
Title New results on online job scheduling and data stream
algorithms

Author(s) Lee, Lap-kei; 李立基

Citation

Issue Date 2009

URL http://hdl.handle.net/10722/55575

Rights unrestricted

Abstract of thesis entitled

“New Results on Online Job Scheduling
and Data Stream Algorithms”

Submitted by

Lee Lap Kei

for the degree of Doctor of Philosophy

at The University of Hong Kong in April 2009

This thesis presents several new results on online job scheduling and data stream

algorithms.

Job scheduling is a fundamental problem in computer science, which has been stud-

ied extensively and has applications in practical computer systems. Traditionally, the

primary concern of job scheduling was the system performance. One commonly used

“quality of service” measurement is the total flow time (or equivalently average response

time) of jobs, which measures how long each job has to wait before it completes. The

increasing computing power of processors is accompanied with dramatic increase in their

energy consumption. To be more energy efficient, many modern processors now adopt

the technology of dynamic speed scaling, where the processor can adjust its speed dy-

namically in some range. Running a job at a slower speed saves energy, yet it takes longer

time and may affect the performance.

This thesis studies the tradeoff between flow time and energy and aims at finding

algorithms that minimize their sum. We consider the online setting, where the information

of a job is known only when it is released. To schedule a single processor, we introduce

and analyze a speed scaling algorithm which is more efficient for flow plus energy and

more stable to speed change than existing speed functions. Notice that a processor can

actually go to a sleep state for further energy saving, yet waking up from sleep requires

extra energy. We initiate the study in a model that exploits both speed scaling and

multiple sleep states. We also consider scheduling on multi-processors, given that multi-

core processors are getting common. In some applications like operating systems, job size

is only known when the job finishes, which is referred to as the non-clairvoyant model.

We also derive a competitive algorithm in such model.

This thesis also considers monitoring statistics on a data stream, which has become

a common form of data in many applications such as network monitoring and telecom-

munications. Since data items are time sensitive, we consider the sliding window model,

which only queries the most recent items received by the stream.

We first study space-efficient algorithms. The challenge is how to represent massive

data volume in a window, while allowing certain statistics to be computed with sufficient

accuracy. One fundamental problem is to estimate the count of 1-bits in a bit stream,

yet its memory requirement is too much for many applications. Observing that good

estimate is often required only when the count is large enough, we introduce the Significant

One Counting problem, which requires much smaller memory, and give a space-optimal

algorithm. We also give another space-optimal algorithm for identifying frequent items.

Finally, we study communication-efficient algorithms for continuous monitoring of

multiple, distributed data streams. The concern is how to minimize the communication

between individual streams and a coordinator, while allowing the coordinator, at any

time, to report the global statistics of all streams with sufficient accuracy. We initiate

the study in the sliding window model.

(493 words)

New Results on Online Job Scheduling
and Data Stream Algorithms

by

Lee Lap Kei
B.Eng. H.K.

A thesis submitted in partial fulfillment of the requirements for

the Degree of Doctor of Philosophy

at The University of Hong Kong

April 2009

Declaration

I declare that this thesis represents my own work, except where due acknowledgement

is made, and that it has not been previously included in a thesis, dissertation or report

submitted to this University or to any other institutions for a degree, diploma or other

qualification.

Signed by .

Lee Lap Kei

i

Acknowledgements

First of all, I would like to express my profound thanks and gratitude to my advisor,

Prof. Tak-Wah Lam, for granting me the opportunity for pursuing the PhD degree under

his guidance. He is a wonderful teacher as well as an excellent mentor. When I was

an undergraduate student, his course Discrete Mathematics had aroused my interest in

theoretical computer science which motivated me to do further research. During my

postgraduate study, whenever I encounter problems in my research and even in my life,

he has been willing to discuss them with me and gave me many stimulating comments

and insightful suggestions. I am deeply grateful for his continuous guidance, support,

encouragement and tolerance which enabled me to accomplish the work for this thesis.

I would also like to thank Prof. Francis Chin, Dr. Hing-Fung Ting, and Dr. Siu-Ming

Yiu, who helped me to build up my knowledge of algorithms. My special thanks go to

Dr. Hing-Fung Ting, who has spent lots of time teaching me research skills and discussing

with me on research. He has also given me great support and advice, which have helped

me a lot throughout my studies.

My co-authors helped me greatly in doing research. I am much indebted to H. L. Chan,

W. T. Chan, X. Han, R. Hung, K. S. Mak, K. Pruhs, I. To and P. Wong for the discussions

that provide me with enlightening views of the research problems which I have struggled.

I have to thank my colleagues P. Y. Chan, C. W. Fok, P. Y. Fung, S. Huang, K. S. Liu,

C. M. Leung, S. Y. Leung, M. H. Siu, S. L. Tam, M. K. Wu, L. Yan, B. Yang, D. Ye,

W. Zhang and Y. Zhang for bringing me many joyful moments in my postgraduate life.

I would like to offer my genuine thanks to my parents and my sister for their love and

patience over the years. They are always by my side to give me their support and care

whenever I am confused and frustrated. I am obliged to my grandparents, especially my

grandma, for their love and care and giving me the good memories. I am also extremely

grateful to Cherry Nga-In Wu for her care, patience and spiritual support. Her endless

love is always with me whatever happens.

Remarks. Sections 2, 3 and 4 of this thesis are joint work with Tak-Wah Lam,

Isaac To and Prudence Wong, which appeared in Proceedings of European Symposium

on Algorithms (ESA), 2008, and Proceedings of International Colloquium on Automata,

Languages and Programming (ICALP), 2009, and IEEE Transactions on Parallel and Dis-

tributed Systems, 2008, and Proceedings of ACM Symposium on Parallelism in Algorithms

ii

and Architectures (SPAA), 2008. Part of Section 5 is joint work with Ho-Leung Chan,

Jeff Edmonds, Tak-Wah Lam, Alberto Marchetti-Spaccamela and Kirk Pruhs, which ap-

peared in Proceedings of International Symposium on Theoretical Aspects of Computer

Science (STACS), 2009. Sections 6 is the joint work with Hing-Fung Ting, which appeared

in Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), 2006, and

Proceedings of ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems (PODS), 2006. Section 7 is the joint work with Ho-Leung Chan, Tak-Wah Lam

and Hing-Fung Ting.

iii

Contents

1 Introduction 1

1.1 Online Job Scheduling . 1

1.1.1 Flow-energy scheduling on single processor 3

1.1.2 Flow-energy scheduling with sleep states 5

1.1.3 Non-migratory multi-processor flow-energy scheduling 7

1.1.4 Non-clairvoyant flow-energy scheduling 10

1.2 Data Stream Algorithms . 12

1.2.1 Space-efficient data stream algorithms 14

1.2.2 Communication-efficient data stream algorithms 17

1.3 Organization . 20

2 Flow-Energy Scheduling on Single Processor 21

2.1 Speed Function AJC and Algorithm SRPT-AJC 22

2.2 Analysis for Infinite Speed Model . 23

2.3 Analysis for Bounded Speed Model . 26

3 Flow-Energy Scheduling with Sleep States 28

iv

3.1 Model and Notations . 29

3.2 Sleep Management Algorithm IdleLonger 30

3.2.1 Sleep management algorithm for a single sleep state 31

3.2.2 Sleep management algorithm for m ≥ 2 sleep states 34

3.3 Speed Scaling Algorithm SAJC . 37

3.4 Bounded Speed Model . 40

4 Non-migratory Multi-processor Flow-Energy Scheduling 48

4.1 Preliminaries . 50

4.2 The Online Algorithm . 53

4.3 Jobs of Power-of-2 Size . 55

4.3.1 Eliminating migration in a multi-processor schedule of parallel jobs 59

4.3.2 Forward transformation of schedules: from J to J∗ 62

4.3.3 Backward transformation of schedules: from J∗ to J+ and then to J 64

4.4 Jobs of Arbitrary Size . 67

4.4.1 Restricted but useful optimal schedules 67

4.4.2 Constructing CRR schedules . 70

4.4.3 Optimal migratory schedules . 77

4.5 Lower Bound . 80

5 Non-clairvoyant Flow-Energy Scheduling 81

5.1 Batched Jobs . 82

5.1.1 Comparing WRR-AJW∗ against HDF-AJW∗ 83

v

5.1.2 Analysis of SJF-AJC∗ . 85

5.1.3 Analysis of HDF-AJW∗ . 86

5.2 Arbitrary Jobs . 90

5.3 Sleep States . 94

6 Space-efficient Data Stream Algorithms 98

6.1 Significant One Counting . 100

6.1.1 Lower bound . 100

6.1.2 An one-level data structure . 103

6.1.3 Improvement in memory: a multilevel data structure 109

6.1.4 Improvement in time: the optimal data structure 111

6.2 Finding Frequent Items over Sliding Window 113

6.2.1 λ-snapshot and λ-counter . 114

6.2.2 Finding (θ, ε)-frequent item set 118

6.2.3 Algorithm extensions . 122

7 Communication-efficient Data Stream Algorithms 130

7.1 Basic Counting . 132

7.2 Approximate Counting of All Items . 137

7.2.1 A simple algorithm . 138

7.2.2 The full algorithm . 141

7.3 Other Extensions . 144

7.3.1 Frequent items . 145

vi

7.3.2 Quantiles . 145

7.3.3 Out-of-order streams . 146

7.4 Lower Bounds . 146

8 Conclusion 150

8.1 Future Work . 152

vii

Chapter 1

Introduction

This thesis presents several new results on online job scheduling and data stream algo-

rithms. Below, we will give an overview of the problems we consider, review the related

work and state our contributions.

1.1 Online Job Scheduling

Job scheduling and flow time. Job scheduling is a classical and fundamental problem

in computer science, which has been studied extensively and has applications in practical

computer systems, e.g., operating systems, web servers and database query servers (see,

e.g., [11,70,87] for a survey). The basic situation to study is as follows. We are given one

or more processors. Jobs are released at different times, with different work requirement

(or size). A scheduling algorithm has to select, at any time, a job to execute on each

processor. Note that each job can be scheduled on at most one processor at any time.

Preemption is allowed and a preempted job can be resumed at the point of preemption.

One commonly used “quality of service” measurement for job scheduling is total flow time

(or equivalently, average response time) [7,8,26,27,69,72]. The flow time (or simply flow)

of a job is the time elapsed since the job arrives until it is completed; in other words, it

measures how long the user of the computer system has to wait for the job to complete.

The objective of a scheduling algorithm is to minimize the total flow time of all jobs.

1

Chapter 1. Introduction 2

Online algorithms and competitive analysis. In the online setting, we only know

the information of jobs released so far. This is in contrast to the offline setting, where

the complete job sequence is known in advance. In theoretical computer science, the

performance of online algorithms is usually evaluated using competitive analysis, which

is introduced in the seminal paper of Sleator and Tarjan [89]. Competitive analysis is

a worst-case comparison between an online algorithm and the optimal offline algorithm.

Formally speaking, given a cost function to minimize, such as total flow time, an online

algorithm is said to be c-competitive if for any input sequence, the cost incurred is never

more than c times the cost required by an optimal offline algorithm. For more details

about competitive analysis, Borodin and El-Yaniv’s book [19] is a good reference. For

flow time scheduling, it is well-known that the online algorithm SRPT (shortest remaining

processing time) is optimal, i.e., 1-competitive, for total flow time [11].

Energy concern. In the last few years, the increasing computing power of processors

has caused dramatic increase in their energy consumption. This not only leads to high

cooling costs but also to substantially reduced battery life in laptops and other mobile

devices. Companies such as IBM, Intel and AMD have made power aware design a key

priority and even scrapped the development of faster processors in favor of lower power

ones. To be more energy efficient, many modern processors now adopt the technology of

dynamic speed (voltage) scaling (see, e.g., [50,80,90]), where the processor can adjust its

speed dynamically in some range without any overhead. For example, IBM’s PowerPC

970FX [85] allows the operating system to dynamically vary the speed (with zero over-

head) at various discrete points from 2.5GHz to 625MHz while the power consumption

reduces from 100W to less than 10W. Running a job at a slower speed is more energy

efficient, yet it takes longer time and may affect the performance. Recently, there are a

lot of theory research on online job scheduling taking dynamic speed scaling and energy

usage into consideration (e.g., [2, 3, 15, 16, 21, 23, 84, 92]; see [55] for a survey). The chal-

lenge basically arises from the conflicting objectives of providing good “quality of service”

(e.g., total flow time) and conserving energy.

Speed scaling models. The above results are based on a speed scaling model in

which a processor, when running at speed s, consumes energy at the rate of sα, where

α is typically 2 [76] or 3 (the cube-root rule [20])1. In the infinite speed model [92], a

processor can run at any speed between 0 and ∞. A more realistic model, known as the

1In reality, this does not hold at very low speeds due to leakage power effects that do not scale with
speed.

Chapter 1. Introduction 3

bounded speed model [23], imposes a bound T on the maximum processor speed.

Flow-energy scheduling. The objectives flow time and energy are competing. To

better understand the tradeoff between them, Albers and Fujiwara [2] proposed combining

the dual objectives into a single one of minimizing the sum of total flow time and energy2,

which we refer to as flow-energy scheduling. The intuition is that, from an economic

viewpoint, flow time and energy can each be measured in money terms; thus it can be

assumed that users are willing to pay one unit of energy to reduce a certain units (say,

ρ units) of flow time. A large value of ρ means that energy is more of a concern; on the

other hand, if ρ = 0, the problem reduces to the traditional flow time scheduling. In

general, the objective is to optimize the total flow time plus ρ times the energy used. For

positive ρ, by changing the units of either time or energy, one can further assume without

loss of generality that ρ = 1 and thus would like to optimize total flow time plus energy.

In this thesis, we focus on online flow-energy scheduling and we study four problems,

namely, flow-energy scheduling on a single processor, flow-energy scheduling with sleep

states, non-migratory multi-processor flow-energy scheduling, and non-clairvoyant flow-

energy scheduling. We introduce these four problems in the following sections.

1.1.1 Flow-energy scheduling on single processor

We first consider flow-energy scheduling on a single processor. Under the infinite speed

model, Albers and Fujiwara [2] focused on scheduling jobs of unit size, and they gave

an 8.3e((3 +
√

5)/2)α-competitive algorithm for minimizing total flow time plus energy.

Bansal, Pruhs and Stein [16] extended their work to jobs of arbitrary sizes. They gave

an O(1)-competitive online algorithm for minimizing flow time plus energy; precisely, the

competitive ratio is µεγ1, where ε is any positive constant, µε = max{(1 + 1
ε
), (1 + ε)α}

and γ1 = max{2, 2(α− 1)/(α− (α− 1)1−1/(α−1))}. E.g., if α = 2, the competitive ratio is

5.236. More recently, Bansal, Chan, Lam and Lee [12] adapted this result to the bounded

speed model. Assuming that the online algorithm can have a higher maximum speed of

(1 + ε)T for any ε > 0, the competitive ratio in this case increases slightly to µεγ2, where

γ2 = 2α/(α− (α−1)1−1/(α−1)) = (2+o(1))α/ ln α. Table 1.1 shows the competitive ratios

2Sum of objectives are common in bi-objective optimizations, e.g., TCP acknowledgement prob-
lem [39,63] with sum of acknowledgement cost and acknowledgement delays as objective, network design
problem [43] with total hardware and QoS costs, and the facility location problem [33] with facility
installation and client service costs.

Chapter 1. Introduction 4

α = 2 α = 3

Infinite speed 5.236 [16] 7.940 [16]
model (T = ∞) 2.667 [our result] 3.252 [our result]
Bounded speed 10.472 with max speed 1.618T [12] 11.910 with max speed 1.466T [12]

model 3.6 with max speed T [our result] 4 with max speed T [our result]

Table 1.1: Results on flow-energy scheduling. Note that our new results do not demand
extra speed.

for some fixed α. Both results also hold for weighted flow time plus energy, where jobs

may carry different weights.

Follow-up questions. The speed function of the algorithms by Bansal et al. [12,16]

depends on the remaining work of “active” jobs (i.e., jobs that have not been completed).

There are some questions related to such a speed function.

• Work-based speed functions would demand the processor speed to change continu-

ously which is undesirable practically. Can one design a more stable speed function

that changes in a discrete manner?

• The algorithm in [12] requires extra speed. In contrast, the classic result on flow-

time scheduling does not need extra speed [11]. This is perhaps due to the inef-

ficiency of the work-based speed functions; specifically, they are sometimes slower

than a critical threshold ((n
α−1

)1/α where n is the number of active jobs). When this

happens, we can decrease the flow time plus energy by increasing the speed. It is

natural to ask whether a speed function that never goes below this threshold can

work without extra speed and gives a better competitive ratio.

Our contribution. We answer affirmatively the above questions by introducing a

new speed function AJC that depends on the number of active jobs. AJC is more stable,

changing speed only at job arrival or completion. Using AJC leads to improvements in

both the infinite and bounded speed models, as shown below.

Speed function AJC. AJC is defined such that at any time t, the speed is n(t)1/α,

where n(t) is the number of active jobs at time t. We use SRPT (instead of SJF (shortest

job first) in [12, 16]) to select jobs. This algorithm is more competitive for minimizing

flow time plus energy and does not demand extra speed: for the infinite and bounded

speed model, the competitive ratios are respectively β1 = 2/(1 − α−1
αα/(α−1)) and β2 =

Chapter 1. Introduction 5

2(α + 1)/(α − α−1
(α+1)1/(α−1)). Table 1.1 compares these ratios with those in [12, 16]. The

improvement is more significant for large α, as β1 and β2 tend to 2α/ ln α, while µεγ1 and

µεγ2 [12, 16] tend to 2(α/ ln α)2.

Technically speaking, the analysis of existing algorithms requires indirect comparison

via a notion called fractional flow. In contrast, we divide the time into “stable intervals”,

and directly compare the flow time of the online algorithm against an optimal offline

algorithm in each interval. This makes the analysis tighter.

Remarks. The theoretical study of energy-efficient scheduling was initiated by Yao,

Demers and Shenker [92]. They considered deadline scheduling in the infinite speed

model, where jobs have deadlines. Their result was improved by Bansal et al. [15], and

extended to the bounded speed model by Chan et al. [23] and Bansal et al. [12]. Pruhs

et al. [83] also studied offline scheduling for minimizing the total flow time on a processor

with a given amount of energy. The offline problem of minimizing the makespan (i.e.,

the maximum job completion time) subject to a fixed amount of energy has also been

studied in [21,84].

1.1.2 Flow-energy scheduling with sleep states

We extend the study of flow-energy scheduling to a model that allows both sleep man-

agement and speed scaling. The problem is to determine when to sleep and for how long,

as well as which job and at what speed to run. Below, we first review the related work

and then state our contributions.

Sleep management. In earlier days, energy reduction was mostly achieved by allow-

ing a processor to enter a low-power sleep state, yet waking up requires extra energy. In

the (embedded systems) literature, there are different energy-efficient strategies to bring

a processor to sleep during a period of zero load [18]. This is an online problem, usually

referred to as dynamic power management. The input is the length of the period, known

only when the period ends. There are several interesting results with competitive analysis

(e.g., [6, 56,62]). In its simplest form, the problem assumes the processor is in either the

awake state or the sleep state. The awake state always requires a static power σ > 0.

To have zero energy usage, the processor must enter the sleep state, but a wake-up back

to the awake state requires ω > 0 energy. In general, there can be multiple intermediate

Chapter 1. Introduction 6

sleep states, which demand some static power but less wake-up energy.

It is natural to study job scheduling on a processor that allows both sleep states and

speed scaling. More specifically, a processor in the awake state can run at any speed

s ≥ 0 and consumes energy at the rate sα + σ, where σ > 0 is static power and sα is

the dynamic power3. Here job scheduling requires two components: a sleep management

algorithm to determine when to sleep or work, and a speed scaling algorithm to determine

which job and at what speed to run. Notice that sleep management here is not the same

as in dynamic power management; in particular, the length of a sleep or idle period is part

of the optimization (rather than the input). Adding a sleep state actually changes the

nature of speed scaling. Assuming no sleep state, running a job slower is a natural way to

save energy. Now one can also save energy by sleeping more and working faster later. It is

even more complicated when flow is concerned. Prolonging a sleeping period by delaying

job execution can save energy, yet it also incurs extra flow. Striking a balance is not

trivial. In the theory literature, the only relevant work is by Irani et al. [57]; they studied

deadline scheduling on a processor with one sleep state and infinite speed scaling. They

showed an O(1)-competitive algorithm to minimize the energy for meeting the deadlines

of all jobs.

Our contributions. We initiate the study of flow-energy scheduling that exploits

both speed scaling and multiple sleep states. We give a sleep management algorithm called

IdleLonger, which works for a processor with one or multiple levels of sleep states. We

adapt the speed scaling algorithm AJC [67] to take the static power σ into consideration.

Under the infinite speed model, this adapted algorithm together with IdleLonger is shown

to be O(1)-competitive for minimizing flow plus energy. More precisely, the ratio is O(α
ln α

)

(recall that α is a constant).

For the bounded speed model, the problem becomes more difficult since the processor,

once overslept, cannot rely on unlimited extra speed to catch up the delay. Nevertheless,

we are able to enhance IdleLonger and AJC to observe the maximum processor speed. It

remains O(α
ln α

)-competitive for flow plus energy under the bounded speed model.

Sleep management algorithm IdleLonger. When the processor is sleeping, it is

natural to delay waking up until sufficient jobs have arrived. The non-trivial case is when

the processor is idle (i.e., awake but at zero speed), IdleLonger has to determine when

3Static power is dissipated due to leakage current and is independent of processor speed, and dynamic
power is due to dynamic switching loss and increases with the speed.

Chapter 1. Introduction 7

to start working again or go to sleep. At first glance, if some new jobs arrive while the

processor is idle, the processor should run the jobs immediately so as to avoid extra flow.

Yet this would allow the adversary to easily keep the processor awake, and it is difficult to

achieve O(1)-competitiveness. In an idle period, IdleLonger considers the (static) energy

and flow accumulated during the period as two competing quantities. Only if the flow

exceeds the energy, IdleLonger would start to work. Otherwise, IdleLonger will remain

idle until the energy reaches to a certain level; then the processor goes to sleep even in

the presence of jobs.

Analysis framework. Apparently, a sleep management algorithm and a speed scal-

ing algorithm would affect each other; analyzing their relationship and their total cost

could be a complicated task. Interestingly, our results stem from the fact that we can

isolate the analysis of these algorithms. We divide the total cost (flow plus energy) into

two parts, working cost (incurred while working on jobs) and inactive cost (incurred at

other times). We upper bound the inactive cost of IdleLonger independent of the speed

scaling algorithm. For the working cost, although it does depend on both algorithms,

our potential analysis of the speed scaling algorithms reveals that the dependency on the

sleep management algorithm is limited to a simple quantity called inactive flow, which

is the flow part of the inactive cost. Intuitively, large inactive flow means many jobs are

delayed due to prolonged sleep, and hence the processor has to work faster later to catch

up, incurring a higher working cost. It is easy to minimize inactive flow at the sacrifice

of the energy part of the inactive cost. IdleLonger is designed to maintain a good bal-

ance between them. In conclusion, coupling IdleLonger with AJC, we obtain competitive

algorithms for flow plus energy.

1.1.3 Non-migratory multi-processor flow-energy scheduling

We extend the study of flow-energy scheduling to the setting with m ≥ 2 processors.

This extension is not only of theoretical interest, as modern processors adopt multi-core

technology (dual-core and quad-core are getting common). A multi-core processor is

essentially a pool of parallel processors. To make our work more meaningful, we aim at

schedules that do not require job migration among processors. In practice, migrating jobs

requires overheads and is avoided in many applications.

Chapter 1. Introduction 8

Multi-processor flow time scheduling. In the older days, when energy was not

a concern, flow time scheduling on multiple processors running at fixed speed was an

interesting problem by itself (e.g., [7, 8, 26, 27, 69, 82]). In the multi-processor setting,

jobs remain sequential in nature and cannot be executed by more than one processor

in parallel. We differentiate two types of schedules: a migratory schedule can move

partially-executed jobs from one processor to another processor without any penalty, and

a non-migratory schedule cannot. Different online algorithms like SRPT and IMD that

are Θ(log P)-competitive have been proposed respectively under the migratory and the

non-migratory model, where P is the ratio of the maximum job size to the minimum job

size [7,8]. Furthermore, Chekuri et al. [26] have shown that IMD is O(1 + 1
ε
)-competitive

when using processors (1 + ε) times faster. If migration is allowed, SRPT can achieve a

competitive ratio one or even smaller, when using sufficiently faster processors [72,79].

Multiprocessor scheduling for flow time and energy. The only previous work

on multi-processors taking flow time and energy into consideration was by Bunde [21],

which is about an offline approximation algorithm for jobs of unit size. As for online

algorithms, no work has been known that takes flow time and energy into consideration.

Our contributions. To balance the energy usage of multiple processors, it is natural

to consider some kind of round-robin strategy to dispatch jobs. Typical examples include

IMD4 for flow time scheduling [7] and CRR for energy-efficient deadline scheduling5 in the

infinite speed model [3]. Our main contribution is to apply CRR (classified round robin)

for optimizing flow time plus energy and give a non-trivial analysis of its performance.

Unlike [3], we apply CRR according to the job size rather than the job density; we classify

jobs according to their sizes. Intuitively, CRR handles different classes independently;

jobs of the same class are dispatched (upon their arrival) to the m processors using a

round-robin strategy. Note that CRR is similar to IMD in the sense that both algorithms

divide jobs into classes according to their size, but IMD is slightly more complicated in job

dispatching. Recall that for minimizing flow time alone, IMD is known to be O(log P)-

competitive [7], and O(1)-competitive when using processors with extra speed [26]; yet

no similar result is known for CRR.

4IMD divide jobs into classes according to their sizes and dispatches a job to the processor with the
smallest accumulated work of jobs of the corresponding class.

5In [3], CRR divides jobs into classes according to their “density” (defined as the job size divided by
the difference between deadline and release time), and dispatch jobs of the same class to the processors
in a round-robin fashion.

