(3+k)ε2j+1

16
< (5+k)ε2j+1

16
.



Theorem 14. Suppose Wp is the sliding window. The
above scheme will return a set B of items such that every
item in B must occur at least (θ−ε)n times in Wp, and any
item that occurs more than θn times in Wp must be in B.

Proof. When query, the answer is from the highest level,
i.e., level h. If h = 0, since ε20 < 16, the answer is from
exact counting and is correct; otherwise, the sliding window
is of size n = (1 + k)2h−1 = ( 1+k

2
)2h where 0 < k ≤ 1. Let

ne be the number of 1-bits of fe over Wp. For any item e,
by Lemma 13 and arguments similar to that in Lemma 10,
we have v(Ce)− 2λh ≤ ne and

v(Ce)− 2λh ≥ ne − d− ε2h

8
> ne − (5 + 1+k

2
)ε2h

16
− ε2h

8

= ne − (15 + k)ε2h

32
> ne − εn

Therefore, if an item e is in the set B, we have (θ− ε)n ≤
v(Ce) − 2λh ≤ ne. Thus, every item in B must occur at
least (θ − ε)n times in Wp. On the other hand, if an item
e is not in B, we have (θ − ε)n > v(Ce) − 2λh > ne − εn,
i.e., ne < θn. Therefore, any item that occurs more than θn
times in Wp must be in B.

Theorem 15. The above scheme uses O( 1
ε

log(εn)) space.

Proof. There are totally h + 1 levels, where 2h−1 < n ≤
2h. Since ε20 < 16, we do exact counting in level 0. Suppose
we are doing exact counting from level 0 to level j where
1 ≤ j ≤ 2h and we use the scheme instances for fixed-size
sliding window from level j + 1 to level h. Since level j is
doing exact counting, we have ε2j < 16, i.e., 2j < 16/ε.
The space required for all levels that do exact counting is
O(

∑
0≤k≤j 2k) = O(2j ∑

0≤k≤j 1/2k) = O(2j+1) = O( 1
ε
).

Consider the number m of level using the scheme instances
for fixed-size sliding window. If j = h, we have m = 0;
otherwise, level j +1 exists and we have ε2j+1 ≥ 16, so that
m = h− j = log(2h/2j) < log(2n/(8/ε)) = log(εn/4). Since
each scheme instance requires O( 1

ε
) space, the total space

required is O( 1
ε

+ m
ε

) = O( 1
ε

log(εn)).
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