Chapter 1. Introduction 9

Flow time Flow time plus energy

Θ(log P) [7, 8]

Θ(log P)
(for jobs with power-of-2 size) [our result]

Ω(log P) [our result]

O(1) using O(1) using
(1 + ε)-speed processors [26] (1 + ε)-speed processors [our result]

Table 1.2: The competitive ratios of non-migratory online algorithms for minimizing flow
time and flow time plus energy (the constant α is absorbed by the big-Oh notation).

Jobs that are dispatched by CRR to the same processor can be scheduled by using any

O(1)-competitive algorithm A that minimizes flow time plus energy on a single processor,

such as the algorithm AJC [67] and the algorithm BCP in the very recent work of Bansal,

Chan and Pruhs [13]. In analyzing the performance of the resulting algorithm, denoted

as CRR-A, we focus on the bounded speed model and compare it against the optimal

offline migratory algorithm using maximum speed T . Note that our analysis can also be

applied to the infinite speed model, though it is of less interest. We show the following

competitiveness of CRR-A for minimizing flow plus energy in the bounded speed model.

Let β be the competitive ratio of algorithm A in the single-processor setting.

• For jobs restricted to power-of-2 size, CRR-A using processors with maximum

speed T is O(log P)-competitive for flow plus energy. More precisely, the com-

petitive ratio is (5.966 log P + 2)β.

• For jobs of arbitrary size, CRR-A is O(1)-competitive when using processors with

slightly higher maximum speed. Precisely, given any ε > 0, let ηε = (1 + ε)α[(1 +

ε)α−1+(1−1/α)(2+ε)/ε2]. CRR-A is (5ηεβ)-competitive for flow plus energy, when

the maximum speed is relaxed to (1 + ε)2T .

Lower bound. For minimizing flow time on multi-processor running at a fixed speed,

Leonardi and Raz [69] showed that any online scheduling algorithm (without extra speed)

is Ω(log P)-competitive. This lower bound can be easily adapted to the problem of

minimizing flow time plus energy in the bounded speed model. That is, any online

algorithm using speed scaling with maximum speed T is Ω(log P)-competitive for flow

plus energy. This lower bound remains valid even if jobs are all with power-of-2 size

(because the original proof in [69] uses only such jobs). In other words, CRR-A when

Chapter 1. Introduction 10

scheduling jobs of power-of-2 size achieves the best possible performance (up to a constant

factor). Table 1.2 shows a summary of the non-migratory results on scheduling for flow

time with or without energy concern.

Eliminating migration offline. The analysis of CRR-A stems from an offline result

to eliminate migration, which is interesting on its own. The cost of eliminating migration

has been investigated in the classical setting such as deadline scheduling [24,60] and flow

time scheduling [7,8]. Our work extends along this line to take energy consumption into

consideration. Roughly speaking, to show that CRR-A is O(log P)-competitive for jobs

of power-of-2 size, the analysis relies on a transformation of an arbitrary job set to an

“m-parallel” job set, which involves modifying the release times forward and backward.

Such transformation increases the flow time plus energy of the resulting schedule by

a factor of O(log P), and it cannot be improved by using extra speed. To show that

CRR-A is O(1)-competitive using extra speed, instead of relying on such transformation,

we have an observation that we can focus on some special schedules called “immediate-

start” schedules, from which we can derive a much simpler algorithm to construct CRR

schedules and exploit the extra speed to show that the flow time plus energy increases by

only a constant factor (rather than an O(log P) factor).

Remarks. It is worth-mentioning that for other scheduling objectives (such as

makespan and deadlines), the literature already contains several multi-processor results

on dynamic speed scaling in the infinite speed model. In particular, Pruhs et al. [84] and

Bunde [21] both studied offline algorithms for the makespan objective. Albers et al. [3]

studied online algorithms for jobs with restricted deadlines.

1.1.4 Non-clairvoyant flow-energy scheduling

We initiate the study of flow-energy scheduling in the non-clairvoyant model. In some

applications like operating systems, job size is only known when the job finishes. This

is referred to as the non-clairvoyant model. This is in contrast to the clairvoyant model

considered in previous sections, where the size of a job is known at release time.

Non-clairvoyant flow time scheduling. The earlier work of non-clairvoyant schedul-

ing focused on batched jobs (i.e., all jobs have the same release time), and Motwani et

al. [74] have shown that the online algorithm Round Robin that shares the processor

Chapter 1. Introduction 11

equally among all jobs is 2-competitive for flow time. There is a matching lower bound of

2 when the number of jobs is large. Kim and Chwa [66] further showed that a weighted

version of Round Robin is also 2-competitive for weighted flow time. For jobs with ar-

bitrary release times, the competitive ratio of deterministic non-clairvoyant algorithm is

Ω(n1/3), and the competitive ratio of every randomized algorithm against an oblivious ad-

versary is Ω(log n) [74], where n is the number of jobs. The deterministic non-clairvoyant

algorithm SETF (shortest elapsed time first) is (1 + ε)-speed O(1 + 1
ε
)-competitive [61].

SETF shares the processor equally among all jobs that have been run the least. This

result has also been generalized to weighted flow time with the same performance [14,66].

The algorithm Round Robin is (2 + ε)-speed O(1 + 1
ε
)-competitive [40]. A randomized

version of the Multi-Level Feedback Queue algorithm is O(log n)-competitive [17,61].

Our contributions. We initiate the study of non-clairvoyant flow-energy scheduling,

and give competitive online algorithm for batched jobs and arbitrary jobs, respectively.

• We first focus on batched jobs, i.e., when all jobs are released at time 0. For schedul-

ing unweighted jobs, we use the speed function AJC∗ = (n
α−1

)1/α, where n is the

total number of active jobs. Coupling with Round Robin, we give an algorithm that

is (2− 1
α
)-competitive in the infinite speed model and 2-competitive in the bounded

speed model. The latter inherits a lower bound of 2 from flow-time scheduling [74].

We can further generalize this algorithm for minimizing weighted flow time plus

energy, and the corresponding ratios become (2− 1
α
)2 and 4, respectively.

• We then consider jobs with arbitrary release times. Under the infinite speed model,

we analyze the nonclairvoyant algorithm whose job selection policy is Latest Arrival

Processsor Sharing (LAPS) [41] and whose speed scaling policy is to run at speed

(1 + 3
α
) times the number of active jobs. LAPS shares the processor equally among

the latest arriving constant fraction of the jobs. We show that this algorithm is

O(α3)-competitive for flow plus energy in the infinite speed model. As a remark,

non-clairvoyant flow-energy scheduling in the bounded speed model remains open.

• We also extend the study of non-clairvoyant flow-energy scheduling to the model

that allows both sleep management and speed scaling (the model is introduced in

Section 1.1.2). Consider a processor with one or multiple sleep states. We adapt

LAPS to take the static power of the processor into consideration. Under the infinite

speed model, this adapted algorithm together with the sleep management algorithm

Chapter 1. Introduction 12

IdleLonger (see Section 1.1.2) is O(α3)-competitive for flow plus energy.

Analysis. To analyze the algorithm for batched jobs, we first prove that the perfor-

mance of our algorithm is close to that of a clairvoyant algorithm based on SJF (shortest

job first) plus the speed function AJC∗, denoted by SJF-AJC∗. Then we show that SJF-

AJC∗ is optimal against any offline algorithm for minimizing flow time plus energy. As

for jobs with arbitrary release times, we use an amortized local competitiveness argument

(see, e.g., [81]). The potential function that we use is an amalgamation of the potential

function used in [41] for the fixed speed analysis of LAPS, and the potential functions

used for analyzing clairvoyant speed scaling policies. When processors have sleep states,

the line of reasoning is similar to that mentioned in Section 1.1.2; we can focus on the

working cost (incurred while working on jobs) of the algorithm, and analyze the working

cost via a potential analysis of the speed scaling algorithm LAPS.

1.2 Data Stream Algorithms

Data streams are common in many applications such as network monitoring, telecommu-

nications and financial monitoring. For example, data packets in network monitoring and

stock transactions in financial monitoring are received and processed in the form of a data

stream. In the last decade, algorithms for continuous monitoring of a single massive data

stream gained a lot of attention (see [1,77] for a survey), and the main challenge has been

how to represent the massive data using limited space, while allowing certain statistics

(e.g., item counts, quantiles) to be computed with sufficient accuracy. The space-accuracy

tradeoff for representing a single stream has gradually been understood over the years

(e.g., [4, 37, 51, 54]). Recently, motivated by large scale networks, the database commu-

nity is enthusiastic about communication-efficient algorithms for continuous monitoring

of multiple, distributed data streams (e.g., [10, 28, 29, 32, 34, 38, 49, 53, 58, 75, 78, 88]). In

this thesis, we present new results on both space-efficient data stream algorithms and

communication-efficient data stream algorithms.

Data stream models. A data stream is a sequence of items from a totally ordered

set U . Each item is associated with a time-stamp recording its creation time. We say

that a data stream is in-order if items arrive in non-decreasing order of their time-stamps;

otherwise, it is out-of-order. The statistics on the data stream can be based on the whole

Chapter 1. Introduction 13

data stream [4, 37, 51, 54] or only the recent items [5, 36, 68]. The latter is motivated

by the emergence of applications in which only the most recent items in a data stream

are important in computing statistics and aggregates. For example, in a stream of stock

market data, a software may need to track the moving average of the price of a stock over

all observations made in the last hour. In network monitoring, it is useful to monitor the

volume of traffic destined to a given node during the most recent window of time. Recent

items can be modeled by two types of sliding windows [9,35]. Let W be the window size,

which is a positive integer. The count-based sliding window includes the last W items in

the data stream, while the time-based sliding window includes items whose time-stamps

are within the last W time units. The latter assumes that zero or more items can arrive

at a time. Note that items in a sliding window will expire and are more difficult to handle

than in the whole data stream. For example, counting the frequency of a certain item

in the whole stream can be done easily by maintaining a single counter, yet the same

problem requires space Θ(1
ε
log2(εW)) bits even if we allow a relative error of at most

ε [35, 46]. In fact, the whole data stream model can be viewed as a special case of the

sliding window model with window size being infinite. Also, a count-based window is a

special case of a time-based window in which exactly one item arrives at a time.

ε-Approximate queries. We will study algorithms for answering four types of

classical ε-approximate queries, defined as follows. Let 0 < ε < 1 be the user-specified

error bound. For any stream σ, let cj,σ and cσ be the count of item j and all items,

respectively, in the current window. Denote cj =
∑

σ cj,σ and c =
∑

σ cσ.

• Basic Counting. Return an estimate ĉ on the total count c such that |ĉ − c| ≤ εc.

(Note that this query can be generalized to count data items of a fixed subset

X ⊆ U ; the literature often refers to the special case with U = {0, 1} and X = {1}.)

• Approximate Counting. Given any item j, return an estimate ĉj on the count of

item j such that |ĉj − cj| ≤ εc.

• Frequent Items. Given any user-specified threshold 0 < φ < 1, return a set F ⊆ U

which includes all items j with cj ≥ φc and possibly some items j′ with cj′ ≥ φc−εc.

• Quantiles. Given any 0 < φ < 1, return an item whose rank is in [φc− εc, φc + εc],

where the rank of an item is its position in the sorted arrangement of all items in

the current window. We call any item with rank dφne a φ-quantile.

Chapter 1. Introduction 14

1.2.1 Space-efficient data stream algorithms

We study space-efficient data stream algorithms. To answer a statistics on a data stream,

we need to handle a huge volume of items from the stream, usually in the order of

gigabytes a second, and as the stream passes we have only a few nanoseconds to react

to each item. Furthermore, we usually have stringent memory, e.g., the routers used

in network monitoring are relatively cheap and have small main memory. Thus, any

algorithm for answering the statistics on a data stream must have extremely fast update

and query time, and use small memory space.

We focus on the count-based sliding window model. We introduce a new problem

called Significant One Counting, which is more flexible in space-accuracy tradeoff than

the basic counting problem. We also study finding approximate frequent items.

Basic Counting. The basic counting problem is proposed by Datar et al. [36]. Recall

that the problem is to estimate, at any time, the number of 1-bits in a count-based sliding

window of size W such that the relative error of the estimate is bounded by ε (see the

formal definition in Section 1.2). Datar et al. [36] gave an algorithm for the problem

that uses O(1
ε
log2(εW)) bits of memory and has O(log W) update time and O(1) query

time. They also proved that any algorithm for the problem must use Ω(1
ε
log2(εW)) bits

of memory. Later, Gibbons et al. [46] gave an improved algorithm; it uses the same

O(1
ε
log2(εW)) bits of memory and has O(1) query time, and the update time is reduced

to O(1). Note that this algorithm has the optimal time and space complexity.

Finding frequent items in the whole data stream. Another data stream problem

that is closely related to basic counting is the problem of finding frequent items (see the

formal definition in Section 1.2). Roughly speaking, for basic counting, we keep track of

the count of a particular type of data item, while for frequent items, we need to keep

track of the counts of many items. Finding frequent items is useful in many applications.

For example, a flow in a network can be modeled as a continuous stream of items such as

source/destination addresses of the TCP/UDP packets. Identifying frequent items in such

stream has find important applications in network monitoring and data mining. There are

many algorithms for identifying frequent items [25,31,42,44,59,64,71] in the whole data

stream. Many of these algorithms use random sampling; they make assumptions on the

distribution of the item frequencies and the quality of their results are only guaranteed

probabilistically. Recently, Karp et al. [64], and independently, Demaine et al. [37],

Chapter 1. Introduction 15

rediscovered a deterministic algorithm of Misra and Gries [73] (the MG algorithm), which

can easily be adapted to find ε-approximate frequent items in the whole data stream

without making any assumption on the distribution of the item frequencies. The MG

algorithm is simple and elegant; it needs 1/ε simple counters (each occupies a word6) to

count the items in the stream. The update operation involves only the increment (i.e.,

+1) or decrement (i.e., -1) of some of these counters.

Finding frequent items over sliding window. As for identifying frequent items

over a count-based sliding window, Golab et al. [47] gave some heuristics for the problem

and showed empirically that they worked well. Later, Golab et al. [48] gave an algorithm

for the problem when the item frequencies are multinomially-distributed. Arasu and

Manku [5] gave the first deterministic algorithm for finding ε-approximate frequent items;

it supports O(1
ε
log 1

ε
) query and update time and uses O(1

ε
log2(1

ε
)) words of space. Their

algorithm divides the sliding window into a collection of possibly overlapping sub-windows

with different sizes. As the sliding window shifts, it applies the MG algorithm to each of

these sub-windows to find the frequent items in these sub-windows. These sub-windows

are organized cleverly into levels so that whenever there is a query on the frequent items,

we can traverse these web of sub-windows efficiently to identify the frequent items.

Our contributions. Recall that the basic counting problem requires Θ(1
ε
log2(εW))

bits of memory. Unfortunately, this memory requirement is still too much to be practical

in many applications. We break the Ω(1
ε
log2(εW)) memory requirement barrier, not by

giving a better algorithm (which is impossible), but by defining a new problem. The

lower bound of Ω(1
ε
log2(εW)) bits [36] for basic counting comes from the fact that any

correct algorithm should cover all cases; in particular, it needs to guarantee the relative

error bound even when the window has only a few 1-bits. However, this is not a require-

ment for many applications, e.g., telecommunication and financial monitoring. For such

applications, if the actual number of 1-bits in the window is small, it is enough to know

that it is small and an estimate with a bounded relative error is not required. E.g., in

telecommunications, it is usually the case that users with usage above some threshold are

charged by usage while the rest are charged by some fixed rate. These applications are

called threshold accounting in [42], and for them we introduce the following problem:

Significant One Counting. For a stream of bits, let c be the number of

6By convention, the memory usage for finding frequent items is stated in terms of word (i.e., log N
bits for a stream of N items).

Chapter 1. Introduction 16

1-bits in the current sliding window (of size W). Given a threshold 0 < θ < 1,

and a relative error bound 0 < ε < 1, the problem is to return an estimate ĉ

of the number c of 1-bits such that if c ≥ θW , we have |ĉ− c| ≤ εc.

Optimal algorithm for significant one counting. We assume that ε ≥ 1
θW

;

otherwise the error bound will force us to find the exact number of 1-bits in the stream.

Note that when θ = 1/W , our problem becomes the basic counting problem. We first

prove a lower bound on the memory of any algorithm for the significant one counting

problem. We show that any algorithm for the problem must have memory at least

Ω(1
ε
log2(1

θ
) + log(εθW)) bits. Then, we give an algorithm that has constant update

and query time, and uses memory matching the lower bound, i.e., the algorithm has the

optimal time and space complexity. This algorithm returns an estimate ĉ of the number

c of 1-bits in the sliding window such that if c ≥ θW , then c ≤ ĉ ≤ c+ εc, and if c < θW ,

then c ≤ ĉ ≤ c + εθW . Note that the algorithm becomes an optimal algorithm for basic

counting when we set θ to 1/W . On the other hand, for any fixed θ, its memory usage is

only O(1
ε

+ log(εW)) bits, which is much smaller than Θ(1
ε
log2(εW)) bits.

Application to finding frequent items. Our algorithm for significant one counting

is simple and easy to implement, and can be used directly to the problem of finding

frequent items over a count-based sliding window of size W . Recall that U is the universe

of data items. Given the error bound ε and the threshold φ ≥ ε for the frequent items

problem, we can use |U | instances of the algorithm for significant one counting; the total

memory usage is O(|U |(1
ε
log2(1

φ
) + log(εφW))) bits. When the size of the universe U is

small, this result is better than the algorithm of Arasu and Manku [5], whose memory

usage is O(1
ε
log2(1

ε
)) words, or equivalently, O(1

ε
log2(1

ε
) log W) bits.

Space-optimal algorithm for finding frequent items. We also give another de-

terministic algorithm for the ε-approximate frequent items problem over sliding window.

This algorithm supports O(1
ε
) update and query time, and uses O(1

ε
) words of space.

This substantially improves Arasu and Manku’s result. Note that our memory usage

is essentially optimal; the number of frequent items can be Ω(1
ε
) in the worst case and

thus any algorithm must use Ω(1
ε
) words of memory. More importantly, this algorithm

is much simpler than Arasu and Manku’s result; our algorithm has about twenty lines of

codes. It uses only O(1
ε
) simple variables and O(1

ε
) queues, and the total length of these

queues is O(1
ε
). To update these data structures when the window slides, we need only to

increment/decrement some of the variables for most cases, and we seldom need to insert

Chapter 1. Introduction 17

or delete entries in the queues.

Variable-size count-based sliding window. By adapting a technique in [5], we

extend our algorithm to identify frequent items in a sliding window whose size can be

changed by the user. As pointed out in [5], fixed- and variable-size window capture the

essential features of many common types of windows, e.g., time-based sliding window.

1.2.2 Communication-efficient data stream algorithms

Finally, we study communication-efficient algorithms for continuous monitoring of multi-

ple, distributed data streams. The problems studied are best illustrated by the following

puzzle. John and Mary work in different laboratories and communicate by telephone only.

In a forever-running experiment, John records which devices have an exceptional signal

in every 10 seconds. To adjust her devices, Mary at any time needs to keep track of the

number of exceptional signals generated by each device of John in the last one hour. John

can call Mary every 10 seconds to report the exceptional signals, yet this requires too

many calls in an hour and the total message size per hour is linear to the total number

N of exceptional signals in an hour. Mary’s devices actually allow some small error. Can

the number of calls and message size be reduced to o(N), or even poly-log N if a small

error (say, 0.1%) is allowed? In general, is there an efficient way to trade accuracy for less

communication? It is important to note that the input is given online and Mary needs to

know the answers continuously; this makes the problem different from those studied in

the classical communication complexity model of Yao [91], in which all inputs are given

in advance and the two parties need to compute an answer only once.

Continuous monitoring of multiple, distributed data streams. The formal

problem is as follows. We have k ≥ 1 remote sites each monitoring a data stream, and

there is a root (or coordinator) responsible for computing some global statistics. A re-

mote site needs to maintain certain statistics itself, and has to communicate with the

root often enough so that the root can compute, at any time, the statistics of the union

of all data streams within a certain error. The objective is to minimize the communi-

cation. We will study the four classical ε-approximate queries, namely, basic counting,

approximate counting, frequent items and quantiles. The communication aspects of data

streams introduce several challenging theoretical questions such as what is the optimal

communication-accuracy tradeoff for maintaining a particular statistic, and whether two-

Chapter 1. Introduction 18

way communication is inherently more efficient than one-way communication.

Previous works. Gibbons and Tirthapura [45, 46] are among the first to study the

distributed data streams; they considered the case where the root is required to compute

the statistics only at fixed times (rather than at any time); see also [71]. Recently, the

database literature has a flurry of results on continuous monitoring of distributed data

streams [10,28,29,32,34,38,49,53,58,75,78,88]. The algorithms studied can be classified

into two types: one-way algorithms only allow messages sent from each remote site to the

root, and two-way algorithms allow bi-directional communication between the root and

each site. One-way algorithms are often very simple as a remote site has little information

and all it can do is to update the root when its local statistics deviate significantly from

those previously sent. On the other hand, most two-way algorithms are complicated and

often involve non-trivial heuristics. It is commonly believed in the database community

that two-way algorithms are more efficient; however, for most existing two-way algo-

rithms, their worst-case communication costs are still waiting for rigorous mathematical

analysis, and existing works often rely on experimental results.

The literature contains several results on the mathematical analysis of the worst-case

performance of one-way algorithms. They are all for the easier whole data stream setting.

Keralapura et al. [65] studied the thresholded-count problem, which leads to an algorithm

for basic counting with communication cost O(1
ε
log n) words per stream, where n is the

number of items in that stream7. Cormode et al. [29] gave a one-way algorithm for

quantiles with communication cost O(1
ε2 log n) words per stream. They also showed how

to handle frequent items via a reduction to quantiles, the communication cost remains

the same. More recently, Yi and Zhang [93] improved the communication cost of frequent

items to O(1
ε
log n) words, and that of quantiles to O(1

ε
log2(1

ε
) log n) words.

There have been attempts to devise heuristics to extend the above whole-data-stream

algorithms to sliding windows, yet not much has been known about their worst-case per-

formance. For example, Cormode et al. [29] have extended their algorithms for quantiles

and frequent items to sliding window. They believed that the communication cost would

only have a mild increase, but they did not give supporting analysis. The analysis of

sliding-window algorithms is more difficult because the expiry of items destroys some

monotonic property that is important to the analysis for whole data stream.

7If based on k > 1 remote sites, the total communication cost can be stated as O(k
ε log N

k), where N
is the total number of items received over all streams.

Chapter 1. Introduction 19

Basic Counting Approixmate Counting/ Quantiles
(bits) Frequent items (words) (words)

O(1
ε log n) words [65]

O(1
ε log n) [93] O(1

ε log2(1
ε) log n) [93]

Whole data stream Θ(1
ε log(εn)) bits

O(1
ε log n) O(1

ε2 log n)

Ω(1
ε log(εn))

Sliding window Θ(1
ε log(εB))

O(1
ε log B) O(1

ε2 log B)

Ω(1
ε log(εB))

Sliding window &
O((W

W−τ)1
ε log(εB)) O((W

W−τ)1
ε log B) O((W

W−τ) 1
ε2 log B)

Out-of-order streams
Ω(max{ W

W−τ , 1
ε log(εB)}) Ω(max{ W

W−τ , 1
ε log(εB)})

Table 1.3: Communication cost for each remote site.

Our contributions. We give the first mathematical analysis of the communication

cost in the sliding window model. We derive lower bounds on the worst-case communica-

tion cost of any two-way algorithm (and hence any one-way algorithm) for answering the

four types of ε-approximate queries. More interestingly, we analyze some common-sense

algorithms that use one-way communication only and prove that their communication

costs match or almost match the corresponding lower bounds. These results demonstrate

optimal or near optimal communication-accuracy tradeoffs for supporting these queries

over the sliding window. Furthermore, our work reveals that two-way algorithms could

not be much better than one-way algorithms (at least in the worst case).

Below we state the lower and upper bounds precisely. Consider a sliding window of

W time steps and let B be the maximum number of items arriving at each stream within

a window. We prove that for basic counting, each remote site needs to communicate

Ω(1
ε
log(εB)) bits with the root in every consecutive interval of 2W time units in the

worst case, and Ω(1
ε
log(εB)) words for the other three queries. For upper bounds, our

analysis shows that basic counting requires O(1
ε
log(εB)) bits within any window, and

approximate counting O(1
ε
log B) words. Note that the estimates given by approximate

counting is sufficient to find frequent items, and thus the latter problem has the same

communication cost. For quantiles, it takes O(1
ε2 log B) words. See the second row (sliding

window) of Table 1.3 for a summary. Note that our algorithms do not need to know the

value of B in advance, it is only needed in the analysis.

As mentioned before, sliding-window algorithms can be applied to handle the special

case of whole data streams. The first row of Table 1.3 includes our results as well as

Chapter 1. Introduction 20

previous results on whole data streams (where n denotes the number of items in an entire

stream). Except quantiles, our results are better or at least match the previous ones.

Our algorithms can be readily applied to out-of-order streams. For an out-of-order

stream, we say that the stream has tardiness τ if any item with time-stamp t must arrive

within τ time units from t, i.e., at any time in [t, t + τ]. Without loss of generality,

we assume that τ ∈ {0, 1, 2, . . . , W − 1} (if an item time-stamped at t arrives after

t + W − 1, it has already expired and can be ignored). Note that in-order data streams

have tardiness 0. The previous lower bounds for in-order streams are all valid in the

out-of-order setting. In addition, we obtain a lower bound related to τ , namely, Ω(W
W−τ

)

bits for basic counting and Ω(W
W−τ

) words for the other three problems. Regarding upper

bounds, our algorithms when applied to out-of-order streams with tardiness τ will just

increase the communication cost by a factor of W
W−τ

. The results are summarized in the

last row of Table 1.3.

1.3 Organization

Chapters 2 to 5 give our results on online flow-energy scheduling. Chapter 2 presents

improved algorithms for a single processor. Chapter 3 introduces the model that allows

both sleep management and speed scaling, and gives the first competitive algorithm in

such model. Chapter 4 presents the first non-migratory competitive algorithm on multiple

processors and analyzes it for processors with or without extra maximum speed. Chap-

ter 5 initiates the study of non-clairvoyant flow-energy scheduling and gives competitive

algorithms for batched jobs and arbitrary job sets, respectively.

Space-efficient and communication-efficient data stream algorithms are discussed in

Chapters 6 and 7, respectively. In Chapter 6, we propose the new problem Significant One

Counting, and give optimal algorithm for the problem. We also present a space-optimal

algorithm for finding frequent items over a sliding window. In Chapter 7, we study

continuous monitoring of multiple and distributed data streams over a time-based sliding

window, and give algorithms with optimal or nearly optimal communication-accuracy

tradeoff for basic counting, approximate counting, frequent items and quantiles.

In Chapter 8, we give the conclusion and future work for both online flow-energy

scheduling and data stream algorithms.

Chapter 2

Flow-Energy Scheduling on Single

Processor

In this chapter, we consider flow-energy scheduling on single processor and give improved

algorithms for both the infinite and bounded speed models. The formal problem is defined

as follows. We consider a job set J to be scheduled on a processor whose speed can be

varied between 0 and T , where T is the speed bound. In the infinite speed model, we

have T = ∞. When running at speed s, the processor processes s units of work and

consumes sα units of energy in each unit of time, where α ≥ 2. Preemption is allowed;

a preempted job can resume at the point of preemption. We use r(j) and p(j) to denote

the release time and size of a job j in J , respectively. Consider a particular time t in a

schedule of J . For any job j in J , we let q(j) denote its remaining work at t, and say it

is active if r(j) ≤ t and q(j) > 0. The flow time F (j) of job j is the time elapsed since j

arrives until j is completed. The total flow time is given by F =
∑

j∈J F (j). Note that it

is equivalent to F =
∫∞

0
n(t) dt, where n(t) denotes the number of active jobs at time t,

and the energy consumption is E =
∫∞
0

s(t)α dt, where s(t) is the speed of the processor

at time t. Our aim is to minimize the total flow time plus energy, G = F + E. Each of

E, F and G is the integration over all time from 0 to ∞; we call the integration over a

period of time to be the amount of their respective value incurred during that period.

In Section 2.1, we introduce the new speed function AJC and the algorithm SRPT-AJC.

AJC is a more stable speed function than existing speed functions [12,16]; existing speed

functions change continuously, which is undesirable practically, while AJC depends on the

21

Chapter 2. Flow-Energy Scheduling on Single Processor 22

count of active jobs and therefore changes only at job arrival or completion. We also give

a brief overview of our approach to analyzing SRPT-AJC. Section 2.2 gives the analysis of

SRPT-AJC in the infinite speed model, showing that the competitive ratio of SRPT-AJC

for flow plus energy is β1 = 2/(1− α−1
αα/(α−1)). Section 2.3 adapts the analysis in Section 2.2

to the bounded speed model, showing that the competitive ratio of SRPT-AJC for flow

plus energy is β2 = 2(α+1)/(α− α−1
(α+1)1/(α−1)). These results improve the best competitive

ratios in the infinite speed model [16] and the bounded speed model [12], respectively.

The improvement is more significant for large α, since β1 and β2 tend to 2α/ ln α, while

the competitive ratios of both the algorithms in [12, 16] tend to 2(α/ ln α)2. Technically

speaking, the analysis of existing algorithms requires indirect comparison via a notion

called fractional flow. In contrast, we divide the time into “stable intervals”, and directly

compare the flow time of the online algorithm against an optimal offline algorithm in each

interval. This makes the analysis tighter.

2.1 Speed Function AJC and Algorithm SRPT-AJC

AJC and SRPT-AJC. The speed function AJC (active job count) is defined as

min{T, n(t)1/α}, where n(t) is the number of active jobs at time t. The algorithm

SRPT-AJC uses AJC with the SRPT (shortest remaining processing time) policy: at

any time, select the job with the smallest remaining work to run; tie is broken arbitrarily.

We first explain that SRPT gives the best job selection as follows.

Lemma 2.1. Consider a job sequence J . Suppose a schedule S for J uses a speed func-

tion f . Then, among all schedules of J using the speed function f , the one selecting jobs

in accordance with SRPT incurs the least total flow time.

Proof. We modify S in multiple steps to a SRPT schedule. In each step as shown below,

the new schedule S ′ has total flow time reduced. Then the lemma follows.

Let t be the first time when S does not follow SRPT, running ji instead of the shortest

remaining work job jj. S ′ differs from S during the time intervals since t when S runs

either job: jj is run to completion before ji, using the same speed function. jj thus

completes in S ′ earlier than ji does in S. So the sum of their completion times, and thus

the total flow time, is less in S ′ than in S.

Chapter 2. Flow-Energy Scheduling on Single Processor 23

Overview of analysis. To analyze SRPT-AJC, we compare it against an optimal

offline schedule OPT. By Lemma 2.1, OPT uses the SRPT policy as well. Consider any

time t. Let Ga(t) and Go(t) be the flow time plus energy incurred up to t by SRPT-AJC

and OPT, respectively. We drop the parameter t when it refers to the current time.

Our analysis exploits amortization and potential functions (e.g., [16, 23]): if there is a

potential function Φ(t) and a value β such that the followings hold, then SRPT-AJC is

β-competitive.

• Boundary condition: Φ is initially 0 and finally non-negative.

• Arrival condition: When a job is released, Φ does not increase.

• Running condition: At any other time, the rate of change of Ga plus that of Φ is

no more than β times the rate of change of Go, i.e., dGa

dt
+ dΦ

dt
≤ β dGo

dt
.

2.2 Analysis for Infinite Speed Model

In this section, we consider the infinite speed model (i.e., T = ∞) and show the following

theorem.

Theorem 2.2. SRPT-AJC is β1-competitive for flow time plus energy in the infinite

speed model, where β1 = 2/(1− α−1
αα/(α−1)).

We first give a potential function Φ, whose design is motivated by the work in [12,16].

We will choose β to be 2/(1 − α−1
αα/(α−1)). Then we show that the boundary, arrival and

running conditions hold, and thus can conclude the competitiveness of SRPT-AJC.

Potential function Φ(t). Consider any time t. For any q ≥ 0, let na(q) denote the

current number of active jobs with remaining work at least q in SRPT-AJC, and similarly

no(q) for OPT. So na(0) and no(0) are the total number of active jobs in the schedules,

which we abbreviate as na and no, respectively. It is useful to consider na(q) and no(q) as

functions of q which change when a job arrives or runs for a while (see Figure 2.1). We

define the potential function as

Φ(t) = η

∫ ∞

0

φ(q) dq , where φ(q) =

(na(q)∑
i=1

i1−1/α

)
− na(q)

1−1/αno(q) and η =
2

1− α−1
αα/(α−1)

.

Chapter 2. Flow-Energy Scheduling on Single Processor 24

(a) (b) (c)q q q

n(q)n(q) n(q)

p

Figure 2.1: (a) At any time, na(q) or no(q) (denoted by n(q) above) is a step function
containing unit height stripes, the area under n(q) is the total remaining work. (b) If we
run a job selected with SRPT at speed s for a period of time ∆, the top stripe shrinks
by s∆. (c) When a job of size p is released, n(q) increases by 1 for all q ≤ p.

At t = 0 or ∞, no job remains, so Φ = 0. The integration of the first term of φ(q)

is proportional to the total flow time plus energy of SRPT-AJC after t if no more job

arrives (which is 2
∫∞
0

∑na(q)
i=1 i1−1/α dq), paying the cost once OPT completes all jobs. The

second term of φ(q) makes the arrival condition hold.

Lemma 2.3. When a job arrives, the change of Φ is non-positive.

Proof. Suppose a job j arrives. For q > p(j), na(q) and no(q), and hence φ(q), are

unchanged. For q ≤ p(j), both na(q) and no(q) increase by 1 (see Figure 2.1(c)). Thus the

first term of φ(q) increases by (na(q) + 1)1−1/α. The increase of the term na(q)
1−1/αno(q)

can be interpreted in two-steps: (i) increase to (na(q) + 1)1−1/αno(q), and (ii) increase

to (na(q) + 1)1−1/α(no(q) + 1). The increase in step (ii), i.e., (na(q) + 1)1−1/α, covers the

increase in the first term of φ(q), so φ(q) does not increase.

Running condition. The rest of this section proves the following lemma.

Lemma 2.4. When no job arrives, dGa

dt
+ dΦ

dt
≤ β1

dGo

dt
where β1 = 2/(1− α−1

αα/(α−1)).

Consider any time t. Let sa and so be the speed of SRPT-AJC and OPT, respectively,

and qa and qo be the remaining work of the job they run. We divide the time line into

stable intervals by breaking it when the following events occur.

• A job arrives, or is completed by either SRPT-AJC or OPT.

• The speed sa or the job chosen by SRPT-AJC changes.

Chapter 2. Flow-Energy Scheduling on Single Processor 25

• The speed so or the job chosen by OPT changes.

• Either no(qa) or na(qo) changes.

Φ does not increase on job arrival (Lemma 2.3), and is unchanged on other events above

(φ(q) changes for only single q). Therefore, we focus on its change in a stable interval.

We first bound dΦ
dt

. Consider a stable interval of length dt. We analyze dΦ
dt

as if φ(q)

is changed in two steps: (i) na(q) decreases due to the execution of SRPT-AJC. (ii)

no(q) decreases due to the execution of OPT. We denote these changes by dΦ1

dt
and dΦ2

dt
,

respectively. Then dΦ
dt

= dΦ1

dt
+ dΦ2

dt
.

Lemma 2.5. Consider a stable interval of length dt. (i) dΦ1

dt
≤ η(no − na); (ii) dΦ2

dt
≤

ηn
1−1/α
a so.

Proof. (i) Consider SRPT-AJC. na(q) decreases from na to na−1 for all q ∈ [qa−sadt, qa]

(see Figure 2.1(b)). For any q ∈ [qa − sadt, qa], φ(q) is changed by:

(na−1∑
i=1

i1−1/α

)
− (na − 1)1−1/αno(q)−

(na∑
i=1

i1−1/α

)
+ n1−1/α

a no(q)

≤− n1−1/α
a + n−1/α

a no(q) ≤ −n1−1/α
a + n−1/α

a no ,

where the first inequality is due to n1−1/α − (n− 1)1−1/α ≤ n−1/α for any n ≥ 1, and the

second holds since no(q) ≤ no. Recall that sa = n
1/α
a . Integrating over all q,

dΦ1

dt
≤ η(−n

1−1/α
a + n

−1/α
a no)(n

1/α
a) = η(no − na) .

(ii) Consider OPT. Similarly to (i), φ(q) is changed only for q ∈ [qo − sodt, qo]. Note

that na(q) ≤ na for all q. Then for any q ∈ [qo − sodt, qo], φ(q) is changed by

−na(q)
1−1/α(no(q)− 1) + na(q)

1−1/αno(q) = na(q)
1−1/α ≤ n1−1/α

a .

Integrating over all q, we have dΦ2

dt
≤ ηn

1−1/α
a so.

Proof of Lemma 2.4. By Lemma 2.5 (ii), we have dΦ2

dt
≤ ηn

1−1/α
a so. We introduce a con-

stant µ > 0 and apply the Young’s Inequality [52], which is formally stated in Lemma 2.6,

Chapter 2. Flow-Energy Scheduling on Single Processor 26

by setting f(x) = xα−1, f−1(x) = x1/(α−1), g = so/µ, h = n
1−1/α
a µ. Then, we have

dΦ2

dt
≤ η(n

1−1/α
a µ)

(
so

µ

)
≤ η(

∫ so
µ

0

xα−1 dx +

∫ n
1−1/α
a µ

0

x1/(α−1) dx) ≤ ηsα
o

αµα
+ η(1− 1

α
)µα/(α−1)na .

Since sa = n
1/α
a , dGa

dt
= na + sα

a = 2na. Also, dGo

dt
= no + sα

o . Since dΦ
dt

= dΦ1

dt
+ dΦ2

dt
, by

Lemma 2.5 (i), we have

dGa

dt
+

dΦ

dt
≤ 2na + η

(
no − na +

(
1− 1

α

)
µα/(α−1)na +

sα
o

αµα

)
. (2.1)

Lemma 2.4 follows with µ = α−1/α and the fact that β1 = η = 2/(1− α−1
αα/(α−1)).

Below is the formal statement of Young’s Inequality, which is used in the proof of

Lemma 2.4.

Lemma 2.6 (Young’s Inequality [52]). Let f be any real-value, continuous and strictly in-

creasing function f such that f(0) = 0. Then, for all g, h ≥ 0,
∫ g

0
f(x) dx+

∫ h

0
f−1(x) dx ≥

gh, where f−1 is the inverse function of f .

2.3 Analysis for Bounded Speed Model

In this section, we adapt the analysis in Section 2.2 to the bounded speed model and

show the following theorem.

Theorem 2.7. SRPT-AJC is β2-competitive for flow time plus energy in the bounded

speed model, where β2 = 2(α + 1)/(α− α−1
(α+1)1/(α−1)).

We use the same potential function as in Section 2.2 while setting η = 2/(1 −
1−1/α

(α+1)1/(α−1)). Most of the analysis in Section 2.2 still holds, except Lemma 2.5 (i). As

the speed used might be T instead of n1/α if n is large, the decrease dΦ1

dt
is not sufficient

to guarantee the original competitive ratio. Nevertheless, we observe that at any time

t, the difference (na(t) − no(t)) can be upper bounded by T α (Lemma 2.8). Then the

competitiveness of SRPT-AJC is only slightly worse as shown in Theorem 2.7.

Lemma 2.8. At any time t, the number of active jobs in SRPT-AJC and OPT satisfy

na(t)− no(t) ≤ T α.

Chapter 2. Flow-Energy Scheduling on Single Processor 27

Proof. Consider a time t. The non-trivial case is na(t) > T α. Let t0 be the last time

before t that na(t0) ≤ Tα. Consider the interval [t0, t], where SRPT-AJC runs at full

speed. Suppose k jobs arrive, and OPT completes x of them, so no ≥ k−x. Since running

SRPT at the full speed T maximizes the number of jobs completed at any time [86],

SRPT-AJC also completes at least x jobs. So na increases by at most k − x ≤ no after

time t0, and the lemma follows.

Proof of Theorem 2.7. The boundary and arrival conditions still hold. It remains to

establish the running condition. Its analysis is split into two cases.

Case 1: na ≤ T α. The arguments in Section 2.2 still hold, leading to Inequal-

ity (2.1). Setting µ = (α + 1)−1/α and recalling that η = 2/(1− 1−1/α

(α+1)1/(α−1)), (2.1) implies
dGa

dt
+ dΦ

dt
≤ ηno+(1+1/α)ηsα

o ≤ β2
dGo

dt
, where the last inequality is due to β2 = (1+1/α)η.

Case 2: na > T α. The arguments in Section 2.2 hold, except Lemma 2.5 (i). We

still have dGo

dt
= no + sα

o and dGa

dt
= na + T α < 2na. For dΦ1

dt
,

dΦ1

dt
≤ η(−n1−1/α

a + n−1/α
a no)T = η(no − na)

(Tα

na

)1/α

.

If no ≥ na,
dΦ1

dt
≤ η(no − na) as before (since Tα/na ≤ 1), leading to (2.1), so the

arguments in Case 1 apply. If no < na, Lemma 2.8 implies

dΦ1

dt
≤ −η(na − no)

(Tα

na

)1/α

≤ −η(na − no)
1+1/α

n
1/α
a

.

Note that for the convex function f(x) = x1+1/α, we have f(na−no) ≥ f(na)− f ′(na) no,

which is equivalent to (na − no)
1+1/α ≥ n

1+1/α
a − (1 + 1/α)n

1/α
a no. We thus have

dΦ1

dt
≤ −η(n

1+1/α
a − (1 + 1/α)n

1/α
a no)

n
1/α
a

= η
(
(1 +

1

α
)no − na

)
, and

dGa

dt
+

dΦ

dt
≤ 2na + η

(
(1 +

1

α
)no − na +

(
1− 1

α

)
µα/(α−1)na +

sα
o

αµα

)
.

Setting µ = (α + 1)−1/α and recalling that η = 2/(1 − 1−1/α

(α+1)1/(α−1)) and β2 = (1 + 1/α)η,

this implies
dGa

dt
+

dΦ

dt
≤ (1 +

1

α
)η(no + sα

o) = β2
dGo

dt
.

Chapter 3

Flow-Energy Scheduling with Sleep

States

In this chapter, we initiate the study of flow-energy scheduling that exploits both speed

scaling and sleep states. A processor has two states, awake and sleep. The awake state

always requires a static power σ > 0. More specifically, a processor in the awake state

consumes a dynamic power that depends on its speed, as well as the static power σ

(see Section 3.1 for the formal definition of the model). To have zero energy usage, the

processor must enter the sleep state, but a wake-up back to the awake state requires ω > 0

energy. We consider processor that can have multiple intermediate sleep states, which

demand some static power but less wake-up energy. For such processor, job scheduling

requires two components: a sleep management algorithm to determine when to sleep or

work, and a speed scaling algorithm to determine which job and at what speed to run.

Adding a sleep state actually changes the nature of speed scaling. Assuming no sleep

state, running a job slower is a natural way to save energy. Now one can also save energy

by sleeping more and working faster later. It is even more complicated when flow is

concerned. Prolonging a sleeping period by delaying job execution can save energy, yet

it also incurs extra flow. Striking a balance is not trivial.

Section 3.1 defines the model formally. Sections 3.2 and 3.3 focus on the infinite speed

model. In Section 3.2, we give a sleep management algorithm called IdleLonger, which

works for a processor with one or multiple levels of sleep states. In Section 3.3, we give the

speed scaling algorithm SAJC by adapting the algorithm SRPT-AJC in Chapter 2. We

28

Chapter 3. Flow-Energy Scheduling with Sleep States 29

also show that SAJC together with IdleLonger is O(1)-competitive for the infinite speed

model. Finally, Section 3.4 extends the results to the bounded speed model, showing that

SAJC together with IdleLonger is still O(1)-competitive for the bounded speed model.

Analysis framework. Apparently, a sleep management algorithm and a speed scal-

ing algorithm would affect each other; analyzing their relationship and their total cost

could be a complicated task. Interestingly, our results stem from the fact that we can

isolate the analysis of these algorithms. We divide the total cost (flow plus energy) into

two parts, working cost (incurred while working on jobs) and inactive cost (incurred at

other times). We upper bound the inactive cost of IdleLonger independent of the speed

scaling algorithm. For the working cost, although it does depend on both algorithms,

our potential analysis of the speed scaling algorithms reveals that the dependency on the

sleep management algorithm is limited to a simple quantity called inactive flow, which

is the flow part of the inactive cost. Intuitively, large inactive flow means many jobs are

delayed due to prolonged sleep, and hence the processor has to work faster later to catch

up, incurring a higher working cost. It is easy to minimize inactive flow at the sacrifice of

the energy part of the inactive cost. IdleLonger is designed to maintain a good balance

between them. In conclusion, coupling IdleLonger with SAJC, we obtain competitive

algorithms for flow plus energy.

3.1 Model and Notations

Speed and power. We first consider the setting with one sleep state. At any time, a

processor is in either the awake state or the sleep state. In the former, the processor can

run at any speed s ≥ 0 and demands power in the form sα + σ, where α > 1 and σ > 0

are constants. We call sα the dynamic power and σ the static power. In the sleep state,

the speed is zero and the power is zero. State transition requires energy; without loss

of generality, we assume a transition from the sleep state to the awake state requires an

amount ω of energy, and the reverse takes zero energy. To simplify our work, we assume

state transition takes no time.

Next we consider the setting with m > 1 levels of sleep. A processor is in either the

awake state or the sleep-i state, where 1 ≤ i ≤ m. The awake state is the same as before,

demanding static power σ and dynamic power sα. For convenience, we let σ0 = σ. The

Chapter 3. Flow-Energy Scheduling with Sleep States 30

sleep-m state is the only “real” sleep state, which has static power σm = 0; other sleep-i

states have decreasing positive static power σi such that σ0 > σ1 > σ2 > · · · > σm−1 >

σm = 0. We denote the wake-up energy from the sleep-i state to the awake state as ωi.

Note that ωm > ωm−1 > · · · > ω1 > 0.

It is useful to differentiate two types of awake state: with zero speed and with positive

speed. The former is called idle state and the latter is called working state.

Flow and energy. Given a set of jobs to schedule, we denote the release time and

size of a job j as r(j) and p(j), respectively. Consider any schedule of jobs. The flow

F (j) of a job j is the time elapsed since it arrives and until it is completed. The total flow

is F =
∑

j F (j), or equivalently, F =
∫∞
0

n(t) dt, where n(t) is the number of unfinished

jobs at time t. Based on this view, we divide F into two parts: Fw is the flow incurred

during time intervals of working state, and Fi for idle or sleep state. The energy usage

is also divided into three parts: W denotes the energy due to wake-up transitions, Ei is

the idling energy (static power consumption in the idle or intermediate sleep state), and

Ew is the working energy (static and dynamic power consumption in the working state).

Our objective is to minimize the total cost G = Fw + Fi + Ei + Ew + W . We call Fw + Ew

the working cost, and Fi + Ei + W the inactive cost.

3.2 Sleep Management Algorithm IdleLonger

This section presents a sleep management algorithm called IdleLonger that determines

when the processor should sleep, idle, and work (with speed > 0). IdleLonger can be

coupled with any speed scaling algorithm, which specifies which job and at what speed

to run when the processor is working. As a warm-up, we first consider the case with a

single sleep state. Afterwards, we consider the general case of multiple sleep states.

In this section, we derive an upper bound of the inactive cost of IdleLonger indepen-

dent of the choice of the speed scaling algorithm. In Section 3.3, we will present the speed

scaling algorithm SAJC and analyze its working cost when it is coupled with IdleLonger.

In conclusion, putting IdleLonger and SAJC together, we can show that both the inactive

cost and working cost are O(1) times of the total cost of the optimal offline algorithm

OPT. Note that since IdleLonger and the analysis of its inactive cost is generic for any

speed scaling algorithm, when we consider non-clairvoyant flow-energy scheduling with

Chapter 3. Flow-Energy Scheduling with Sleep States 31

sleep states in Chapter 5, we only need to give a non-clairvoyant speed scaling algorithm

and analyze its working cost when it is coupled with IdleLonger.

3.2.1 Sleep management algorithm for a single sleep state

When the processor is in the working state and sleep state, it is relatively simple to

determine the next transition. In the former, the processor keeps on working as long as

there is an unfinished job; otherwise switch to the idle state. In the sleep state, we avoid

waking up immediately after a new job arrives as this requires energy. It is natural to

wait until the new jobs have accumulated enough flow, say, at least the wake-up energy

ω, then we let the processor to switch to working state direct. Below we refer the flow

accumulated due to new jobs over a period of idle or sleep state as the inactive flow of

that period.

When the processor is in idle state, it is non-trivial when to switch to the sleep or

working state. Intuitively, the processor should not stay in idle state too long, because it

consumes energy (at the rate of σ) but does not get any work done. Yet to avoid frequent

wake-up in future, the processor should not sleep immediately. Instead the processor

should wait for possible job arrival and sleep only after the idling energy (i.e., σ times the

length of idling interval) reaches the wake-up energy ω. When a new job arrives in the

idle state, a naive idea is to let the processor switch to the working state to process the

job immediately; this avoids accumulating inactive flow. Yet this turns out to be a bad

strategy as it becomes too difficult to sleep; e.g., the adversary can use some tiny jobs

sporadically, then the processor would never accumulate enough idling energy to sleep.

It is perhaps counter-intuitive that IdleLonger always prefers to idle a bit longer, and

it can switch to the sleep state even in the presence of unfinished jobs. The idea is to

consider the inactive flow and idling energy at the same time. Note that when an idling

period gets longer, both the inactive flow and idling energy increase, but at different

rates. We imagine that these two quantities are competing with each other.

The processor switches from the idle state to the working state once the inac-

tive flow catches up with the idling energy. If the idling energy has exceeded

ω before the inactive flow catches up with the idling energy, the processor

switches to the sleep state.

Chapter 3. Flow-Energy Scheduling with Sleep States 32

Below is a summary of the above discussion. For simplicity, IdleLonger is written in a

way that it is being executed continuously. In practice, we can rewrite it such that the

execution is driven by discrete events like job arrival, job completion and wake-up.

Algorithm 1 IdleLonger(A): A is any speed scaling algorithm

At any time t, let n(t) be the number of unfinished jobs at t.

In working state: If n(t) > 0, keep working on jobs according to the algorithm A; else

(i.e., n(t) = 0), switch to idle state.

In idle state: Let t′ ≤ t be the last time in working state (t′ = 0 if undefined). If the

inactive flow over [t′, t] equals (t− t′)σ, then switch to working state;

Else if (t− t′)σ = ω, switch to sleep state.

In sleep state: Let t′ ≤ t be the last time in working state (t′ = 0 if undefined). If the

inactive flow over [t′, t] equals ω, switch to working state.

Below we upper bound the inactive cost of IdleLonger (the working cost will be dealt

with in Section 3.3). It is useful to define three types of time intervals. An Iw-interval

is a maximal interval in idling state with a transition to the working state at the end,

and similarly an Is-interval for that with a transition to the sleep state at the end. Fur-

thermore, an ISw-interval is a maximal interval comprising an Is-interval, then a sleeping

interval, and finally a wake-up transition. As the processor starts in the sleep state, we

allow the first ISw-interval containing no Is-interval.

Consider a schedule of IdleLonger(A). Recall that the inactive cost is composed of W

(wake-up energy), Fi (inactive flow), and Ei (idling energy). We further divide Ei into

two types: Eiw is the idling energy incurred in all Iw-intervals, and Eis for all Is-intervals.

By the definition of IdleLonger, we have the following property.

Property 3.1. (i) Fi ≤ W + Eiw, and (ii) Eis = W .

Therefore, the inactive cost of IdleLonger, defined as W + Fi + Eiw + Eis, is at most

3W +2Eiw. The non-trivial part is to upper bound W and Eiw. Our main result is stated

below. For the optimal offline algorithm OPT, we divide its total cost G∗ into two parts:

W ∗ is the total wake-up energy, and C∗ = G∗ −W ∗ (i.e., the total flow plus the working

and idling energy).

Theorem 3.2. W + Eiw ≤ C∗ + 2W ∗.

Chapter 3. Flow-Energy Scheduling with Sleep States 33

Corollary 3.3. The inactive cost of IdleLonger is at most 3C∗ + 6W ∗.

The rest of this section is devoted to proving Theorem 3.2. Note that W is the wake-

up energy consumed at the end of all ISw-intervals, and Eiw is the idling energy of all

Iw-intervals. All these intervals are disjoint. Below we show a charging scheme such that,

for each ISw-interval, we charge OPT a cost at least ω, and for each Iw-interval, we charge

OPT at least the idling energy of this interval. Thus, the total charge to OPT is at least

W + Eiw. On the other hand, we argue that the total charge is at most C∗ + 2W ∗.

Therefore, W + Eiw ≤ C∗ + 2W ∗.

The charging scheme for an ISw-interval [t1, t2] is as follows. The target is at least ω.

Case 1. If OPT switches from or to the sleep state in [t1, t2], we charge OPT the cost ω

of the first wake-up in [t1, t2] (if it exists) or of the last wake-up before t1.

Case 2. If OPT is awake throughout [t1, t2], we charge OPT the static energy (t2− t1)σ.

Note that in an ISw-interval, IdleLonger has an idle-sleep transition, and hence

(t2 − t1)σ > ω.

Case 3. If OPT is sleeping throughout [t1, t2], we charge OPT the inactive flow (i.e., the

flow incurred by new jobs) over [t1, t2]. In this case, OPT and IdleLonger have the

same amount of inactive flow during [t1, t2], which equals ω (because IdleLonger

wakes up at t2).

For an Iw-interval, we use the above charging scheme again. The definition of Iw-

interval allows the scheme to guarantee a charge of (t2 − t1)σ instead of ω. Specifically,

as an Iw-interval ends with an idle-working transition, the inactive flow accumulated in

[t1, t2] is (t2 − t1)σ, and the latter cannot exceed ω. Therefore, the charge of Case 1,

which equals ω, is at least (t2 − t1)σ. Case 2 charges exactly (t2 − t1)σ. For Case 3, we

charge OPT the inactive flow during [t1, t2]. Note that OPT and IdleLonger accumulate

the same inactive flow, which is (t2 − t1)σ.

Summing over all Iw- and ISw-intervals, we have charged OPT at least W + Eiw. On

the other hand, since all these intervals are disjoint, in Cases 2 and 3, the charge comes

from non-overlapping flow and energy of C∗. In Case 1, each OPT’s wake-up from the

sleep state is charged for ω at most twice, thus the total charge is at most 2W ∗. In

conclusion, W + Eiw ≤ C∗ + 2W ∗.

Chapter 3. Flow-Energy Scheduling with Sleep States 34

3.2.2 Sleep management algorithm for m ≥ 2 sleep states

We extend the previous sleep management algorithm to allow intermediate sleep states,

which demand less idling (static) energy than the idling state, and also less wake-up

energy than the final sleep state (i.e., sleep-m state). We treat the sleep-m state as the

only sleep state in the single-level setting, and adapt the transition rules of the idling

state for the intermediate sleep states. The key idea is again to compare inactive flow

against idling energy continuously. To ease our discussion, we treat the idle state as the

sleep-0 state with wake-up energy ω0 = 0.

Algorithm 2 IdleLonger(A): A is any speed scaling algorithm

At any time t, let n(t) be the number of unfinished jobs at t.

In working state: If n(t) > 0, keep working on the jobs according to the algorithm A;

else if n(t) = 0, switch to idle state.

In sleep-j state, where 0 ≤ j ≤ m−1: Let t′ ≤ t be the last time in the working state,

and let t′′ be the last time in [t′, t] switching from sleep-(j − 1) state to sleep-j state. If

the inactive flow over [t′, t] equals (t− t′′)σj + ωj, then wake up to the working state;

Else if (t− t′′)σj = (ωj+1 − ωj), switch to sleep-(j + 1) state.

In sleep-m state: Let t′ ≤ t be the last time in the working state. If the inactive flow

over [t′, t] equals ωm, then wake up to the working state.

When we analyze the multi-level algorithm, the definition of W (total wake-up cost)

and Fi (total inactive flow) remain the same, but Eis and Eiw have to be generalized.

Below we refer a maximal interval during which the processor is in a particular sleep-j

state, where 0 ≤ j ≤ m, as a sleep interval or more specifically, a sleep-j interval. Note

that all sleep intervals, except sleep-m intervals, demand idling (static) energy. We denote

Eiw as the idling energy for all sleep intervals that end with a wake-up transition, and

Eis the idling energy of all sleep intervals ending with a (deeper) sleep transition.

IdleLonger imposes a rigid structure of sleep intervals. Define `j = (ωj+1 − ωj)/σj.

A sleep-j interval can appear only after a sequence of lower level sleep intervals, which

starts with a sleep-0 interval of length `0, followed by a sleep-1 interval of length `1, . . . ,

and finally a sleep-(j − 1) interval of length `j−1. Consider a maximum sequence of such

sleep intervals that ends with a transition to the working state. We call the entire time

interval enclosed by this sequence an ISw[j]-interval for some 0 ≤ j ≤ m if the deepest

(also the last) sleep subinterval is of level j. It is useful to observe the following lemma

Chapter 3. Flow-Energy Scheduling with Sleep States 35

about an ISw[j]-interval.

Lemma 3.4. Consider any ISw[j]-interval [t1, t2], where 0 ≤ j ≤ m. Assume that the last

sleep-j (sub)interval is of length `. Then, ωj + `σj ≤ ωk + (t2− t1)σk for any 0 ≤ k ≤ m.

Proof. We consider two cases depending on whether k > j.

If k > j, then j ≤ k − 1 ≤ m − 1. Since j ≤ m − 1, by the definition of IdleLonger,

` ≤ `j. Then ωj + `σj ≤ ωj + `jσj = ωj+1 ≤ ωk and thus ωj + `σj ≤ ωk + (t2 − t1)σk.

Otherwise, k ≤ j and we count the energy usage of the ISw[j]-interval in two different

ways; one count is exactly ωj +`σj and the other is at most ωk +(t2− t1)σk, which implies

ωj+`σj ≤ ωk+(t2−t1)σk. Note that for 0 ≤ i ≤ j−1, the energy usage in a sleep-i interval

is `iσi = ωi+1− ωi. Thus, the energy usage in the ISw[j]-interval is
∑

0≤i≤j−1 `iσi + `σj =

(ωj − ω0) + `σj = ωj + `σj, where the last equality is due to ω0 = 0. On the other hand,

the energy usage in the first k sleep intervals is
∑

0≤i≤k−1 `iσi = ωk − ω0 = ωk, while

the other energy usage is
∑

k≤i≤j−1 `iσi + `σj ≤ (
∑

k≤i≤j−1 `i + `) · σk ≤ (t2 − t1)σk. In

conclusion, ωj + `σj ≤ ωk + (t2 − t1)σk.

The rigid sleeping structure of IdleLonger also allows us to maintain Property 3.1 as

before. That is, (i) Fi ≤ W + Eiw, and (ii) Eis = W . The proof is given below.

Proof of Property 3.1. (i) Note that Fi is equal to the inactive flow incurred in all ISw[j]-

intervals, where 0 ≤ j ≤ m. Consider any ISw[j]-interval. Assume that the last sleep-j

(sub)interval is of length `. By definition of IdleLonger, the inactive flow is at most the

idling energy `σj of the last sleep subinterval plus the energy ωk of the wake-up at the

end. Summing over all ISw[j]-intervals, we have Fi ≤ Eiw + W .

(ii) Consider all ISw[j]-intervals. The first ISw[j]-interval is simply a sleep-m interval,

which does not incur any idling energy, while in any other ISw[j]-interval, the total idling

energy of all sleep subintervals except the last subinterval is
∑

0≤i≤j−1 `iσi = ωj−ω0 = ωj.

Note that Eis is the sum of such idling energy ωj of all ISw[j]-intervals (except the first

ISw[j]-interval) plus the idling energy incurred in the sleep intervals which occur after

the last wake up. By the rigid sleeping structure of IdleLonger, the latter term equals∑
0≤i≤m−1 `iσi = ωm−ω0 = ωm. On the other hand, W is the sum of the wake-up energy

ωm of the first ISw[j]-interval and the wake-up energy ωj of the other ISw[j]-intervals. In

conclusion, we have Eis = W .

Chapter 3. Flow-Energy Scheduling with Sleep States 36

Due to Property 3.1, the inactive cost, which is equal to Fi + Eiw + Eis + W , is still at

most 3W + 2Eiw, i.e., Corollary 3.3 still holds. In the rest of this section, we prove that

W and Eiw have the same upper bound as before.

Theorem 3.5. In the setting of m ≥ 2 sleep states, W + Eiw ≤ C∗ + 2W ∗.

To account for W and Eiw, it suffices to look at all ISw[j]-intervals, where 0 ≤ j ≤ m.

For each ISw[j]-interval, we show how to charge OPT a cost ωj + `σj, where ` is length

of the deepest sleep subinterval (it is useful to recall that ω0 = 0 and σm = 0). Then we

argue that the total cost charged is at least W + Eiw and at most C∗ + 2W ∗.

Without loss of generality, we can assume that in a maximal interval [r1, r2] that

OPT is not working, if OPT has ever slept (in sleep-1 or deeper sleep state), then [r1, r2]

contains only one sleep transition, which occurs at r1, and the processor remains in the

same sleep state until r2 and then wakes up to work.

Charging scheme. Consider any ISw[j]-interval [t1, t2], where 0 ≤ j ≤ m. Let ` be

the length of the sleep-j (sub)interval in this ISw[j]-interval.

Case 1. If OPT has ever switched from or to the sleep-1 or deeper sleep state in [t1, t2],

let k ≥ 1 be the deepest sleep level involved in the entire interval. Note that OPT

uses static energy at least (t2 − t1)σk during [t1, t2]. We charge OPT the sum of

(t2 − t1)σk and ωk (in view of a wake-up from sleep-k state inside [t1, t2] or after

t2; if there is no wake-up after t2, then we charge OPT the first wake-up). By

Lemma 3.4, this charge is at least ωj + `σj.

Case 2. If OPT is working or idle throughout [t1, t2], we charge OPT the static energy

(t2 − t1)σ0, which, by Lemma 3.4, is at least ωj + `σj.

Case 3. If OPT is sleeping (at any level except zero) throughout [t1, t2], we charge OPT

the inactive flow over [t1, t2]. Note that OPT has the same amount of inactive flow

as IdleLonger. By the definition of a wake-up transition in IdleLonger, the inactive

flow equals ωj + `σj.

Since ISw[j]-intervals are all disjoint, the flow and idling (static) energy charged to

OPT by Cases 1, 2 and 3 come from different parts of C∗. For Case 1, each of OPT’s

wake-up from a sleep state is charged at most twice. Thus, W + Eiw ≤ C∗ + 2W ∗,

completing the proof of Theorem 3.5.

Chapter 3. Flow-Energy Scheduling with Sleep States 37

3.3 Speed Scaling Algorithm SAJC

When there is no sleep state and the power function is in the form of sα, Chapter 2

showed that the speed scaling algorithm SRPT-AJC is O(1)-competitive for flow plus

energy. SRPT-AJC always runs the job with the smallest remaining work (SRPT) at the

speed n(t)1/α, where n(t) is the number of unfinished jobs at time t. In the sleep setting,

when the processor is working, it requires at least the static power σ; if σ is large, running

at the speed n(t)1/α would be too slow to be cost effective as the dynamic power could

be way smaller than σ. Indeed SRPT-AJC has unbounded competitive ratio no matter

what sleep management algorithm is used. This section shows how to analyze a simple

adaptation of SRPT-AJC to the sleep setting, and upper bound its working cost in terms

of OPT’s total cost.

Algorithm SAJC. At any time t, SAJC runs the job with the shortest

remaining work at the speed (n(t) + σ)1/α.

The following analysis of SAJC is valid no matter what sleep management algorithm

Slp is being used together. Ideally we want to upper bound the working cost of SAJC

solely in terms of the total cost of OPT, yet this is not possible as the working cost also

depends on Slp. Below we give an analysis of SAJC in which the dependency on Slp is

bounded by the inactive flow incurred by Slp. More specifically, let Gw and Fi be the

working cost and the inactive flow of Slp(SAJC), respectively. Again, we use C∗ to denote

the total cost of OPT minus the wake-up energy; the latter is denoted by W ∗. We will

give a potential analysis to prove that Gw = O(C∗ + Fi).

Let us look at a simple case. If Slp always switches to working state whenever there

are unfinished jobs, then Fi = 0. In this case we can easily adapt the analysis in Chapter 2

to bound Gw in terms of C∗ only. However, the inactive cost of Slp may be unbounded in

this case. On the other hand, consider a sleep management algorithm that prefers to wait

for more jobs before waking up to work (e.g., IdleLonger). Then SAJC would start at a

higher speed and Gw can be much larger than C∗. Roughly speaking, the excess is due to

the fact that the online algorithm is sleeping while OPT is working. Note that the cost

to catch up the work lagged behind increases at a rate depending on n(t). This motivates

us to bound the excess in terms of Fi. The main result of this section is stated in the

Chapter 3. Flow-Energy Scheduling with Sleep States 38

lemma below, which, together with the results on inactive cost of IdleLonger, imply that

IdleLonger(SAJC) is (2β+2)-competitive for flow plus energy, where β = 2/(1− α−1
αα/(α−1)).

Theorem 3.6. With respect to Slp(SAJC), Gw ≤ βC∗ + (β − 2)Fi.

Corollary 3.7. In the setting of single sleep state or multiple sleep states, the total cost

of IdleLonger(SAJC) is at most (2β + 2) times of the total cost of OPT.

Proof of Corollary 3.7. Consider the coupling of IdleLonger and SAJC. As proven in

Section 3.2, Fi ≤ C∗ + 2W ∗, and the inactive cost is at most 3C∗ + 6W ∗. The total cost

of IdleLonger(SAJC), comprised of the inactive cost and the working cost, is at most

(2β + 1)C∗ + (2β + 2)W ∗, which is at most (2β + 2) times of OPT’s total cost.

To prove Theorem 3.6, we adapt the potential function Φ(t) in Chapter 2 to relate the

change rate of Gw, C∗ and Fi. Consider any time t. Let Gw(t), Fi(t) and C∗(t) denote

the corresponding value of Gw, Fi and C∗ incurred up to t. We drop the parameter

t when it is clear that t is the current time. The potential function Φ(t) attempts to

capture the difference of the remaining work of SAJC and OPT. The formal definition is

as follows. At time t, for any q ≥ 0, let na(q) be the number of unfinished jobs of SAJC

with remaining work at least q, and similarly for no(q) and OPT. Then

Φ(t) = β

∫ ∞

0

φ(q)dq , where φ(q) =

(na(q)∑
j=1

(j + σ)1−1/α

)
− (na(q) + σ)1−1/αno(q) .

It can be verified that Φ(t) = 0 initially and is non-negative when Slp(SAJC) and

OPT finish all jobs. Furthermore, Φ(t) does not increase or even does not change at any

discrete-event time including when a job arrives, and when SAJC or OPT finish a job or

change the speed. To prove Theorem 3.6, it suffices to show that at any other time, the

rate of change of Gw and Φ can be upper bounded in terms of that of C∗ and Fi.

Lemma 3.8. At any time when no discrete events occur, dGw

dt
+ dΦ

dt
≤ β dC∗

dt
+(β−2) dFi

dt
.

The rest of this section is devoted to proving Lemma 3.8. At any time t, if Slp(SAJC)

is in the working state, we let sa be the current speed of SAJC and let qa be the remaining

work of the current job of SAJC. And so and qo are defined similarly for OPT.

Chapter 3. Flow-Energy Scheduling with Sleep States 39

When SAJC is working, dGw

dt
= sα

a + σ + na = 2(na + σ) and dFi

dt
= 0; otherwise,

dGw

dt
= 0 and dFi

dt
= na. When OPT is working, dC∗

dt
= sα

o + σ + no; otherwise, dC∗
dt
≥ no.

To upper bound dΦ
dt

, we follow the framework in Chapter 2 to divide the analysis into two

parts: (i) the execution of SAJC affects φ(q) for q ∈ (qa− sa dt, qa], and (ii) the execution

of OPT affects φ(q) for q ∈ (qo − so dt, qo]. We denote these changes as dΦ1 and dΦ2,

respectively, and dΦ = dΦ1 + dΦ2. We upper bound dΦ1

dt
and dΦ2

dt
as follows. Note that

in the infinite speed model, T = ∞ and thus we always have sa < T .

Claim 3.9. (i) Consider dΦ1

dt
. If sa > 0, dΦ1

dt
≤ −β(na + σ − no); otherwise, dΦ1

dt
≤ 0.

(ii) dΦ2

dt
≤ β(na + σ)1−1/αso.

Proof. (i) We first analyze dΦ1

dt
. Note that na(qa) = na. For any q ∈ (qa − sadt, qa], φ(q)

is changed by −(na + σ)1−1/α + ((na + σ)1−1/α − (na + σ − 1)1−1/α)no(qa). Note that

x1−1/α − (x − 1)1−1/α ≤ x−1/α for all x ≥ 1. By setting x = na + σ and the fact that

no(qa) ≤ no, φ(q) changes by at most −(na + σ)1−1/α + (na + σ)−1/αno. Integrating over

all q ∈ (qa − sadt, qa],

dΦ1

dt
≤ β(−(na + σ)1−1/α + (na + σ)−1/αno)sa ≤ −β(na + σ − no)(na + σ)−1/αsa . (3.1)

If sa = 0, then Inequality (3.1) implies dΦ1

dt
≤ 0. If sa > 0, then sa = (na + σ)1/α and

hence Inequality (3.1) implies dΦ1

dt
≤ −β(na + σ − no).

(ii) We now analyze dΦ2

dt
. Note that na(qo) ≤ na. For any q ∈ (qo − sodt, qo], φ(q) is

changed by (na(q) + σ)1−1/α ≤ (na + σ)1−1/α. Integrating over all q ∈ (qo − sodt, qo], we

have dΦ2

dt
≤ β(na + σ)1−1/αso.

Using the Young’s Inequality (see Lemma 2.6 in Chapter 2), we can further introduce

any constant µ > 0 into the bound of dΦ2

dt
in Claim 3.9(ii) as follows. (Later we will set

µ = α−1/α.) By setting f(x) = xα−1, f−1(x) = x1/(α−1), g = so/µ, h = (na + σ)1−1/αµ,

dΦ2

dt
≤ β((na + σ)1−1/αµ)

(
so

µ

)
≤ β

(∫ so
µ

0

xα−1 dx +

∫ n
1−1/α
a µ

0

x1/(α−1) dx

)

≤ βsα
o

αµα
+ β(1− 1

α
)(na + σ)µα/(α−1) . (3.2)

Chapter 3. Flow-Energy Scheduling with Sleep States 40

We are now ready to prove the inequality of Lemma 3.8. We give a case analysis

depending on whether Slp(SAJC) or OPT are working. The interesting case is Case iii,

when OPT is working but Slp(SAJC) is not. In Case iii, the increase of potential is

partially offset by the increase of inactive flow.

Case i. sa > 0, so > 0: In this case, dGw

dt
= 2(na +σ), dC∗

dt
= sα

o +σ+no, and dFi

dt
= 0.

By Claim 3.9(i) and Inequality (3.2), we have

dGw

dt
+

dΦ

dt
≤ 2(na + σ)− β(na + σ) + βno + β(1− 1

α
)(na + σ)µα/(α−1) +

βsα
o

αµα
.

Recalling that β = 2/(1 − α−1
αα/(α−1)) and setting µ = α−1/α, we have dGw

dt
+ dΦ

dt
≤ β(sα

o +

σ + no) = β dC∗
dt

.

Case ii. sa > 0, so = 0: In this case, dGw

dt
= 2(na + σ), dC∗

dt
≥ no,

dFi

dt
= 0, and

dΦ2

dt
= 0 (Claim 3.9(ii)). Using Claim 3.9(i), we have

dGw

dt
+

dΦ

dt
≤ 2(na + σ)− β(na + σ) + βno ≤ βno ≤ β

dC∗

dt
.

Case iii. sa = 0, so > 0: In this case, dGw

dt
= 0, dC∗

dt
= sα

o + σ + no,
dFi

dt
= na, and

dΦ1

dt
= 0 (Claim 3.9(i)). Using Inequality (3.2) and setting µ = α−1/α, we have

dGw

dt
+

dΦ

dt
≤ β(1− 1

α
)(na+σ)µα/(α−1)+

βsα
o

αµα
≤ β(sα

o +σ)+(β−2)na ≤ β
dC∗

dt
+(β−2)

dFi

dt
.

Case iv. sa = so = 0: In this case, dGw

dt
= 0, dC∗

dt
≥ no,

dFi

dt
= na, and dΦ

dt
= 0

(Claim 3.9). Therefore, dGw

dt
+ dΦ

dt
= 0 ≤ β dC∗

dt
.

3.4 Bounded Speed Model

This section extends the sleep management algorithm IdleLonger and the speed scaling

algorithm SAJC to the bounded speed model. We consider the setting where the processor

speed is upper bounded by a constant T > 0, and there are m ≥ 1 levels of sleep states.

We show that the total cost (comprising inactive and working cost) of IdleLonger(SAJC)

is O(1) times of the optimal offline algorithm OPT.

Chapter 3. Flow-Energy Scheduling with Sleep States 41

Adaptation. In the bounded speed model, IdleLonger (see Section 3.2) still works

and the inactive cost is O(1) times of OPT’s total cost. However, IdleLonger often allows a

long sleep, then a speed scaling algorithm, without the capability to speed up arbitrarily,

cannot always catch up the progress of OPT and may have unbounded working cost.

Thus, we adapt IdleLonger to wake up earlier, especially when too many new jobs have

arrived. To this end, we add one more wake-up condition to IdleLonger. Recall that

σ(= σ0) is the static power in the working state.

In the sleep-j state, where 0 ≤ j ≤ m, if the number of unfinished jobs exceeds

σ, the processor wakes up to the working state.

Recall that SAJC runs at the speed (n(t)+σ)1/α, where n(t) is the number of unfinished

jobs at time t. To adapt SAJC to the bounded speed model, we simply cap the speed at

T . That is, at any time t, the processor runs at the speed min{(n(t) + σ)1/α, T}.

Inactive cost of IdleLonger. The rigid structure of sleep intervals remains the

same as before, and the inactive cost is still at most 3W + 2Eiw, where W is the wake-up

energy and Eiw is the idling energy incurred in those idling or intermediate sleep intervals

that end with a wake-up transition (see Section 3.2 for details). However, due to the

additional wake-up rule, IdleLonger has a slightly worse bound on W plus Eiw. Our main

result is stated in Lemma 3.10. Again, W ∗ denotes the wake-up energy of OPT, and C∗

is the total cost of OPT minus W ∗.

Theorem 3.10. (i) W +Eiw ≤ C∗+3W ∗. (ii) The inactive cost of IdleLonger is at most

3C∗ + 9W ∗.

To prove Theorem 3.10(i), we extend the charging scheme in Section 3.2.2 to show

that for each ISw[j]-interval, OPT can be charged with a cost at least ωj + `σj, where ` is

the length of the deepest sleep subinterval (recall that ω0 = 0, σ0 = σ and σm = 0). The

three cases of the old charging scheme remain the same, except that Case 3 is restricted to

ISw[j]-intervals where IdleLonger wakes up at the end due to excessive inactive flow. We

supplement Case 3 with a new scheme (Case 4) to handle ISw[j]-intervals with wake-ups

due to more than σ unfinished jobs.

Charging scheme – Case 4. If OPT is sleeping (at any level except zero) throughout

an ISw[j]-interval [t1, t2], and IdleLonger has accumulated more than σ unfinished jobs

Chapter 3. Flow-Energy Scheduling with Sleep States 42

at t2, we consider two scenarios to charge OPT, depending on no(t1), the number of

unfinished jobs in OPT at t1.

(a) Suppose no(t1) ≥ σ0. We charge OPT the inactive flow of these jobs over [t1, t2],

which is at least (t2 − t1)σ0. By Lemma 3.4, this charge is at least ωj + `σj.

(b) Suppose no(t1) < σ0. Note that OPT stays in a sleep-k state, for some k ≥ 1, in the

entire interval and uses static energy (t2 − t1)σk during [t1, t2]. We charge OPT the sum

of (t2 − t1)σk and ωk (in view of OPT’s first wake-up after t2, which must exist because

new jobs have arrived within [t1, t2]). By Lemma 3.4, this charge is at least ωj + `σj.

In conclusion, we are able to charge OPT, for each ISw[j]-interval, a cost at least

ωj + `σj. Therefore, the sum of the charges to all ISw[j]-intervals is at least W + Eiw.

On the other hand, recall that Case 1 has a total charge at most 2W ∗. Case 2, 3 and

4(a) have a total charge at most C∗. Below, we argue that OPT is charged by Case

4(b) with a cost at most W ∗ (Lemma 3.11). Then we have W + Eiw ≤ C∗ + 3W ∗. And

Lemma 3.10(ii) follows directly.

Lemma 3.11. With respect to the above charging scheme, OPT is charged by Case 4(b)

with a cost of at most W .

Proof. To prove that the total charge due to Case 4(b) is at most W ∗, it suffices to show

that each wake-up of OPT is charged at most once by an ISw[j]-interval in Case 4(b).

Suppose, for the sake of contradiction, there are two ISw[j]-intervals [t1, t2] and [r1, r2]

(with possibly different j), where t2 < r1, both charging to the same wake-up transition

in Case 4(b). This implies OPT is sleeping during [t1, r2]. At time t2, IdleLonger, as well

as OPT, have at least σ = σ0 unfinished jobs. As OPT is sleeping during [t1, r2], the

number of unfinished jobs of OPT at time r1 is also at least σ0 and Case 4(a) should have

been applied for [r1, r2], which is a contradiction.

Working cost of SAJC. It remains to analyze the working cost of IdleLonger(SAJC).

Our main result is stated in Theorem 3.12 below, which, together with Theorem 3.10(ii),

implies that IdleLonger(SAJC) is max{β(2 + 1/α) + ζ + 1, 3β + 3} = O(α
ln α

)-competitive

for flow plus energy, where ζ = max{4, β(1− 1/α)}.

Theorem 3.12. With respect to IdleLonger(SAJC), Gw ≤ (β(1+1/α)+ζ)C∗+(β−2)Fi.

Corollary 3.13. In the bounded speed model with single or multiple sleep states, the total

cost of IdleLonger(SAJC) is at most max{β(2 + 1/α) + ζ + 1, 3β + 3} times of the total

Chapter 3. Flow-Energy Scheduling with Sleep States 43

cost of OPT.

Proof of Corollary 3.13. By Theorem 3.10(ii), the inactive cost is at most 3C∗ + 9W ∗.

On the other hand, by Theorem 3.12, the working cost of IdleLonger(SAJC) is Gw ≤
(β(1 + 1/α) + ζ)C∗ + (β − 2)Fi. By Property 3.1 in Section 3.2 and Theorem 3.10(i),

Fi ≤ W +Eiw ≤ C∗+3W ∗. It follows that the total cost of IdleLonger(SAJC), comprised

of the inactive cost and the working cost, is at most (β(2+1/α)+ ζ +1)C∗+(3β +3)W ∗.

Therefore, the total cost of IdleLonger(SAJC) is at most max{β(2+1/α)+ ζ +1, 3β +3}
times OPT’s total cost.

To prove Theorem 3.12, we use the same potential function Φ(t) as in Section 3.3,

except that we set β = 2/(1 − 1−1/α

(α+1)1/(α−1)). Below, we repeat the definition of Φ(t). At

time t, for any q ≥ 0, let na(q) be the number of unfinished jobs of SAJC with remaining

work at least q, and similarly for no(q) and OPT. Then

Φ(t) = β

∫ ∞

0

φ(q)dq , where φ(q) =

(na(q)∑
j=1

(j + σ)1−1/α

)
− (na(q) + σ)1−1/αno(q) .

As shown in Section 3.3, Φ(t) = 0 initially and is non-negative when IdleLonger(SAJC)

and OPT finish all jobs. Furthermore, Φ(t) does not increase or even does not change

at any discrete-event time including when a job arrives, and when IdleLonger(SAJC) or

OPT finish a job or change the speed.

Similarly as in Section 3.3, it suffices to show that at any time when no discrete events

occur, dGw(t)
dt

+ dΦ(t)
dt

= O(dC∗(t)
dt

+ dFi(t)
dt

). We omit the parameter t from the notations as

it is clear that t is the current time. At time t, if IdleLonger(SAJC) is working, let sa be

the current speed of SAJC, and let qa be the remaining work of the current job of SAJC.

And so and qo are define similarly for OPT. Let na and no be the number of unfinished

jobs at time t in IdleLonger(SAJC) and OPT, respectively. In the infinite speed model,

na may be arbitrary larger than no. Below, we bound na − no, which shows how the

extension of IdleLonger and SAJC helps IdleLonger(SAJC) to keep up with OPT.

Lemma 3.14. With respect to IdleLonger(SAJC), at any time t, na−no ≤ max{T α, σ}.

Proof. The proof idea is the same as that of Lemma 2.8 in Chapter 2. The non-trivial

case is na > max{T α, σ} at time t. Let t0 < t be the last time when na ≤ max{Tα, σ}.

Chapter 3. Flow-Energy Scheduling with Sleep States 44

By the extension of IdleLonger and SAJC, IdleLonger(SAJC) is working at maximum

speed T using SRPT during [t0, t]. Since SRPT maximizes the number of jobs completed

by any time [86], the number of jobs completed after t0 by IdleLonger(SAJC) is at least

the number of jobs that are released and completed in [t0, t] by OPT. It follows that

na − no ≤ max{T α, σ}.

Intuitively, SAJC sometimes works at speed T , which is slower than (na + σ)1/α, and

this leads to a longer working period and hence an excess of flow time and static energy.

At such time, we can use Lemma 3.14 to bound the rate of increase of excess flow time

in terms of dC∗
dt

, yet it is difficult to bound the rate of increase of excess static energy and

show dGw

dt
+ dΦ

dt
= O(dC∗

dt
+ dFi

dt
).

We extend the potential analysis with yet another new notion Ews, the total working

static energy, which is the static power σ times the total length of working intervals.

When IdleLonger(SAJC) is working, dEws

dt
= σ. It allows us to show the following lemma.

Lemma 3.15. At any time when no discrete events occur, dGw

dt
+ dΦ

dt
≤ β(1 + 1

α
)dC∗

dt
+

(β − 2)dFi

dt
+ ζ dEws

dt
.

To prove Lemma 3.15, we follow the framework in Section 3.3. When IdleLonger(SAJC)

is working, dGw

dt
= sα

a + σ + na,
dFi

dt
= 0 and dEws

dt
= σ; otherwise, dGw

dt
= 0, dFi

dt
= na and

dEws

dt
= 0. When OPT is working, dC∗

dt
= sα

o + σ + no; otherwise, dC∗
dt

≥ no. To upper

bound dΦ
dt

, we divide the analysis of dΦ
dt

into two parts: (i) the execution of SAJC affects

φ(q) for q ∈ (qa−sadt, qa], and (ii) the execution of OPT affects φ(q) for q ∈ (qo−sodt, qo].

We denote these changes as dΦ1 and dΦ2, respectively, and dΦ = dΦ1 + dΦ2.

Claim 3.16. (i) Consider dΦ1

dt
. If 0 < sa < T , or sa = T and na − no ≤ −σ, then

dΦ1

dt
≤ −β(na +σ−no); else, if sa = T and na−no > σ, then dΦ1

dt
≤ −β(na−(1+1/α)no);

otherwise, dΦ1

dt
≤ 0. (ii) dΦ2

dt
≤ β(na + σ)1−1/αso.

Proof. (i) We analyze dΦ1

dt
. Using the same arguments in the proof of Claim 3.9(i), we

have the following Inequality (3.1):

dΦ1

dt
≤ −β(na + σ − no)(na + σ)−1/αsa .

If sa = 0, then Inequality (3.1) implies dΦ1

dt
≤ 0. If 0 < sa < T , then sa = (na + σ)1/α and

hence Inequality (3.1) implies dΦ1

dt
≤ −β(na + σ − no).

Chapter 3. Flow-Energy Scheduling with Sleep States 45

Now consider sa = T . Note that T ≤ (na+σ)1/α. If na−no ≤ −σ, then Inequality (3.1)

also implies dΦ1

dt
≤ −β(na+σ−no). Otherwise, if −σ < na−no ≤ σ, then Inequality (3.1)

simply implies dΦ1

dt
≤ 0. It remains to consider the case that na−no > σ. By Lemma 3.14,

we have σ < na − no ≤ Tα, i.e., (na − no)
1/α ≤ T . Note that for any non-negative x and

y, if x ≤ y, then 1+σ/x ≥ 1+σ/y ≥ (1+σ/y)1/α, and thus (x+σ)/(y +σ)1/α ≥ x/y1/α.

By setting x = na − no and y = na,
dΦ1

dt
≤ −β(na − no)n

−1/α
a T . Since T ≥ (na − no)

1/α,

we have

dΦ1

dt
≤ −β(na − no)

1+1/α

n
1/α
a

≤ −β(n
1+1/α
a − (1 + 1/α)n

1/α
a no)

n
1/α
a

= −β(na − (1 + 1/α)no) .

(ii) To upper bound dΦ2

dt
, we use the same proof of Claim 3.9(ii).

We are now ready to prove the inequality of Lemma 3.15, i.e., dGw

dt
+ dΦ

dt
≤ β(1+ 1

α
)dC∗

dt
+

(β−2)dFi

dt
+ ζ dEws

dt
. Below is a case analysis depending on whether IdleLonger(SAJC) and

OPT is working.

Case a: sa < T . By Claim 3.16, the bound on dΦ
dt

is the same as in the Lemma 3.8

in Section 3.3, except that the constant β is different. Furthermore, since sa = (na +

σ)1/α, the bounds on dGw

dt
, dC∗

dt
and dFi

dt
all remain the same. Therefore, we use the same

arguments in Lemma 3.8, except that we made a minor change on the constant µ to set

µ = (α + 1)−1/α. Then for all the four cases considered in the proof of Lemma 3.8, we

can show that dGw

dt
+ dΦ

dt
≤ β dC∗

dt
+ (β − 2)dFi

dt
≤ β(1 + 1/α)dC∗

dt
+ (β − 2)dFi

dt
.

Case b: sa = T and na − no ≤ −σ. By Claim 3.16, the bound on dΦ
dt

is the same as

Case a. Again, the bounds on dC∗
dt

and dFi

dt
remain the same. Since sa = T ≥ (na− σ)1/α,

we have dGw

dt
= sα

a +σ+na ≤ 2(na+σ). We can show dGw

dt
+ dΦ

dt
≤ β(1+1/α)dC∗

dt
+(β−2)dFi

dt

in the same way as Case a.

Case c: sa = T and na − no > −σ. Since sa = T , dGw

dt
≤ 2(na + σ). Now we show

dGw

dt
+ dΦ

dt
≤ β(1 + 1

α
)dC∗

dt
+ (β − 2)dFi

dt
+ ζ dEws

dt
depending on whether OPT is working.

Case c.1: so > 0. In this case, dGw

dt
≤ 2(na + σ), dC∗

dt
= no + sα

o + σ, dFi

dt
= 0, and

dEws

dt
= σ.

If na−no ≤ σ, by Claim 3.16, dΦ1

dt
≤ 0 and dΦ2

dt
≤ β(na +σ)1−1/αso. Similarly as in the

proof of Lemma 3.8, using the Young’s Inequality, we can further introduce any constant

Chapter 3. Flow-Energy Scheduling with Sleep States 46

µ > 0 into the above bound of dΦ2

dt
(see Inequality 3.2 in Section 3.3) and thus we have

dGw

dt
+

dΦ

dt
≤ 2(na + σ) + β(1− 1/α)µα/(α−1)(no + 2σ) +

β

αµα
sα
o

≤ (2 + β(1− 1/α)µα/(α−1))(no + 2σ) +
β

αµα
sα
o .

By setting µ = (α + 1)−1/α and recalling that β = 2/(1 − 1−1/α

(α+1)1/(α−1)), we have

β = 2 + β(1 − 1/α)µα/(α−1). Therefore, dGw

dt
+ dΦ

dt
≤ β(no + 2σ) + β(1 + 1/α)sα

o ≤
β(1 + 1/α)(sα

o + no + σ) + (2β − β(1 − 1/α))σ = β(1 + 1/α)dC∗
dt

+ β(1 − 1/α)dEws

dt
≤

β(1 + 1/α)dC∗
dt

+ ζ dEws

dt
.

If na − no > σ, similarly, Claim 3.16 implies

dGw

dt
+

dΦ

dt
≤2(na + σ)− βna + β(1 + 1/α)no + β(1− 1/α)µα/(α−1)(na + σ) +

β

αµα
sα
o

=
(
2− β(1− (1− 1/α)µα/(α−1))

)
na

+
(
2 + β(1− 1/α)µα/(α−1)

)
σ + β(1 + 1/α)no +

β

αµα
sα
o .

Again, by setting µ = (α + 1)−1/α, the above inequality implies dGw

dt
+ dΦ

dt
≤ βσ + β(1 +

1/α)(no + sα
o) ≤ β(1 + 1/α)(no + sα

o + σ) = β(1 + 1/α)dC∗
dt

.

Case c.2: so = 0. In this case, dGw

dt
≤ 2(na + σ), dC∗

dt
≥ no,

dFi

dt
= 0, and dEws

dt
= σ.

If na − no ≤ σ, by Claim 3.16,

dGw

dt
+ dΦ

dt
≤ 2(na + σ) ≤ 2(no + 2σ) = 2no + 4σ ≤ β(1 + 1/α)dC∗

dt
+ ζ dEws

dt
,

where the last inequality follows from the fact that β ≥ 2 and ζ ≥ 4.

If na − no > σ, by Claim 3.16,

dGw(t)
dt

+ dΦ(t)
dt

≤ 2(na + σ)− βna + β(1 + 1/α)no = (2− β)na + 2σ + β(1 + 1/α)no

≤ β(1 + 1/α)dC∗
dt

+ 2dEws

dt
,

where the last inequality follows from the fact that β ≥ 2 and ζ ≥ 2.

Chapter 3. Flow-Energy Scheduling with Sleep States 47

In conclusion, for any case, dGw

dt
+ dΦ

dt
≤ β(1+1/α)dC∗

dt
+(β−2)dFi

dt
+ζ dEws

dt
, completing

the proof of Lemma 3.15. Lemma 3.15 implies Gw ≤ β(1 + 1/α)C∗ + (β − 2)Fi + ζEws.

We further observe that Ews ≤ C∗. Then Theorem 3.12 follows.

Lemma 3.17. With respect to IdleLonger(SAJC), Ews ≤ C∗.

Proof. Let x be the total size of all jobs. First, consider T ≥ σ1/α. When IdleLonger(SAJC)

is working, its speed is at least σ1/α and thus Ews ≤ σ · (x/σ1/α) = xσ1−1/α. Note

that running a job at the critical speed scrit = (σ/(α − 1))1/α minimizes the energy us-

age of the job. Therefore, the energy usage of any schedule and hence C∗ is at least

(x/scrit) · (sα
crit + σ) ≥ (α/(α− 1)1−1/α) · (xσ1−1/α) ≥ (α/(α− 1)1−1/α)Ews. For any α > 1,

(α/(α− 1)1−1/α) ≥ 1, and hence C∗ ≥ Ews.

Now consider the case that T < σ1/α. When IdleLonger(SAJC) is working, its speed

is always T and thus Ews ≤ σ · (x/T). If scrit ≤ T , then the energy usage of any schedule

and hence C∗ is at least (x/scrit) · (sα
crit + σ) ≥ σ · (x/scrit) ≥ σ · (x/T) = Ews. Otherwise,

if scrit > T , then the optimal schedule would always run a job at speed T . It is because

when running a job below scrit, the slower the speed, the more energy as well as flow time

are incurred. Thus, C∗ ≥ (x/T) · (T α + σ) ≥ σ · (x/T) = Ews.

Chapter 4

Non-migratory Multi-processor

Flow-Energy Scheduling

This chapter extends the study of flow-energy scheduling to the setting with m ≥ 2 pro-

cessors. This extension is not only of theoretical interest, as modern processors adopt

multi-core technology (dual-core and quad-core are getting common). A multi-core pro-

cessor is essentially a pool of parallel processors. The formal problem is defined as follows.

Given a job set J , we want to schedule J on a pool of m ≥ 2 processors. Jobs are se-

quential in nature and cannot be executed by more than one processor in parallel. All

processors are identical and a job can be executed in any processor. A processor can run

at any speed between 0 and T ; when running at speed s, it processes s units of work and

consumes sα units of energy in each unit of time, where α ≥ 2. Preemption is allowed and

a preempted job can be resumed at the point of preemption. We differentiate two types

of schedules: a migratory schedule can move partially-executed jobs from one processor

to another processor without any penalty, and a non-migratory schedule dispatches each

job to one of the m processors and runs the job entirely in that processor. In practice,

migrating jobs requires overheads and is avoided in many applications. To make our work

more meaningful, we aim at schedules that do not require job migration among proces-

sors. The objective is to minimize the total flow time of all jobs plus the total energy

usage of all processors.

In Section 4.1, we give some definitions and notations necessary for discussion; in

particular, the notions of fractional weight and fractional flow are introduced. We also

48

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 49

introduce the definitions of critical speed and global critical speed. In Section 4.2, we

introduce the job dispatching policy CRR and present the online algorithm CRR-A. We

show the following two competitive ratios of CRR-A for flow plus energy. First, for jobs

of power-of-2 size (i.e., every job has size 2k for some k), CRR-A is O(log P)-competitive,

where P is the ratio of the maximum job size to the minimum job size. Second, for jobs

of arbitrary size, CRR-A is O(1)-competitive when using processors with slightly higher

maximum speed. These results are based on an offline result to eliminate migration

(Sections 4.3 and 4.4). Section 4.3 considers jobs of power-of-2 size, showing that given

any migratory schedule, we can transform it to a CRR schedule (which is nonmigratory)

such that the flow time is increased by an O(log P) factor. Section 4.4 considers jobs of

arbitrary size, showing how to construct a CRR schedule from an optimal schedule with

an increase of O(1) factor in flow plus energy and a mild increase in maximum speed.

In Section 4.5, we show that any online scheduling algorithm (without extra maximum

speed) is Ω(log P)-competitive. This lower bound holds even if jobs are all power-of-2

size and thus implies that the competitiveness of CRR-A is optimal (up to a constant

factor) for jobs of power-of-2 size.

Remarks for fixed-speed scheduling. The analysis of CRR also reveals its perfor-

mance in the context of traditional flow-time scheduling, where processors are of fixed-

speed and the concern is on flow time only. In this case, CRR (plus SRPT for individual

processor) would give a non-migratory online algorithm which, when compared with the

optimal migratory algorithm, can have a competitive ratio of one or even any constant

arbitrarily smaller than one, when using sufficiently fast processors. The competitive

ratio can be (56.72/s) when using s-speed processors for s ≥ 56.72.1 Note that if mi-

gration is allowed, the efficiency can be much better as McCullough and Torng [72] have

showed that the migratory algorithm SRPT is 1
s
-competitive when using s-speed proces-

sors, where s ≥ 2− 1
m

.

1Precisely, we can show that for any ε > 0 such that 5
ε2 (2 + ε) ≥ 1, CRR using processors of

speed (1 + ε)2 is 5
ε2 (2 + ε)-competitive. Combining with the result of McCullough and Torng [72] that

SRPT is 1
s -competitive for single processor when using processor of speed s, this implies CRR using

processors of speed s(1 + ε)2 is 5
sε2 (2 + ε)-competitive. By changing variables, we can show that with

σ = 56.72, CRR using processors of speed s ≥ σ is 5σ(
√

σ+1)
s(
√

σ−1)2
-competitive, and 5σ(

√
σ+1)

(
√

σ−1)2
≈ 56.72.

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 50

4.1 Preliminaries

Jobs and fractional weight. We use r(j) and p(j) to denote respectively the release

time and size of a job j. For a set J of jobs, we let p(J) =
∑

j∈J p(j) be the total size of

J , and let P (J) (or simply P when it is clear what J is referring to) denote the ratio of

the largest job size to the smallest job size. We define the fractional weight of a job j at

a particular time to be q/p(j), where q is the remaining work of j at the time of concern.

Note that the fractional weight of j decreases from 1 to 0 in the course of executing j.

Schedules and fractional flow. Throughout this chapter, migratory and non-

migratory schedules are usually represented by the symbols S and N , respectively. With

respect to a schedule S of a job set J , we use max-speedJ(S), EJ(S), FJ(S), and F̂J(S)

to denote the maximum speed, energy usage, total flow time, and total fractional flow

time of S, respectively. Note that the total flow is FJ(S) =
∫∞
0

n(t) dt, where n(t) is

the number of unfinished jobs at time t. On the other hand, the total fractional flow

F̂J(S) is defined as F̂J(S) =
∫∞
0

ŵ(t) dt, where ŵ(t) is the total fractional weight of

unfinished jobs at time t. Obviously, F̂J(S) ≤ FJ(S). Note that processor speed can

vary dynamically and the time to execute a job j is not necessarily equal to p(j). We use

X(j) to denote the execution time of job j (i.e., flow time minus waiting time), and define

XJ(S) =
∑

j∈J X(j) to be the total execution time of S. Our objective is to minimize

total flow time plus energy. Yet it is also helpful to analyze the fractional flow time plus

energy. It is convenient to define GJ(S) = FJ(S) + EJ(S) and ĜJ(S) = F̂J(S) + EJ(S).

When the context is clear, we will omit the subscript J from the above notations.

The following lemma shows a lower bound on G(S) which depends on p(J), irrelevant

of the number of processors.

Lemma 4.1. For any m-processor schedule S for a job set J , G(S) ≥ α
(α−1)1−1/α p(J).

Proof. Suppose that a job j in S has flow time t. The energy usage for j is minimized if

j is run at constant speed p(j)/t throughout, and it is at least (p(j)/t)αt = p(j)α/tα−1.

Since t + p(j)α/tα−1 is minimized when t = (α − 1)1/αp(j), we have t + p(j)α/tα−1 ≥
α

(α−1)1−1/α p(j). Summing over all jobs, we obtain the desired lower bound.

Global critical speed and flow time in multi-processor schedules. To optimize

flow time plus energy, it is useful to define the global critical speed to be 1/(α − 1)1/α.

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 51

Throughout this chapter, we assume that at any time the optimal schedules never run a

job at speed less than the global critical speed 1/(α−1)1/α, and the maximum speed T is

at least the global critical speed. The assumption stems from an observation (Lemma 4.3)

that if necessary, a multi-processor schedule can be transformed without increasing the

flow time plus energy so that it never runs a job j at speed less than the global critical

speed. It also implies X(j) ≤ (α− 1)1/αp(j), which is at most 1.322p(j) for any α ≥ 2.

Lemma 4.3 makes use of a result by Albers and Fujiwara [2] that when scheduling

a single job j on a processor for minimizing total flow time plus energy, j should be

executed at the global critical speed, i.e., 1/(α− 1)1/α.

Lemma 4.2. [2] At any time after a job j has been run on a processor for a while, suppose

that we want to further execute j for another x > 0 units of work and minimize the flow

time plus energy incurred to this period. The optimal strategy is to let the processor always

run at the global critical speed.

Lemma 4.3. Given any m-processor schedule S for a job set J , we can construct an

m-processor schedule S ′ for J such that S ′ never runs a job at speed less than the global

critical speed and G(S ′) ≤ G(S). Moreover, S ′ needs migration if and only if S does; and

max-speed(S ′) ≤ max{max-speed(S), 1/(α− 1)1/α}.

Proof. Assume that there is a time interval I in S during which a processor i is running a

job j below the global critical speed. If S needs migration, we transform S to a migratory

schedule S1 of J such that job j is always scheduled in processor i. This can be done by

swapping the schedules of processor i and other processors for different time intervals. If

S does not need migration, job j is entirely scheduled in processor i and S1 is simply S.

In both cases, G(S1) = G(S).

We can then improve G(S1) by modifying the schedule of processor i in S1 as follows.

Let x be the amount of work of j processed during I on processor i. First, we schedule this

amount of work of j at the global critical speed. Note that the time required is shortened.

Then we move the remaining schedule of j backward to fill up the time shortened. By

Lemma 4.2, the flow time plus energy for j is preserved. Other jobs in J are left intact.

To obtain the schedule S ′, we repeat this process to eliminate all such intervals I.

Assumption on maximum speed T . We assume that the maximum speed T is

at least the global critical speed. Otherwise, any multi-processor schedule including the

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 52

optimal one would always run a job at the maximum speed. It is because when running

a job below the global critical speed, the slower the speed, the more total flow time plus

energy is incurred. In other words, the problem is reduced to minimizing flow time alone.

Critical speed and fractional flow time in single-processor schedules. When

analyzing non-migratory schedules, we sometimes need to focus on individual processors

and analyze the fractional flow time for each processor. In this case we need to consider

fractional weight and make a different assumption of the minimum speed and transfor-

mation. At any time, we define the critical speed of a job j to be (q/(α − 1)p(j))1/α,

where q ≤ p(j) denotes the remaining work of job j at the time of concern. Note that

the critical speed of j changes over time. We give a non-trivial observation that when

scheduling a single job j on a processor for minimizing the fractional flow time plus en-

ergy, the processor should always keep up with its critical speed (Lemma 4.4). Then

we can show that a single-processor schedule can be transformed without increasing the

fractional flow time plus energy so that it never runs a job at speed less than its critical

speed (Lemma 4.5).

Lemma 4.4. At any time after a job j has been run on a processor for a while, suppose

that we want to further execute j for another x > 0 units of work and minimize the

fractional flow time plus energy incurred to this period. The optimal strategy is to let the

processor always run at the critical speed.

Proof. Let p = p(j), and let q ≤ p be the remaining work of j. We first consider the

case to further process an infinitesimal amount of work (i.e., x → 0). In this case we can

assume that the speed s is constant. The time required is t = x/s, and the fractional flow

time plus energy incurred, denoted by ∆Ĝ, is sαt + (q−x/2
p

)t. To find the optimal speed

(or equivalently, optimal time) to minimize ∆Ĝ, we set d∆Ĝ
dt

= 0. That is,

(1− α)
(x

t

)α

+
q − x/2

p
= 0 ,

or equivalently,

x

t
=

(
q − x/2

(α− 1)p

)1/α

.

Since x → 0, we have s = x/t = (q/(α− 1)p)1/α.

Next, consider the case that x is arbitrarily large. Consider a schedule in which the

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 53

processor is not running at the critical speed after processing x′ < x units of work. Let

∆q be an infinitesimal amount. From the discussion above we can change the speed to

the critical speed to obtain the optimal fractional flow time plus energy for processing

the next ∆q units of work. Thus we can eventually obtain a schedule that always runs

at the critical speed.

Lemma 4.5. Given any single-processor schedule N for a job set J , we can construct

another schedule N ′ for J such that N ′ never runs a job at speed less than its critical speed

and Ĝ(N ′) ≤ Ĝ(N). Moreover, max-speed(N ′) ≤ max{max-speed(N), 1/(α− 1)1/α}.

Proof. The transformation uses Lemma 4.4 and the same arguments in the proof of

Lemma 4.3.

4.2 The Online Algorithm

This section presents the formal definition of the online algorithm CRR-A, which makes

use of any O(1)-competitive online algorithm A for minimizing flow plus energy on a single

processor, and produces a non-migratory schedule for m ≥ 2 processors. As mentioned

earlier, the analysis of CRR-A stems from an offline result to eliminate migration. We will

state two theorems about this offline result (to be proved in later sections), one for jobs of

power-of-2 size and another for jobs of arbitrary size. Then we analyze the performance

of CRR-A based on this offline result.

CRR(λ) dispatching. Consider any λ > 0. We define a CRR(λ) (or simply CRR)

schedule based on the following notion of classes. A job is said to be in class k if its

size is in the range ((1 + λ)k−1, (1 + λ)k]. In a CRR(λ) schedule, jobs of the same class

are dispatched upon their arrival to the m processors using a round-robin strategy, and

different classes are handled independently. Jobs once dispatched to a processor will be

processed there until they finish. Thus a CRR(λ) schedule is non-migratory in nature.

The intuition of using a CRR schedule comes from the offline result on eliminating

migration (Theorem 4.6 and Theorem 4.7). Theorem 4.6 states that for jobs of power-of-2

size, there is a CRR schedule such that the total flow time plus energy is O(log P) times

that of the optimal migratory offline schedule and the maximum speed remains the same.

Furthermore, Theorem 4.7 states that for jobs of arbitrary size, there is a CRR schedule

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 54

such that the total flow time plus energy is O(1) times that of the optimal migratory

offline schedule and the maximum allowable speed is only slightly higher. Theorems 4.6

and 4.7 will be proved in Sections 4.3 and 4.4, respectively. Note that in Theorem 4.7, we

will also compare CRR-A with an optimal offline non-migratory schedule; in such case,

the competitive ratio can be improved by a factor of 2.5. We define the constant ηε as

(1 + ε)α[(1 + ε)α−1 + (1− 1/α)(2 + ε)/ε2].

Theorem 4.6. Given a job set J , where jobs are of power-of-2 size, let S be a migratory

schedule of J . Then there is a CRR(1) schedule N for J such that G(N) ≤ (5.966 log P +

2)G(S), and max-speed(N) ≤ max-speed(S).

Theorem 4.7. Given a job set J , let O1 and O2 be respectively an optimal non-migratory

schedule and an optimal migratory schedule for J using maximum speed T . Then,

i. for any ε > 0, there is a CRR(ε) schedule S1 for J such that G(S1) ≤ 2ηεG(O1),

and max-speed(S1) ≤ (1 + ε)2 ×max-speed(O1); and

ii. for any ε > 0, there is a CRR(ε) schedule S2 for J such that G(S2) ≤ 5ηεG(O2), and

max-speed(S2) ≤ (1 + ε)2 ×max-speed(O2).

The above theorems naturally suggest an online algorithm that first dispatches jobs

using the policy CRR, and then schedules jobs in each processor independently and in

a way that is competitive in the single-processor setting. For the latter, we make use of

any O(1)-competitive algorithm A, e.g., SRPT-AJC in Chapter 2, and BCP in [13].

Algorithm CRR-A. Jobs are dispatched to the m processors with the

CRR(λ) policy. Jobs in each processor are scheduled independently using

algorithm A.

Analysis of CRR-A. We analyze the competitiveness of CRR-A in the bounded

speed model. Note that our analysis can also be applied to the infinite speed model,

though it is of less interest. Suppose the algorithm A is β-competitive for flow plus

energy in the single-processor setting (in the bounded speed model). With Theorems 4.6

and 4.7, we can easily derive the performance of CRR-A against the optimal migratory or

non-migratory algorithm. Recall that λ is the parameter for classifying jobs in CRR(λ).

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 55

Corollary 4.8. In the bounded speed model, the performance of CRR-A for minimizing

flow time plus energy on m ≥ 2 processors is as follows.

i. For jobs of power-of-2 size, against a migratory optimal schedule, CRR-A (with λ =

1) is (5.966 log P + 2)β-competitive using processors with maximum speed T .

ii. For jobs of arbitrary size, for any ε > 0, against a non-migratory optimal schedule,

CRR-A (with λ = ε) is 2ηεβ-competitive when using processors with maximum speed

relaxed to (1 + ε)2T .

iii. For jobs of arbitrary size, for any ε > 0, against a migratory optimal schedule, CRR-A

(with λ = ε) is 5ηεβ-competitive when using processors with maximum speed relaxed

to (1 + ε)2T .

Proof. To show (i), consider a job set J2, where jobs are of power-of-2 size. Let O2 be the

optimal migratory schedule for J2. By Theorem 4.6, there exists a CRR(1) schedule N2

for J2 such that G(N2) ≤ (5.966 log P + 2)G(O2), and max-speed(N2) = max-speed(O2).

Let S2 be the CRR(1) schedule produced by CRR-A (with λ = 1) for J2. Applying

to individual processors the fact that algorithm A is β-competitive for flow plus energy,

we conclude that G(S2) ≤ βG(N2) ≤ (5.966 log P + 2)βG(O2), and max-speed(S2) ≤
max-speed(O2).

To show (ii) and (iii), we consider an arbitrary job set J . Let O be the optimal non-

migratory schedule for J . Consider any ε > 0. By Theorem 4.7 (i), there exists a CRR(ε)

schedule S for J such that G(S) ≤ 2ηεG(O) and max-speed(S) ≤ (1+ε)2×max-speed(O).

Let S ′ be the CRR(ε) schedule produced by CRR-A (with λ = ε) for J . Applying to

individual processors the fact that algorithm A is β-competitive for flow plus energy, we

conclude that G(S ′) ≤ βG(S) ≤ 2ηεβG(O), and max-speed(S ′) ≤ (1+ε)2×max-speed(O).

Thus, (ii) follows. The analysis of the migratory case, i.e., (iii), is the same.

4.3 Jobs of Power-of-2 Size

This section is devoted to proving Theorem 4.6 in Section 4.2. We focus on jobs of

power-of-2 size. Now we give an overview of an offline method for transforming a given

migratory schedule to a non-migratory schedule. Roughly speaking, the method involves

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 56

A migratory schedule S for J

A migratory schedule S∗ for J
∗ A migratory schedule S- for J

-

A trivially non-migratory schedule N ∗ for J
∗

A CRR(1) schedule N+ for J
+

A CRR(1) schedule N for J

Lemma 4.9 (Section 4.3.2)

Theorem 4.10 (Section 4.3.1)

Lemma 4.11 (i) (Section 4.3.3)

Lemma 4.11 (ii)

Figure 4.1: Transforming a migratory schedule to a non-migratory schedule for jobs J of
power-of-2 size

eliminating migration in two types of schedules: schedule for a set of special jobs called

parallel jobs, and schedule for any set of jobs of power-of-2 size. This section states the

lemmas and theorems related to these two steps (to be proved respectively in Section 4.3.1

and in Sections 4.3.2 and 4.3.3). More importantly, we explain how to apply these results

to obtain the main theorem of transforming a migratory schedule to a non-migratory

schedule. To ease discussion, Figure 4.1 is given as an overview of how various lemmas

and theorems are applied.

We first define and recall some definitions to be used in this section. We consider a

set J of jobs of power-of-2 size and denote the maximum-minimum ratio of job sizes by P .

Note that J has at most log P distinct job sizes. A job set is said to be m-parallel if the

jobs can be partitioned into batches, each with m jobs of identical release time and size.

For an m-parallel job set, a trivially non-migratory schedule is defined as any schedule in

which all processors have identical schedules and at any time, execute respectively the m

different jobs in a batch.

The key ideas and steps involved in the transformation are as follows.

1. It is easy to convert J into an m-parallel job set J∗ (see the procedure Make Parallel

below). And a migratory schedule for J would naturally define a migratory schedule

for J∗.

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 57

2. More interestingly, the migratory schedule for J∗ can be transformed to a trivially

non-migratory schedule for J∗.

3. Finally, any trivially non-migratory schedule for J∗ can be transformed to a CRR(1)

schedule for J .

Furthermore, all transformations incur only a moderate increase in the flow time plus

energy.

The procedure Make Parallel is defined as follows. It transforms J to two job sets,

each still has at most log P distinct job sizes.

J+: Jobs of the same size in J are grouped into batches of m jobs, in the order of release

time. The last batch may not be full. J+ is the set of all jobs that are in a “full”

batch. Let J- = J − J+.

J∗: For each batch in J+, we pick a job with the earliest release time as the leader, and

change the release time of every other job to that of the leader. We use r(j) and

r∗(j) to denote the original and the new release time of a job j. The resulting job

set is denoted by J∗, which is m-parallel.

The following lemmas and theorem define a sequence of transformations from a migra-

tory schedule S of J to different intermediate schedules (for J+, J- and J∗) and eventually

to a non-migratory CRR(1) schedule of J . See Figure 4.1 for a summary of these transfor-

mations. Each transformation consists of a few steps only; yet the analysis of the increase

of flow time and energy is often quite involved. The details and proofs will be given in

Sections 4.3.1, 4.3.2 and 4.3.3. In the rest of this section, we need to deal with different

migratory and non-migratory schedules of the job sets J, J+, J- and J∗; it is noteworthy

that their migratory schedules are always denoted by S,S+,S-, and S∗, respectively, and

their non-migratory schedules are denoted by N ,N+,N -, and N ∗, respectively.

Lemma 4.9. Given a migratory schedule S for J , we can construct two migratory sched-

ules S∗ for J∗ and S- for J- in such a way that G(S∗) + G(S-) ≤ G(S) + 1.322(log P +

1) · p(J+). Both S∗ and S- use at most the maximum speed of S.

The next transformation is the most non-trivial, it converts a migratory schedule

for J∗ to a trivially non-migratory schedule.

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 58

Theorem 4.10. Given a migratory m-processor schedule S∗ for J∗, we can construct a

trivially non-migratory schedule N ∗ for J∗ such that G(N ∗) ≤ G(S∗) + 2 log P · p(J∗).

Furthermore, max-speed(N ∗) ≤ max-speed(S∗).

Recall that jobs in J∗ may have their release time moved backward and thus we need

another transformation of N ∗ to obtain a valid schedule for J+ and then J .

Lemma 4.11. (i) Given a trivially non-migratory schedule N ∗ of J∗, we can construct a

CRR(1) schedule N+ for J+ such that G(N+) ≤ G(N ∗) + 1.322 log P · p(J+). More-

over, max-speed(N+) ≤ max-speed(N ∗). (ii) Together with a migratory schedule S-

for J-, we can construct a CRR(1) schedule N for J , such that G(N) ≤ G(N+) +

G(S-) + 1.322 log P · p(J). Moreover, max-speed(N) is at most max{max-speed(N+),

max-speed(S-)}.

With the above lemmas and theorem, we can prove the main result on eliminating

migration, i.e., Theorem 4.6 in Section 4.2.

Proof of Theorem 4.6. Given a migratory schedule S of J , we can apply Lemma 4.9,

Theorem 4.10, and Lemma 4.11 to obtain a CRR(1) schedule N for J such that

G(N) ≤ G(N+) + G(S-) + 1.322 log P · p(J)

≤ G(N ∗) + 1.322 log P · p(J+) + G(S-)

+ 1.322 log P · p(J)

≤ G(S∗) + 2 log P · p(J∗)

+ 1.322 log P · p(J+) + G(S-)

+ 1.322 log P · p(J)

≤ G(S) + 2 log P · p(J∗)

+ (2.644 dlog P e+ 1)p(J+)

+ 1.322 log P · p(J).

Note that p(J+) = p(J∗) ≤ p(J). Furthermore, Lemma 4.1 implies p(J) ≤ G(S). Thus,

G(N) ≤ (5.966 log P + 2)G(S) and max-speed(N) ≤ max-speed(S). Thus, Theorem 4.6

holds.

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 59

4.3.1 Eliminating migration in a multi-processor schedule of

parallel jobs

In this section we prove Theorem 4.10 (of Section 4.3) that transforms a migratory sched-

ule S∗ of an m-parallel job set J∗ to a trivially non-migratory schedule N ∗ for J∗ with

a moderate increase in flow time plus energy. Let K denote the maximum number of

distinct job sizes in J∗, i.e., K = log P .

The transformation consists of two steps. Each step preserves the total fractional

flow time plus energy. The first step makes use of an “averaging” technique to determine

the speed and to distribute the workload among the processors, this results in a non-

migratory and indeed trivially non-migratory schedule N ∗
1 . The second step attempts to

locally “tidy up” the schedule of each individual processor in N ∗
1 so that the total flow

time of the resulting schedule N ∗ does not exceed its total fractional flow time too much

(precisely, by at most 2Kp(J∗)). Then Theorem 4.10 follows. Details are as follows.

Step 1: Speed Averaging. The speed function of the new schedule N ∗
1 is deter-

mined as follows. At any time, every processor in N ∗
1 runs at the average speed of all

processors of S∗. That is, if the processors in S∗ are at speed s1, s2, . . . , sm, respec-

tively, then every processor in N ∗
1 runs at speed

∑m
i=1 si/m. Note that the “total” speed

of S∗ and N ∗
1 are the same. Since the energy function sα is convex, the rate of energy

consumption of N ∗
1 (i.e., m (

∑m
i=1 si/m)

α
) is at most that of S∗ (i.e.,

∑m
i=1 sα

i).

Work Averaging. Next we describe how N ∗
1 selects jobs for execution. In S∗, jobs in

a batch may have different progress. To ease our discussion, we divide S∗ into consecutive

time intervals at the moment when a batch of jobs is released or has just been completed.

Let I be such a time interval. Within I, suppose S∗ has worked on some jobs of a batch B

for a total of u units (note that the work done on each job of B may vary), then N ∗
1 would

schedule each processor to work on u/m units of a different job of B in parallel. Note

that the total work done on B is still u (though the progress of individual jobs might

differ from S∗). S∗ might have worked on several batches within I; at any time within I,

N ∗
1 uses the Smallest Job Size First (SJF) strategy to select the next batch for execution.

Analysis. At any time in an interval I, the SJF strategy ensures that N ∗
1 gives prior-

ity to jobs that would give the biggest decrease of fractional weight; thus, N ∗
1 has a total

fractional weight no more than that of S∗. At the end of I, N ∗
1 and S∗ have performed

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 60

the same amount of work for each batch, and they have the same total fractional weight.

Applying the same argument to every time interval of S∗, we conclude that at any time,

the total fractional weight in N ∗
1 is no more than that of S∗. Thus, the total fractional

flow time of N ∗
1 is also no more than that of S∗.

Step 2 (Tidying). We further transform N ∗
1 to N ∗ to reduce the total flow time.

Recall that N ∗
1 has an identical schedule for all processors. The changes made in Step 2

are local to each processor, and all processors undergo the same changes.

(a) Critical speed. We ensure that at any time, N ∗
1 executes a job j at speed at least

its critical speed (recall that this critical speed property can be enforced by invoking

the transformation stated in Lemma 4.5 to each processor).

(b) Minimizing partially processed jobs. Next we want to ensure that in each pro-

cessor, there is at most one partially processed job of each size. To obtain such

a schedule, we consider all jobs of a particular size each time, and shuffle these

jobs using “earliest release time first” strategy. The speed used at any time is not

changed, so after shuffling, a job may be executed faster or slower.

(c) Eliminating unnecessary idle time. Finally, we “compact” the schedule of each

processor so that it is never idle when there are unfinished jobs. To do so, we

consider all the jobs executed in a processor in the order of release time. For each

job j, we move its schedule as close as possible to its release time, filling out all the

idle time. Note that we do not change the speed and the total time to execute j.

Analysis. Denote the schedule produced by Step 2 as N ∗. By Lemma 4.5, Step

2(a) does not increase the total fractional flow time plus energy. Steps 2(b) and (c) do

not change the energy usage. Furthermore, in Step 2(b), shuffling jobs of the same size

among themselves does not alter the total fractional weight of these jobs. Thus the total

fractional flow time is preserved. Step 2(c) could only decrease the total fractional flow

time. Thus N ∗ does not increase the total fractional flow time plus energy.

Next, we consider the total flow time. We first upper bound the flow time of N ∗ in

terms of its fractional flow time and total execution time (Lemma 4.12), and the latter

can be further shown to be at most twice of the total size of all jobs (Lemma 4.13).

Lemma 4.12. Consider the schedule N ∗, F (N ∗) ≤ F̂ (N ∗) + K ·X(N ∗), where K is the

number of different job sizes in J∗. (Recall that X(N) is the total execution time of N .)

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 61

Proof. As N ∗ is non-migratory, we can analyze F (N ∗) and F̂ (N ∗) by summing up the

total flow time and fractional flow time of individual processors. Consider any processor

i, let Fi(N ∗) and F̂i(N ∗) be the corresponding total flow time and total fractional flow

time, respectively. At any time, the number of unfinished jobs in a processor can exceed

the total fractional weight of unfinished jobs by at most the number of partially processed

jobs, which is at most K. Furthermore, whenever a processor is idle, there is no unfinished

jobs to charge to Fi(N ∗) and F̂i(N ∗). Thus, Fi(N ∗) − F̂i(N ∗) ≤ K
∑

j∈J∗i
X(j), where

J∗i is the subset of jobs executed in processor i. Summing over all processors, we have

F (N ∗)− F̂ (N ∗) ≤ K
∑

j∈J∗ X(j).

Lemma 4.13. Consider the schedule N ∗. For any job j, X(j) ≤ (α/(α− 1)1−1/α)p(j) ≤
2p(j); and X(N ∗) ≤ 2p(J∗).

Proof. Consider a job j running at its critical speed starting at time 0 until it completes

at some time tc. At a time t, let q be the remaining work of j. Then the speed at t is

−dq
dt

= (q
(α−1)p(j)

)1/α. This implies

∫ tc

0

dt =

∫ 0

p(j)

−((α− 1) p(j))1/αq−1/α dq ,

or equivalently, tc = α p(j)

(α−1)1−1/α . Note that Step 2(a) produces a schedule that runs a job

at speed no less than its critical speed. Then for any job j,

X(j) ≤ (α/(α− 1)1−1/α)p(j) ≤ 2p(j),

where the last inequality is due to the fact that α/(α−1)1−1/α is maximized when α = 2.

Therefore, summing over all jobs j, the total execution time of the schedule produced

by Step 2(a) is
∑

j∈J∗ X(j) ≤ ∑
j∈J∗ 2p(j) = 2p(J∗). Steps 2(b) and 2(c) do not change

the total execution time, so we conclude that X(N ∗) ≤ 2p(J∗).

Lemmas 4.12 and 4.13 imply that F (N ∗) ≤ F̂ (N ∗) + 2Kp(J∗). Hence G(N ∗) ≤
Ĝ(N ∗) + 2Kp(J∗). Since N ∗ preserves the total fractional flow time plus energy of S∗
and the fractional flow time is always upper bounded by flow time, we have Ĝ(N ∗) ≤
Ĝ(S∗) ≤ G(S∗), and G(N ∗) ≤ G(S∗) + 2Kp(J∗). Theorem 4.10 is proved.

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 62

4.3.2 Forward transformation of schedules: from J to J∗

In this section we show how to make use of the previous result on parallel jobs to derive

a way to eliminate migration in a schedule for an arbitrary job set J of power-of-2 size.

Recall that we have defined the job sets J+, J- and J∗ from a given job set J . We will

present two transformations: a forward transformation of a migratory schedule for J to

a migratory schedule for J∗ (this section) and a backward transformation of a trivially

non-migratory schedule for J∗ to a CRR(1) schedule for J (Section 4.3.3).

Now we show how to transform a migratory schedule S for J to a migratory schedule S∗
for J∗. Recall that a job j in J∗ has an earlier deadline (r∗(j)), and the desired lemma is

as follows.

Lemma 4.9 Given a migratory schedule S for J , we can construct two migratory sched-

ules S∗ for J∗ and S- for J- in such a way that G(S∗) + G(S-) ≤ G(S) + 1.322(log P +

1) · p(J+). Both S∗ and S- use at most the maximum speed of S.

To construct S∗ from S, we advance the schedule of each job j in view of its new

release time r∗(j). Below we assume that S always schedules every processor to run

at speed at least the global critical speed (see Lemma 4.3). Recall that J = J+ ∪ J-.

Restricting S with respect to J+ and J- gives two schedules S+ and S-, respectively. Note

that E(S+) + E(S-) = E(S), and F (S+) + F (S-) = F (S). S+ is also a valid schedule

for J∗, though it might induce a larger total flow time (because jobs in J∗ have earlier

release time). To limit the increase in flow time, we modify S+ into a better schedule S∗
for J∗ as follows. Note that we will not change the energy used, i.e., E(S∗) = E(S+).

Advance the schedule. Tag the jobs in each group of J+ with unique integers from

0 to m−1, 0 being the leader. The schedule of all leaders are not modified. We modify S+

in rounds, one for a particular job size (say, from the smallest to the largest). In each

round, we consider groups of jobs in the order of the release time. Consider a job j of

a particular group, which is tagged with i > 0. Let j′ be its leader. To reduce the flow

time of j, we use the following trick to advance the schedule of j using a single processor,

in particular, processor labeled i. Let t1 be the total amount of time over all processors

that S+ executes j, and suppose that between the (original) release times of j′ and j,

i.e., [r∗(j), r(j)] (recall that r∗(j) = r(j′)), the current schedule of processor i has a total

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 63

of t2 ≥ 0 units of idling time. If t1 < t2, we move the schedule of j to processor i only,

occupying the earliest idle time starting from r∗(j). The speed function for processing j

remains unchanged. If t1 ≥ t2, the schedule of j is left unmodified.

Analysis. The above modification guarantees that in the new schedule, the job j,

whose release time has been set to r∗(j), has only a moderate increase in waiting time,

precisely, at most the sum of execution time of processor i during [r∗(j), r(j)] and X(j).

This is proved in Lemma 4.14, which also shows that from J+ to J∗, the total increase

of waiting time (as well as flow time) over all jobs is at most (log P + 1)X(S+). Since

every processor run at speed at least the global critical speed (Lemma 4.3), X(S+) ≤
(α− 1)1/αp(J+) ≤ 1.322p(J+), and Lemma 4.9 follows.

Lemma 4.14. The increase in flow time caused by the transformation in Lemma 4.9,

when transforming a migratory schedule S+ for J+ to a schedule S∗ for J∗, is at most

(log P + 1) · X(S+).

Proof. Since the same speed is being used for all jobs, X(S∗) = X(S+). It remains to

analyze the waiting time. This is done by bounding the change in waiting time of each

modified job during each round. Let Sa and Sb be the schedules before and after a round

in the transformation. Obviously there is no change in the waiting time for leaders.

Consider a job j tagged with i > 0, with leader j′. We claim that the increase in waiting

time is at most the sum of the execution time of j in Sa and the busy time of processor i

in schedule Sa during [r∗(j), r(j)]. This is clear in the case where the scheduling of j is

modified: indeed the waiting time of j in Sb is no more than the latter term. In case

where the scheduling of j is unmodified, the increase in waiting time is r(j) − r∗(j),

which equals to the amount of idle time plus busy time of processor i in schedule Sa

during [r∗(j), r(j)]. Since the scheduling of j is not modified, the amount of idle time is

at most the execution time of j in Sa. The claim thus holds.

Summing over all the jobs concerned for the modification from Sa to Sb for the round

of size 2k jobs, the increase in waiting time is at most the sum of X(Sa) = X(S+) and∑
j is of size 2k X(j). Summing over all the log P rounds, the waiting time is increased by

at most log P · X(S+) +
∑

k

∑
j is of size 2k X(j) = (log P + 1) · X(S+).

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 64

4.3.3 Backward transformation of schedules: from J∗ to J+ and

then to J

Recall that J∗ is m-parallel. Suppose that we have used Theorem 4.10 to obtain a trivially

non-migratory schedule N ∗ for J∗. Below we show how to transform N ∗ to a CRR(1)

schedule N+ for J+ (Lemma 4.11 (i)). Then it is relatively easy to obtain a CRR(1)

schedule for J (Lemma 4.11 (ii)). Lemma 4.11 of Section 4.3 is reiterated as follows.

Lemma 4.11 (i) Given a trivially non-migratory schedule N ∗ of J∗, we can construct a

CRR(1) schedule N+ for J+ such that G(N+) ≤ G(N ∗) + 1.322 log P · p(J+). More-

over, max-speed(N+) ≤ max-speed(N ∗). (ii) Together with a migratory schedule S-

for J-, we can construct a CRR(1) schedule N for J , such that G(N) ≤ G(N+) +

G(S-) + 1.322 log P · p(J). Moreover, max-speed(N) is at most max{max-speed(N+),

max-speed(S-)}.

From J∗ to J+. Note that N ∗ may not be a valid schedule for J+, since a job j in

J∗ has a release time r∗(j) earlier than the release time r(j) in J+. We transform N ∗ to

move the execution period of jobs so that the schedule becomes valid. The changes made

are local to each processor, and all processors undergo the same changes. The following

discussion focuses on the schedule of a processor x in N ∗. Without loss of generality,

we assume that jobs of the same size are processed in the order of release time in J+.

Furthermore, by Lemma 4.3, the processor runs at speed at least the global critical speed.

Transformation. We focus on the schedule of a particular processor x in N ∗. The

transformation runs in multiple rounds. Initially, R is the schedule of the processor x

in N ∗. In each round, R is modified with respect to the jobs of a particular size. Recall

that r(j) and r∗(j) denote the release time of a job j in J+ and J∗, respectively. Let

j1, j2, . . . , jn be the jobs of size p running in processor x, where r∗(j1) ≤ r∗(j2) ≤ · · · ≤
r∗(jn). We observe that r∗(ji) ≤ r(ji) ≤ r∗(ji+1); the latter inequality is due to the fact

that r∗(ji+1) is actually the release time of the leader of ji+1 in J+, which is at least r(ji).

In other words, the period where R schedules ji+1 is a feasible period to schedule ji in

J+. The transformation first removes the scheduling of j1, . . . , jn from R. Then, for each

ji from i = 1 to n− 1, we schedule ji to the first idle intervals of the schedule after r(ji),

using the same speeds of ji+1 in R. Finally, we schedule jn to the first idle intervals of

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 65

the schedule after r(jn) using the same speeds of j1 in R. The transformation is repeated

for each job size. The final schedule obtained for all processors is N+.

As the transformation is local to each processor, N+ follows the way N ∗ dispatches

jobs. Consider jobs in J+ in the order of release time. Because N ∗ is trivially non-

migratory, N+ dispatches every m jobs of the same size (which are power-of-2) to different

processors. Thus N+ is a CRR(1) schedule.

Analysis. In the transformation above, the maximum speed and energy of N+ re-

mains the same as that of N ∗. Yet the analysis of the flow time is quite tricky. The in-

crease in flow time is the increase in execution time plus waiting time of all jobs. Consider

a particular processor and a particular job size p for which a schedule R is transformed

to R1. Execution time: The speed used by R1 for the jobs is the same as that used by R,

for a permutation of the jobs. Thus there is no change in total execution time for all jobs

involved. Waiting time: According to the way we transform the execution period and

speed of ji, one can argue (by induction) that the start time (resp. completion time) of ji

in R1 is no later than the start time (resp. completion time) of ji+1 in R (see Lemma 4.15

below). This property enables us to show that from N ∗ to N+, the increase of total flow

time is at most log P ·X(N+) (see Lemma 4.15), which is at most 1.322 log P · p(J+) (by

Lemma 4.3). Then Lemma 4.11 (i) follows.

Lemma 4.15. The transformation in Lemma 4.11 transforms a trivially non-migratory

schedule N ∗ for J∗ to a non-migratory CRR(1) schedule N+ for J+ such that F (N+) ≤
F (N ∗) + log P · X(N+).

Proof. As mentioned before, it suffices to bound the waiting time among all jobs. Due

to the tidying step in the course of constructing the trivially non-migratory schedule N ∗

of J∗, we can assume that the jobs of the same size are processed in the order of release

time in J+. Consider a round of the transformation that converts from schedule R to R1

for a particular processor and a particular job size p. Note that the waiting time of a

job which is not of size p does not change, so we focus on jobs of size p. Recall that the

transformation is done by first removing all jobs j1, j2, . . . , jn of size p from R. We use

R0 to denote this partial schedule. Let c∗(j) and c(j) denote the completion time of job j

in R and R1, respectively. We first observe the following property about the start time

and completion time of jobs ji in R and R1.

Proposition: For i = 1, . . . , n − 1, ji starts running (respectively, is com-

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 66

pleted) in R1 at or before ji+1 starts running (respectively, is completed) in

R.

The proposition can be proved by induction on i. Job ji starts running in R1 at either

(1) the first idle time in R0 at or after c(ji−1), or (2) the first idle time in R0 at or after

r(ji), whichever larger. By induction, the time (1) is no later than the first idle time

in R0 at or after c∗(ji). By our assumption that jobs of the same size are scheduled in

the order of release time, this is the first time that R can process job ji+1. The time (2)

is no later than the first idle time in R0 at or after r∗(ji+1) (since r(ji) ≤ r∗(ji+1)), which

is obviously no later than the start time of ji+1. So the start time of ji in R1 is no later

than the start time of ji+1 in R. Now c(ji) ≤ c∗(ji+1) follows immediately, since the speed

function that R1 uses for ji is copied from the speed function that R uses for ji+1.

To bound the increase in waiting time among j1, j2, . . . , jn, we characterize such in-

crease, i.e., times which contribute to the waiting time of ji in R1 but not in R. They

can be times when one of the followings happen.

• R0 works on a job of size other than p when ji is already completed in R but waiting

in R1. In this case the time must be during [c∗(ji), c(ji)].

• R0 is idle when ji−1 has already completed in R but is running in R1. In this case

the time must be during [c∗(ji−1), c(ji−1)].

In both cases, these times contributed to the waiting time are times when R1 is running;

furthermore, by the Proposition, such times do not overlap for different ji. The increase

in waiting time over all jobs is thus at most X(R1). Summing over all processors and all

log P rounds, the lemma follows.

From J+ and J- to J . Let us turn to the modification of the schedule to accom-

modate the jobs in J- and to handle the reduction in job size when scheduling J .

To construct N in Lemma 4.11 (ii), we simply insert each job j ∈ J- into the given

schedule N+. By definition, j has a release time later than jobs in J+ of the same size,

and would be dispatched by CRR(1) after all these jobs. Suppose CRR(1) dispatches j

to processor i. Then we schedule j to processor i during the first idle periods after j’s

release time, using the speed function of j in S-. The total waiting time of j is at most

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 67

the total execution time of processor i. After inserting all jobs in J-, we obtain a CRR(1)

schedule N for J , with energy usage and maximum speed preserved. Since at most log P

jobs in J- are dispatched to each processor, the total increase in flow time is at most log P

times the total execution time of all processors in N , which is at most 1.322 log P · p(J),

by Lemma 4.3.

4.4 Jobs of Arbitrary Size

This section is devoted to proving Theorem 4.7 in Section 4.2. In essence, for any ε > 0,

we want to construct a CRR(ε) schedule from an optimal (non-migratory or migratory)

schedule with a mild increase in flow time plus energy and in maximum speed. Sec-

tion 4.4.1 restricts the possible optimal schedules so as to ease the construction. Sec-

tion 4.4.2 presents an algorithm to construct a CRR schedule from an optimal schedule,

and analyzes the performance of the CRR schedule constructed. For optimal migratory

schedule, the analysis relies on a property of optimal migratory schedule, which is shown

in Section 4.4.3.

4.4.1 Restricted but useful optimal schedules

In this section, we introduce two notions to restrict the possible optimal (non-migratory

or migratory) schedules so as to ease the construction.

• A job set J is said to be power-of-(1+ε) if every job in J has size (1+ε)k for some k.

• For any job set J and schedule S, we say that S is immediate-start if every job

starts at exactly its release time in J .

In general, an optimal schedule may not be immediate-start. The rest of this section

shows that it suffices to focus on job sets that are power-of-(1 + ε) and admit optimal

schedules that are also immediate-start (such schedules will be referred to as immediate-

start, optimal schedules). See Corollary 4.18 below for a technical summary. The job size

restriction is relatively easy to observe as we can exploit a slightly higher maximum speed

(Lemma 4.16). The immediate-start property is non-trivial and perhaps counter-intuitive

(Lemma 4.17).

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 68

Technically speaking, the results below (Lemmas 4.16, 4.17 and Corollary 4.18) hold

in both the migratory and the non-migratory setting. To simplify the presentation of

this section, we will not mention whether schedules are migratory or non-migratory. One

should read the lemmas and proofs by assuming all schedules are either migratory or

non-migratory.

Lemma 4.16. Given a job set J , we can construct a power-of-(1+ ε) job set J ′ such that

i. any schedule S1 for J defines a schedule S ′1 for J ′ such that G(S ′1) ≤ (1 + ε)αG(S1)

and max-speed(S ′1) ≤ (1 + ε)×max-speed(S1); and

ii. any schedule S ′2 for J ′ defines a schedule S2 for J with G(S2) ≤ G(S ′2) and max-speed(S2) =

max-speed(S ′2).

Proof. J ′ can be constructed from J by rounding up the size of each job in J to the nearest

power of (1+ε). (i) S1 naturally defines a schedule S ′1 for J ′ as follows. Whenever S1 runs a

job j at speed s, S ′1 runs the corresponding job in S ′ at speed s′ = s×(1+ε)dlog1+ε p(j)e/p(j).

Note that s′ ≤ (1 + ε)s, E(S ′1) ≤ (1 + ε)αE(S1), and F (S ′1) = F (S1). (ii) is obvious as

we can apply any schedule S ′2 for J ′ to schedule J with extra idle time.

The next lemma explains why we can focus on optimal schedules that are immediate-

start. Unless otherwise stated, an optimal schedule O below means a schedule that has

smallest flow time plus energy among all schedules with maximum speed not exceeding

max-speed(O). To ease the discussion, we add a subscript J to the notations F,E, and

G to denote that the job set under concern is J .

Lemma 4.17. Given a power-of-(1+ ε) job set J1 and an optimal schedule O1 for J1, we

can construct a power-of-(1 + ε) job set J2 and an immediate-start, optimal schedule O2

for J2 with max-speed(O2) ≤ max-speed(O1). Furthermore, any CRR(ε) schedule S2 for J2

defines a CRR(ε) schedule S1 for J1, and if GJ2(S2) ≤ γGJ2(O2) for some γ ≥ 1, then

GJ1(S1) ≤ γGJ1(O1).

Proof. We first construct O2 from J1 and O1. The idea is to repeatedly pick two jobs of

the same size and swap their schedules in O1. More specifically, each time we consider

all jobs in J1 of a particular size, and swap their schedules so that their release times and

start times in O2 are in the same order (note that the speed at any time stays unchanged).

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 69

That is, for all i, the job with the i-th smallest release time will take up the schedule of

the job with the i-th smallest start time; note that the i-th smallest start time can never

be earlier than the i-th smallest release time. Thus, O2 is also a valid schedule for J1.

Next, we modify J1 to J2, by replacing the release time of each job j with its start time

in O2. Note that the release time of j can only be delayed (and never gets advanced).

Any schedule for J2 (including O2) is also a valid schedule for J1.

By construction, O2 is an immediate-start schedule for J2. Next, we analyze the

relationship between O1 and O2.

O1 and O2 incur the same flow time plus energy for J1. Since O1 and O2

use the same speed at any time, EJ1(O1) = EJ1(O2). Furthermore, at any time, O1

completes a job if and only if O2 completes a (possibly different) job, and thus O1 and

O2 always have the same number of unfinished jobs. This means that FJ1(O1) = FJ1(O2)

and GJ1(O1) = GJ1(O2).

O2 is optimal for J2 (in terms of flow time plus energy). Suppose on the

contrary that there is a schedule O′ for J2 with GJ2(O′) < GJ2(O2). Any schedule for J2,

including O′ and O2, is also a valid schedule for J1. Note that EJ1(O′) = EJ2(O′), and

FJ1(O′) = FJ2(O′) + d, where d is the total delay of release times of all jobs in J2 (when

comparing with J1). Therefore, GJ1(O′) = GJ2(O′) + d, and similarly for O2. Thus, if

GJ2(O′) < GJ2(O2), then

GJ1(O′) = GJ2(O′) + d

< GJ2(O2) + d = GJ1(O2) = GJ1(O1) .

This contradicts the optimality of O1 for J1.

CRR preserves performance. Consider any CRR(ε) schedule S2 for J2 satisfying

GJ2(S2) ≤ γGJ2(O2), for some γ ≥ 1. By definition, jobs of the same class are also of

same size and have the same order of release times in J1 and J2. Therefore, S2 is also an

CRR(ε) schedule for J1. For total flow time plus energy,

GJ1(S2) = GJ2(S2) + d ≤ γGJ2(O2) + d

≤ γ(GJ2(O2) + d) = γGJ1(O2) = γGJ1(O1) .

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 70

Thus the lemma follows.

In summary, the two lemmas above allow us to focus on power-of-(1+ ε) job sets that

admit immediate-start, optimal schedules.

Corollary 4.18. Let J be a job set and let O be an optimal schedule for J . For any ε > 0,

there exists a power-of-(1 + ε) job set J ′ and a schedule O′ for J ′ that is immediate-start

and optimal among all schedules with maximum speed (1 + ε) × max-speed(O). Fur-

thermore, any CRR(ε) schedule S ′ for J ′ defines a CRR(ε) schedule S for J , and if

GJ ′(S ′) ≤ γGJ ′(O′) for some γ ≥ 1, then GJ(S) ≤ γ(1 + ε)αGJ(O).

Proof. By Lemma 4.16 (i), we construct from J and O a power-of-(1 + ε) job set J1

and a schedule S1 for J1 with GJ1(S1) ≤ (1 + ε)αGJ(O) and max-speed(S1) ≤ (1 + ε) ×
max-speed(O). Let O1 be the optimal schedule for S1 with maximum speed (1 + ε) ×
max-speed(O). Then GJ1(O1) ≤ GJ1(S1) ≤ (1+ε)αGJ(O). Next we apply Lemma 4.17 to

J1 and O1, and we obtain J ′ and an immediate start, optimal schedule O′ with maximum

speed at most max-speed(O1), which is at most (1 + ε)max-speed(O). Furthermore, by

Lemma 4.17 and Lemma 4.16 (ii), S ′ defines a CRR(ε) schedule S for J such that if

GJ ′(S ′) ≤ γGJ ′(O′) for some γ ≥ 1, then GJ(S) ≤ γGJ1(O1) ≤ γ(1 + ε)αGJ(O).

In the rest of this section, we further exploit the fact that an optimal schedule runs a

job at the same speed throughout its lifespan. This is due to the convexity of the power

function sα. Recall that, without loss of generality, at any time an optimal schedule never

runs a job at speed less than the global critical speed, defined as 1/(α − 1)1/α, and the

maximum speed T is at least the global critical speed (see Section 4.1).

4.4.2 Constructing CRR schedules

This section presents an algorithm, called MakeCRR, to construct a CRR schedule from

an optimal non-migratory or migratory schedule S∗ for a job set J . By Corollary 4.18, we

focus on the case where J consists of power-of-(1+ ε) jobs only and S∗ is also immediate-

start. Note that in a CRR(ε) schedule for J , jobs in each class are of identical size, and

the round robin policy is effectively applied independently to every subset of jobs of the

same size. The non-trivial part is how to ensure a moderate increase of flow time and

energy.

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 71

Before we detail the algorithm, it is useful to observe the nature of the CRR schedule

S to be constructed. The ordering of job execution in S could be very different from S∗.
Roughly speaking, S only makes reference to the speed used by S∗. Recall that in S∗, a

job is run at the same speed throughout its lifespan. For any job, S determines its speed

as the average of a certain subset of (b + 1)m jobs in S∗, where b = 1 or 4 depending on

whether S∗ is non-migratory or migratory. The constant b arises from an upper bound

of the number of jobs of the same size that have started but not yet finished at any time.

We assume that the processors are numbered from 0 to m− 1.

Algorithm MakeCRR. The algorithm has a parameter λ > 0 to control the extra

speed (we will eventually set λ = ε to derive the desired result).

The construction runs in multiple rounds, from the smallest job size to the largest. Let

S0 denote the intermediate schedule, which is initially empty and eventually becomes S.

We modify S0 in each round to include more jobs. In the round for size p, suppose that J

contains n jobs {j1, j2, . . . , jn} of size p, arranged in increasing order of release times. It is

convenient to define jn+1 = j1, jn+2 = j2, etc. For i = 1 to n, let xi be the average speed

in S∗ of the fastest m jobs among the following (b + 1)m jobs: ji, ji+1, . . . , ji+(b+1)m−1.

We modify S0 by adding a schedule for ji in processor (i mod m): it can start as early

as at its release time, runs at constant speed (1 + λ)xi, and occupies the earliest possible

times, while avoiding times already committed to earlier jobs for processor (i mod m).

Performance of the constructed schedule S. To study the performance of S
constructed by Algorithm MakeCRR, we need to be very specific about the properties

of the job set J and the optimal schedule S∗. By Corollary 4.18, we assume that J

consists of power-of-(1 + ε) jobs only and S∗ is immediate-start. Furthermore, if S∗ is

non-migratory, it is useful to observe the following property.

Property 4.19. Consider any optimal non-migratory schedule for J on m ≥ 2 processors.

At any time, for each job size, there are at most m jobs which have started but not yet

finished. We call this property m-proceeding.

Property 4.19 holds because in any optimal non-migratory schedule (no matter whether

it is immediate-start or not), jobs of the same size dispatched to a processor must work

in a First-Come-First-Serve manner. Otherwise we can shuffle the execution order to

First-Come-First-Serve and reduce the total flow time, and the schedule is not optimal.

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 72

Note that the m-proceeding property may not hold for an optimal migratory schedule.

Nevertheless, we observe a weaker property. In Section 4.4.3, we will prove that there

exists an optimal migratory schedule for J that is 4m-proceeding and immediate-start.

Now we are ready to state the performance of the schedule S∗ constructed by Al-

gorithm MakeCRR. Roughly speaking, if S∗ is immediate-start and m-proceeding (or

4m-proceeding), then S is a CRR schedule with comparable performance. Details are as

follows. It is useful to define µε = (1 + ε)α−1 + (1 − 1/α)(2 + ε)/ε2 for any ε > 0. Note

that by the definition of ηε in Section 4.2, we have ηε = (1 + ε)αµε.

Lemma 4.20. Consider any ε > 0. Given a power-of-(1 + ε) job set J with an optimal

(migratory or non-migratory) schedule S∗ that is immediate-start and bm-proceeding for

some b ≥ 1, Algorithm MakeCRR (with λ = ε) constructs a CRR(ε) schedule S for J

such that G(S) ≤ (b + 1)µεG(S∗), and max-speed(S) ≤ (1 + ε)×max-speed(S∗). 2

The rest of this section is devoted to proving Lemma 4.20. We first analyze the energy

usage. The analysis of flow time is based on an upper bound on the execution time S
spends on jobs of certain classes within a period of time. We will state and prove this

upper bound. Finally, with this upper bound, we can analyze the flow time.

Before going into the details of Lemma 4.20, we show how Lemma 4.20 immediately

leads to a CRR schedule with the flow time and energy as stated in Theorem 4.7 (which

was first mentioned in Section 4.2).

Theorem 4.7. Given a job set J , let O1 and O2 be respectively an optimal non-migratory

schedule and an optimal migratory schedule for J using maximum speed T . Then,

i. for any ε > 0, there is a CRR(ε) schedule S1 for J such that G(S1) ≤ 2ηεG(O1),

and max-speed(S1) ≤ (1 + ε)2 ×max-speed(O1); and

ii. for any ε > 0, there is a CRR(ε) schedule S2 for J such that G(S2) ≤ 5ηεG(O2), and

max-speed(S2) ≤ (1 + ε)2 ×max-speed(O2).

Proof. We prove the non-migratory case only. The migratory case can be proven in the

same way.

2In general, if Algorithm MakeCRR uses an arbitrary λ, then we have G(S) ≤ (b + 1)((1 + λ)α−1 +
(1− 1/α)(2 + ε)/λε)G(S∗), and max-speed(S) ≤ (1 + λ)×max-speed(S∗).

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 73

First of all, we apply Corollary 4.18 on J and O1, and we obtain a power-of-(1+ε) job

set J ′ and an immediate-start, optimal non-migratory schedule O′ for J ′ with maximum

speed (1+ε)×max-speed(O1). Recall that every optimal non-migratory schedule including

O′ is m-proceeding.

Next, we apply Algorithm MakeCRR to J ′ and O′ and construct a CRR(ε) sched-

ule S ′ for J ′. By Lemma 4.20, GJ ′(S ′) ≤ 2µεGJ ′(O′), and max-speed(S ′) ≤ (1 + ε) ×
max-speed(O′). By Corollary 4.18, S ′ also defines a CRR(ε) schedule S1 for J such that

GJ(S1) ≤ 2(1 + ε)αµεGJ(O1). Note that max-speed(S1) ≤ (1 + ε) × max-speed(O′) ≤
(1 + ε)2 ×max-speed(O1).

Speed and energy

We now start to prove Lemma 4.20 in which the job set J in concern consists of power-

of-(1+ ε) jobs, S∗ is an optimal schedule that is immediate-start and bm-proceeding, and

S is the schedule constructed by Algorithm MakeCRR. We first note that in S, the

speed of a job is (1 + ε) times the average speed of m jobs in S∗, so max-speed(S) ≤
(1 + ε)×max-speed(S∗). Next, we consider the energy.

Lemma 4.21. The energy used by S produced by Algorithm MakeCRR is at most

(b + 1)(1 + ε)α−1G(S∗).

Proof. We first note that the energy incurred by running a job of size p at constant speed

s is sαp/s = sα−1p, which is a convex function of the speed. Consider m jobs of the same

size being run at different constant speeds, and let x be their average speed. Energy is

a function of speed to the power of α − 1 ≥ 1, which is convex. Running a job of the

same size at speed x incurs energy at most 1/m times the total energy for running these

m jobs. If we further increase the speed to (1 + ε)x, the power increases by a factor of

(1 + ε)α, and the running time decreases by a factor of (1 + ε). Thus, the energy usage

increases by a factor of (1 + ε)α−1. In S, running a job at (1 + ε) times the average speed

of m jobs in S∗ requires no more energy than (1 + ε)α−1/m times the sum of the energy

usage of those m jobs in S∗.

To bound E(S), we use a simple charging scheme: for a job j in S, we charge to every

one of the m jobs j′ chosen for determining the speed of j in Algorithm MakeCRR;

the amount to be charged is 1/m times of the energy usage of j′ in S∗. By Algorithm

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 74

MakeCRR, each job can be charged by at most (b + 1)m jobs. Thus,

E(S) ≤ (1 + ε)α−1

m
(b + 1)mE(S∗)

≤ (b + 1)(1 + ε)α−1E(S∗)
≤ (b + 1)(1 + ε)α−1G(S∗) .

Upper bound on job execution time of S

To analyze the flow time of a job in S, we attempt to upper bound the execution time of

other jobs dispatched to the same processor during its lifespan. The lemmas below look

technical, yet the key observation is quite simple—For any processor z, if we consider all

jobs that S dispatches to z during an interval I, excluding the last (b + 1) jobs of each

class (size), their total execution time is at most `/(1 + ε), where ` is the length of I.

Consider any job h0 ∈ J . Let h1, h2, . . . , hn be all the jobs in J such that r(h0) ≤
r(h1) ≤ · · · ≤ r(hn) and they have the same size as h0. Suppose that n ≥ im for some i ≥
b + 1. We focus on two sets of jobs: {h0, h1, . . . , him−1} and {h0, hm, h2m, . . . , h(i−b−1)m}.
The latter contains jobs dispatched to the same processor as h0. Lemma 4.22 below gives

an upper bound on the execution time of S for {h0, hm, h2m, . . . , h(i−b−1)m} with respect

to S∗. This lemma stems from the fact that S∗ is immediate-start.

Lemma 4.22. For any job h0 and i ≥ b + 1, suppose him exists. Let t be the execution

time of S∗ for the jobs h0, h1, . . . , him−1 during the interval [r(h0), r(him)]. Then in the

entire schedule of S, the total execution time of the jobs h0, hm, . . . , h(i−b−1)m is at most

t/m(1 + ε).

Proof. Since S∗ is immediate-start, jobs h0, . . . , him−1 each starts within the interval

[r(h0), r(him)]. As S∗ is bm-proceeding, at time r(him), at most bm jobs among these im

jobs have not yet finished, or equivalently, S∗ has completed at least (i − b)m jobs. Let

∆ denote a set of any (i− b)m such completed jobs. Based on release times, we partition

∆ accordingly into i− b subsets ∆0, ∆1, . . . , ∆i−b−1, each of size exactly m. ∆0 contains

the m jobs with smallest release times in ∆, ∆1 contains jobs with the next m smallest

release times in ∆, etc.

Since ∆ misses out only bm jobs in {h0, h1, . . . , him−1}, each ∆u, for u ∈ {0, . . . , i −

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 75

b − 1}, is a subset of the (b + 1)m jobs {hum, hum+1, . . . , hum+(b+1)m−1}. Because the

speed used by S for hum is (1 + ε) times the average speed of the m fastest jobs in

hum, hum+1, . . . , hum+(b+1)m−1 used by S∗, which is faster than (1 + ε) times the average

speed of ∆u in S∗, it follows that the execution time of hum in S is at most 1/m(1 + ε)

times the total execution time of ∆u in S∗. Summing over all u ∈ {0, . . . , i − b − 1},
the execution time of S for h0, hm, . . . , h(i−b−1)m is no more than 1/m(1 + ε) times the

total execution time of ∆ in S∗. In S∗, ∆ is only executed during [r(h0), r(him)], and the

lemma follows.

Below is the main result to upper bound the job execution time of S (to be used for

analyzing the flow time of S).

Lemma 4.23. Consider any k and any time interval I of length `. For jobs of size at

most (1 + ε)k that are released during I, the total execution time of any processor in S
for these jobs is at most `/(1 + ε) + (b + 1)(1 + ε)k+1 · (α− 1)1/α/ε(1 + ε).

Proof. Consider a particular k′ ≤ k. Let y be the execution time over all processors that

S∗ uses for jobs of size (1 + ε)k′ during the interval I. Consider a particular processor z

in S; suppose that S dispatches i jobs of size (1+ ε)k′ to processor z during I, and denote

these i jobs as J ′ = {h′0, h′m, . . . , h′(i−1)m}, arranged in the order of their release times. We

claim that the execution time of processor z in S for these i jobs is at most y/m(1 + ε)

plus the execution time of S for the last b+1 jobs of J ′. This is obvious if J ′ contains b+1

or fewer jobs. It remains to consider the case when J ′ has i ≥ b+2 jobs. By Lemma 4.22,

if t is the execution time of S∗ for h′0, h
′
1, . . . , h

′
(i−1)m−1 during [r(h′0), r(h

′
(i−1)m)], then

S uses no more than t/m(1 + ε) time to execute h′0, h
′
m, . . . , h′(i−b−2)m. The claim then

follows by noticing that t ≤ y, and we only have b + 1 jobs h′(i−b−1)m · · ·h′(i−1)m not being

counted.

Now we sum over all k′ ≤ k the upper bound of these flow times, i.e., y/m(1 + ε)

plus the execution time of S for the last b + 1 jobs in J ′. The sum of the first part is∑
y/m(1 + ε). Note that

∑
y is the execution time of S∗ during I, so

∑
y ≤ m|I| = m`,

and the sum of the first part is

∑
y

m(1 + ε)
≤ `

1 + ε
.

The sum of the second part is over at most b + 1 jobs for each k′. Recall that the speed

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 76

used by S∗ is at least the global critical speed 1/(α − 1)1/α, and the speed used by S is

(1 + ε) times the average of some job speeds in S∗. Thus the speed used by S for any

job is at least (1 + ε)/(α− 1)1/α, and the execution time of each job of size (1 + ε)k′ is at

most (1 + ε)k′(α − 1)1/α/(1 + ε). Summing over all k′ the execution time for these jobs,

we have
k∑

k′=0

(b + 1)(1 + ε)k′(α− 1)1/α

1 + ε
<

(b + 1)(1 + ε)k+1(α− 1)1/α

ε(1 + ε)
.

The lemma follows by summing the two parts.

Flow time

Now we show that the flow time of each job in S is O(1/ε2) times of its job size

(Lemma 4.24), which implies that the total flow time is O(1/ε2)G(S∗) (Corollary 4.25).

Together with Lemma 4.21, Lemma 4.20 can be proved. We first bound the flow time of

a job of a particular job size in S, making use of Lemma 4.23.

Lemma 4.24. In S, the flow time of a job of size (1 + ε)k is at most (b + 1)(2 + ε)(1 +

ε)k(α− 1)1/α/ε2.

Proof. Consider a job j of size (1 + ε)k that is scheduled on some processor z in S. Let

r = r(j), and f be the flow time of j in S, i.e., j completes at time r + f . To determine

f , we focus on the scheduling of processor z in the intermediate schedule S0 immediate

after Algorithm MakeCRR has scheduled j. Note that f is due to jobs that have been

executed in S during [r, r + f]. They can be partitioned into two subsets: J1 for jobs

released at or before r, and J2 for jobs released during (r, r + f]. Let F1 and F2 be the

contribution on f by J1 and J2, respectively, i.e., f = F1 + F2.

We first consider J1. Let t be the last time < r such that processor z is idle right

before t in S0. Thus all jobs executed by processor z at or after t, and hence all jobs

in J1, must be released at or after t. By Lemma 4.23, the execution time of processor z

for jobs in J1 is no more than (r − t)/(1 + ε) + [(b + 1)(1 + ε)k+1(α − 1)1/α/ε(1 + ε)].

Since processor z is busy throughout [t, r), the amount of execution time for jobs in J1

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 77

remaining at r is at most

r − t

1 + ε
+

(b + 1)(1 + ε)k+1(α− 1)1/α

ε(1 + ε)
− (r − t)

≤ (b + 1)(1 + ε)k+1(α− 1)1/α

ε(1 + ε)
.

This implies F1 ≤ (b + 1)(1 + ε)k+1(α− 1)1/α/ε(1 + ε).

Next we consider J2. Since Algorithm MakeCRR schedules jobs from the smallest

to the largest size, jobs in J2 are of size at most (1 + ε)k−1. We apply Lemma 4.23 to the

interval [r, r + f] for jobs of size at most (1 + ε)k−1. The execution time of processor z

for jobs in J2, i.e., F2, is no more than

f

1 + ε
+

(b + 1)(1 + ε)k(α− 1)1/α

ε(1 + ε)
.

Then we have

f = F1 + F2 ≤ (b + 1)(2 + ε)(1 + ε)k(α− 1)1/α

ε(1 + ε)
+

f

1 + ε
,

immediately implying f ≤ (b + 1)(2 + ε)(1 + ε)k(α− 1)1/α/ε2.

Summing over all jobs and recalling that G(S∗) ≥ α
(α−1)1−1/α p(J) (see Lemma 4.1),

we have the following corollary.

Corollary 4.25. The total flow time incurred by S produced by Algorithm MakeCRR

is at most ((b + 1)(1− 1/α)(2 + ε)/ε2)G(S∗).

By Lemma 4.21 and Corollary 4.25, we have G(S) = E(S)+F (S) ≤ (b+1)[(1+ε)α−1+

(1 − 1/α)(2 + ε)/ε2]G(S∗) = (b + 1)µεG(S∗). We have also noted that max-speed(S) ≤
(1 + ε)×max-speed(S∗). Hence, Lemma 4.20 follows.

4.4.3 Optimal migratory schedules

Algorithm MakeCRR and Lemma 4.20 can be applied to an optimal migratory schedule

as long as it is immediate-start and bm-proceeding for some integer b ≥ 1. Note that

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 78

the m-proceeding property or even the 4m-proceeding property does not hold for every

optimal migratory schedule. Nevertheless, Lemma 4.26 below shows that at least one

optimal schedule satisfies the 4m-proceeding property (i.e., at any time, there are at most

4m jobs of the same size started but not yet completed). Once we know the existence

of such schedule, we can apply the construction in Lemma 4.17 to further modify the

job set and the schedule to obtain an optimal migratory schedule that is 4m-proceeding

and immediate-start (since the only manipulation done by Lemma 4.17 is to swap the

schedule of pairs of jobs). The rest of the arguments then follow, leading to Theorem 4.7

(ii).

Lemma 4.26. For any job set J , there exists an optimal migratory schedule S∗ that is

4m-proceeding.

The rest of this section is devoted to proving the above lemma. Recall that m-

proceeding property holds for every optimal non-migratory schedule. For optimal migra-

tory schedules, we find that some of them, which we call lazy-start optimal migratory

schedules, satisfy the 4m-proceeding property. The definition is as follows: Given a sched-

ule S, we define its “start time sequence” to be the sequence of start time of each job,

sorted in the order of time. Among all optimal migratory schedules (which may or may

not be immediate-start), a lazy-start optimal schedule is the one with lexicographically

maximum start time sequence. Such a schedule has the following property.

Lemma 4.27. In a lazy-start optimal schedule, suppose a job j1 starts at time t, while

another job j2 of the same size that has already started before t but has not finished at t

is not running at t. Then after t, j1 runs whenever j2 runs.

Proof. Suppose the contrary, and let t′ be the first time after t that j2 runs but j1 does

not. Let p0 be the amount of work processed for j1 during [t, t′] when j2 is not running.

We divide the analysis into three cases, each arriving at a contradiction.

Case 1: j1 is not yet completed by t′. We can exchange some work of j2 done

starting from t′ with those of j1 done starting from t, without changing processor speed

at any time. The start time of j1 is thus delayed without changing the start times of

other jobs or increasing the energy or flow time, so the original schedule is not lazy-start.

Case 2: j1 is completed by t′, and the amount of work processed for j2

after t′ is at most p0. We can exchange all work of j2 after t′ with some work of j1

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 79

starting from t. The completion times of j1 and j2 are exchanged, but the total flow time

and energy is preserved. The start time of j1 is delayed without changing the start times

of other jobs, so the original schedule is not lazy-start.

Case 3: j1 is completed by t′, and the amount of work processed for j2 after t′

is more than p0. Since j1 and j2 are of the same size, these conditions imply that there

must be some work processed for j1 when both j1 and j2 are running. Furthermore, j2

must be running slower than j1 during this period, otherwise the total amount of work

processed for j2 would be larger than the size of j1, so the two jobs cannot be of the same

size. Since jobs run at constant speed in optimal schedules, the speed of j1 is higher than

the speed of j2.

Note that j1 lags behind j2 at t but is ahead of j2 at t′. So there must be a time t0 ∈
(t′, t) such that j1 and j2 has been processed for the same amount of work. Exchange the

scheduling of j1 and j2 after t0 gives a schedule with the completion time of j1 and j2

exchanged, while the energy consumption and flow time remain the same. But now j1

and j2 are not running at constant speed, so the schedule is not optimal.

Now we are ready to prove Lemma 4.26 by showing that a lazy-start optimal migratory

schedule is 4m-proceeding.

Proof of Lemma 4.26. Given a job set J , let S be a lazy-start optimal migratory schedule.

Suppose, for the sake of contradiction, that at some time in S, there are 4m jobs started

but not yet finished. Consider these 4m jobs. At the time when the (m+i)-th job j starts,

at least i jobs which started earlier must be idle. For each such idling job j′, Lemma 4.27

dictates that after r(j), whenever j′ runs, j must also be running. In this case, we say

that j′ implies j. Since there are 4m jobs, there are 1 + 2 + · · ·+ 3m = 3
2
m(3m + 1) such

relations. Thus some job j0 implies at least 3
2
m(3m + 1)/4m > m other jobs. After all

these other jobs are released, they must all run whenever j0 runs. This contradicts that

there are only m processors. The lemma follows.

Chapter 4. Non-migratory Multi-processor Flow-Energy Scheduling 80

4.5 Lower Bound

We show a lower bound for minimizing total flow time plus energy when there is a

maximum speed. The bound holds even if jobs are restricted to power-of-2 sizes, implying

that CRR-A is optimal in this setting. We start with a lower bound of Ω(log P) given

by Leonardi and Raz [69] on the competitive ratio of any migratory online algorithm for

flow time scheduling on fixed-speed processors. Their proof is based on power-of-2 sized

jobs. This proof can be adapted easily to show the following theorem.

Theorem 4.28. Any online (migratory) algorithm for minimizing flow time plus energy

on multiple processors with a maximum speed has a competitive ratio of Ω(log P). This

holds even if jobs are restricted to have power-of-2 sizes.

Proof. Consider the case that T = 1, which is greater than the global critical speed when

α > 2. We consider a particular online algorithm. Let Fa and Ga be the total flow

time and total flow time plus energy of the online algorithm, respectively. By the lower

bound result in [69], there is some constant c that for any online algorithm (including the

one which we are considering), we can find some input J consisting of jobs of power-of-2

size, such that Fa ≥ (c log P)Fs, where Fs is the minimum total flow time among all

schedules of J . Obviously, the minimum total flow time Fs is achieved by running all

processors at the maximum speed 1. The energy consumption of such a schedule is thus

the time the processor is running, which is at most Fs. We thus have a schedule of J

with total flow time plus energy at most 2Fs, which implies that the optimal algorithm

have total flow time plus energy Go ≤ 2Fs. Together with the bound of Fa, we have

Ga ≥ Fa ≥ (c log P)Fs ≥ (c/2)(log P)Go, which completes the proof.

Chapter 5

Non-clairvoyant Flow-Energy

Scheduling

In this chapter, we initiate the study of flow-energy scheduling in the non-clairvoyant

model. In some applications like operating systems, job size is only known when the

job finishes. This is referred to as the non-clairvoyant model. This is in contrast to the

clairvoyant model considered in previous chapters, where the size of a job is known at its

release time.

We consider a job set J to be scheduled on a processor. For each job j ∈ J , its

release time and size are denoted as r(j) and p(j), respectively. In the nonclairvoyant

model, when a job j arrives, p(j) is not given and it is known only when j is completed.

Preemption is allowed and has no cost; a preempted job can resume at the point of

preemption. The processor can vary its speed dynamically to any value between 0 and

the maximum speed T . Most results in this chapter are on the infinite speed model,

where T = ∞. When running at speed s, the processor processes s units of work per unit

time and consumes sα units of energy per unit time, where α > 1 is some fixed constant.

Consider a certain schedule A of J . We say a job j is active at time t if j is released by

time t but not yet completed by time t. For any job j in J , the flow time of j is denoted

by FA(j), and the total flow time of A is FA =
∑

j∈I FA(j) =
∫∞

0
nA(t)dt, where nA(t) is

the number of active jobs at time t in A. Let sA(t) be the speed of the processor at time t

in A. Then the total energy usage of A is EA =
∫∞
0

(s(t))αdt. The objective is to minimize

81

Chapter 5. Non-clairvoyant Flow-Energy Scheduling 82

the sum of total flow time and energy usage, which is denoted by GA = FA + EA.

In Section 5.1, we first focus on batched jobs, i.e., all jobs are released at time 0. We give

an algorithm that is (2 − 1
α
)-competitive in the infinite speed model and 2-competitive

in the bounded speed model. The latter inherits a lower bound of 2 from flow-time

scheduling [74]. We will further generalize this algorithm for jobs with different weights

and the objective becomes minimizing weighted flow time plus energy. The competitive

ratios become (2 − 1
α
)2 and 4 in the infinite and bounded speed models, respectively.

Sections 5.2 and 5.3 consider jobs with arbitrary release times on a processor without

and with sleep states, respectively. Both sections focus on the infinite speed model;

the problem in the bounded speed model remains open. In Section 5.2, we analyze a

nonclairvoyant algorithm LAPS and show that it is O(α3)-competitive for flow plus energy

in the infinite speed model. In Section 5.3, we extend the study to a model that allows

both sleep management and speed scaling (see Chapter 3). We adapt LAPS and show

that the adapted algorithm together with the sleep management algorithm IdleLonger

(which is introduced in Chapter 3) remains O(α3)-competitive for flow plus energy.

5.1 Batched Jobs

This section considers non-clairvoyant scheduling of batched jobs J , where all jobs j ∈ J

has the same release time r(j) = 0. We first define the speed function AJC∗ and the

algorithm RR-AJC∗, as follows. Recall that T is the maximum speed of the processor.

AJC∗ and RR-AJC∗. The speed function AJC∗ is defined as min{T, (n(t)
α−1

)1/α},
where n(t) is the number of active jobs at t. To cope with unknown job sizes, RR-AJC∗

uses AJC∗ with round robin (RR): split the processor equally among all active jobs.

To analyze the non-clairvoyant algorithm RR-AJC∗, we consider a clairvoyant algo-

rithm SJF-AJC∗ (shortest job first plus AJC∗). In Section 5.1.1, we show an interesting

relation that the flow time plus energy incurred by RR-AJC∗ is close to that of SJF-AJC∗.

In Section 5.1.2, we complete the analysis by showing SJF-AJC∗ is optimal.

In some applications, jobs may carry weights to reflect their importance. We use w(j)

to denote the weight of a job j, and define its density ρ(j) to be w(j)/p(j). The weighted

flow time of a job is simply its flow time multiplied by its weight. The above result can

Chapter 5. Non-clairvoyant Flow-Energy Scheduling 83

be generalized for weighted flow time plus energy as follows.

AJW∗ and WRR-AJW∗. The speed function AJW∗ (active job weight) is defined

as min{T, (w(t)
α−1

)1/α}, where w(t) is the total weight of active jobs at t. The algorithm

WRR-AJW∗ uses AJW∗ with weighted round robin (WRR): split the processor among

all active jobs in the ratio of their weights. We define the normalized work of a job as its

work divided by its weight. Every active job has the same normalized processed work at

any time.

To analyze WRR-AJW∗, we consider a clairvoyant algorithm HDF-AJW∗ (highest

density first plus AJW∗). The relation between WRR-AJW∗ and HDF-AJW∗ is the

same as before (Section 5.1.1). However, HDF-AJW∗ is not optimal for weighted flow

plus energy. Yet we show that HDF-AJW∗ is O(1)-competitive in Section 5.1.3.

We use the weighted setting as a common platform, where RR-AJC∗ (resp. SJF-AJC∗)

is WRR-AJW∗ (resp. HDF-AJW∗) with job weights all equal to one. Without loss of

generality, we assume the input J = {j1, j2, . . . , jn} is in increasing job density order, i.e.,

ρ(j1) ≤ ρ(j2) ≤ · · · ≤ ρ(jn) (ties are broken by job IDs), Note that this is equivalent to

that the jobs are in decreasing normalized work order. To simplify notations, for any job

ji, we also use ri, pi, wi and ρi to represent r(ji), p(ji), w(ji) and ρ(ji).

5.1.1 Comparing WRR-AJW∗ against HDF-AJW∗

As jobs are batched, WRR implies that jobs complete in increasing order of normalized

work, from jn to j1. Thus, if ji is the smallest normalized work job at time t, then the

total weight of active jobs at t is w(t) =
∑i

k=1 wk. We can thus compare WRR-AJW∗

against HDF-AJW∗ easily.

Lemma 5.1. For scheduling batched jobs, the weighted flow time plus energy of WRR-AJW∗

is (i) at most (2− 1/α) times of HDF-AJW∗ in the infinite speed model, and (ii) at most

2 times of HDF-AJW∗ in the bounded speed model.

To prove Lemma 5.1, we focus on the contributions to weighted flow time and energy

during the time when a particular job ji is the job with the smallest normalized work in

WRR-AJW∗. Due to the WRR policy, each of the remaining jobs jj with 1 ≤ j ≤ i is

run for the same amount of normalized work. We thus evaluate the weighted flow time

Chapter 5. Non-clairvoyant Flow-Energy Scheduling 84

and energy incurred by WRR-AJW∗ during this period, denoted as Fw(ji) and Ew(ji).

They are compared against the weighted flow time and energy incurred by HDF-AJW∗

to process that same amount of normalized work for each of these jobs, denoted as Fh(ji)

and Eh(ji). We show that both Fw(ji)/Fh(ji) and Ew(ji)/Eh(ji) are no greater than

(2− 1/α) for T = ∞, and 2 for general T . Summing over all ji leads to Lemma 5.1.

Lemma 5.2. If T = ∞, Fw(ji) ≤ (2− 1/α)Fh(ji) and Ew(ji) ≤ (2− 1/α)Eh(ji).

Proof. By the definition of the speed function AJW∗, when T = ∞, we have Fw(ji) =

(α−1)Ew(ji) and Fh(ji) = (α−1)Eh(ji). Thus it suffices to show Fw(ji) ≤ (2−1/α)Fh(ji).

Let us first consider WRR-AJW∗. Recall that we are considering the time period

when the job ji is the job with the smallest normalized work in WRR-AJW∗. Let ∆h be

the normalized work processed in this period for each job j1, . . . , ji. We have seen that

w(t) =
∑i

k=1 wk and the processor speed in this period is s = (w(t)
α−1

)1/α. The amount

of work processed for jj (1 ≤ j ≤ i) is wj∆h, so the total weighted flow time incurred

Fw(ji) =
∑i

j=1 wj∆h
∑i

k=1 wk/s = (α− 1)1/α(
∑i

j=1 wj)
2−1/α∆h.

In contrast, HDF-AJW∗ runs only the highest density (i.e., least normalized work)

job. At time t when processing a job jj, w(t) =
∑j

k=1 wk and the speed is s = (w(t)
α−1

)1/α.

The weighted flow time incurred for processing an amount of work wj∆h for jj is thus

wj∆h(
∑j

k=1 wk)/s = (α− 1)1/α∆h(
∑j

k=1 wk)
1−1/αwj. We thus have

Fh(ji) =
i∑

j=1

(
(α− 1)1/α∆h

(j∑

k=1

wk

)1−1/α

wj

)
= (α− 1)1/α∆h

i∑
j=1

(j∑

k=1

wk

)1−1/α

wj .

To approximate
∑i

j=1

(∑j
k=1 wk

)1−1/α
wj, we use the staircase-like function

f(x) = (
∑j

k=1 wk)
1−1/α if x ∈ [

∑j−1
k=1 wk,

∑j
k=1 wk) where 1 ≤ j ≤ i .

Note that
∑i

j=1(
∑j

k=1 wk)
1−1/αwj is exactly

∫ ∑i
j=1 wj

0 f(x) dx. On the other hand, f(x) ≥
x1−1/α for all x ∈ [0,

∑i
j=1 wj). We thus have

i∑
j=1

(j∑

k=1

wk

)1−1/α

wj ≥
∫ ∑i

j=1 wj

0

x1−1/α dx =
(
∑i

j=1 wj)
2−1/α

2− 1/α
,

and Fh(ji) ≥ (α− 1)1/α∆h
(∑i

j=1 wj

)2−1/α
/(2− 1

α
) = Fw(ji)/(2− 1

α
).

Chapter 5. Non-clairvoyant Flow-Energy Scheduling 85

Proof of Lemma 5.1. We obtain (i) (T = ∞) by summing the relations about Fh and Fw

and those about Eh and Ew in Lemma 5.2 over all ji.

For (ii) (T < ∞), suppose WRR-AJW∗ processes ∆h normalized work for each

of j1, . . . , ji. We first focus on Ew(ji) and Eh(ji). If (
∑i

j=1 wj/(α−1))1/α ≤ T , Lemma 5.2

applies, so Ew(ji) ≤ (2 − 1/α)Eh(ji). Otherwise, we try to find a k ∈ {1, . . . , i} such

that
∑k

j=1 wj is exactly (α − 1)Tα (so that the speed bound is just not exceeded). If no

such k exists, for the sake of analysis we split some job ju into two jobs ju1 and ju2 with

the same density and total weight, so that wu1 +
∑u−1

j=1 wj = (α − 1)Tα. We set k = u1.

This job splitting does not affect the speed function, and thus the energy consumption,

of either WRR-AJW∗ and HDF-AJW∗ (speed used for ju1, ju2 and ju are all T). We

now notice that both WRR-AJW∗ and HDF-AJW∗ run jk+1, . . . , ji at speed T , consum-

ing the same energy E0. The other jobs are run as if T = ∞, so Lemma 5.2 leads to

Ew(ji)− E0 ≤ (2− 1/α)(Eh(ji)− E0). This implies Ew(ji) ≤ (2− 1/α)Eh(ji).

We now compare Fw(ji) and Fh(ji). Again the interesting case is when (
∑i

j=1 wj/(α−
1))1/α > T , otherwise Fw(ji) ≤ (2−1/α)Fh(ji) by Lemma 5.2. For WRR-AJW∗, the pro-

cessor uses speed T , so the time needed is
∑i

j=1 wj∆h/T , and Fw(ji) = (
∑i

j=1 wj)
2∆h/T .

For HDF-AJW∗, the time needed to run jj for wj∆h units of work is at least wj∆h/T

(since the speed used cannot be faster than T), incurring weighted flow time of at least∑j
k=1 wkwj∆h/T . We thus have Fh(ji) ≥

∑i
j=1

∑j
k=1 wkwj∆h/T > (

∑i
j=1 wj)

2∆h/2T =

Fw(ji)/2.

Summing these relations over all ji gives the desired ratio in Lemma 5.1.

5.1.2 Analysis of SJF-AJC∗

We show that the speed function AJC∗ minimizes the flow time plus energy for scheduling

batched jobs using SJF (Lemma 5.3), implying the optimality of SJF-AJC∗ for flow time

plus energy. Combining with Lemma 5.1, we obtain the competitive ratio of RR-AJC∗

(Theorem 5.4).

Lemma 5.3. Consider a set of batched jobs J . Among all schedules of J using SJF for

job selection, the schedule that incurs the minimum flow time plus energy sets the speed

at any time t as min{T, (n(t)
α−1

)1/α}, where n(t) is the number of active jobs at t.

Chapter 5. Non-clairvoyant Flow-Energy Scheduling 86

Proof. Consider a particular job ji in the optimal schedule. We only need to consider

cases where its speed is constant, otherwise we can average the speed to reduce energy

usage without affecting flow time. Note that n(t) is unchanged when ji is run. Suppose

ji runs at speed s. Then its contribution to flow time plus energy is n(t)pi/s + sα−1pi,

which is minimized when s = (n(t)
α−1

)1/α.

Theorem 5.4. For scheduling batched jobs to minimize flow time plus energy, the al-

gorithm RR-AJC∗ is (i) (2 − 1/α)-competitive in the infinite speed model, and (ii) 2-

competitive in the bounded speed model.

Proof. Note that for scheduling batched jobs, the policy SRPT is equivalent to SJF.

Furthermore, Lemma 2.1 in Chapter 2 states that if there is a schedule for a job set J

uses a speed function f , then among all schedules of J using f , the one selecting jobs in

accordance with SRPT incurs the least total flow time. Therefore, every schedule can be

modified to the SJF-AJC∗ schedule by applying Lemma 2.1 and then Lemma 5.3 without

increasing the total flow time plus energy. This implies SJF-AJC∗ is optimal for total

flow time plus energy. The theorem thus follows naturally from Lemma 5.1.

5.1.3 Analysis of HDF-AJW∗

When jobs are weighted, the clairvoyant algorithm HDF-AJW∗ is not optimal for weighted

flow time plus energy. Instead we analyze HDF-AJW∗ via a variant concerning frac-

tional flow. Consider a schedule of J . At any time t, the fractional weight ŵi of ji is

defined to be wi(qi/pi), where qi is the remaining work of ji at t. We define ŵ(t) =∑
ji is active at t ŵi. The fractional flow is defined as F̂ =

∫∞
0

ŵ(t) dt. We now define our

variant of HDF-AJW∗.

Algorithm HDF-FW. It differs from HDF-AJW∗ only in the speed function, which

uses the speed function FW defined as (ŵ(t)
α−1

)1/α at any time t.

We follow the framework in Section 5.1.2 to show the optimality of HDF-FW for

fractional flow plus energy, as follows. Firstly, HDF minimizes fractional flow for a fixed

speed function (Lemma 5.5). Secondly, FW minimizes the fractional flow plus energy

for scheduling batched jobs using HDF (Lemma 5.6). Therefore, every schedule can be

modified to the HDF-FW schedule by applying Lemma 5.5 and then Lemma 5.6 without

increasing the fractional flow plus energy. That is, HDF-FW is optimal (Corollary 5.7).

Chapter 5. Non-clairvoyant Flow-Energy Scheduling 87

Lemma 5.5. Consider a set of weighted batched jobs J . Suppose there is a schedule for

J using a speed function f . Then, among all schedules of J using the speed function f ,

the schedule that selects jobs using HDF incurs the minimum fractional flow.

Proof. Given any schedule S0 of J that does not follow HDF policy, we first show that

S0 can be modified in multiple steps to the HDF schedule. Then we show that in each

step, its fractional flow decreases. Thus the lemma follows.

In each step, we modify a schedule S to a new schedule S ′. We find the first maximal

time interval [t1, t2] where S schedules two jobs ji and then jj, and ρi < ρj. We modify

S to S ′ by reversing the order of processing for the work of jobs ji and jj during the

interval [t1, t2] such that jj is run before ji. Repeating the above steps, we obtain a

schedule that uses HDF.

Now consider the fractional flow of S and S ′. To ease the discussion, we let F̂ (S) be

fractional flow of schedule S, and let ŵ(S) be a function over time representing the total

fractional weight of S. Recall that F̂ (S) =
∫∞
0

ŵ(S) dt. We split ŵ(S) into two parts:

ŵa(S) consists of the fractional flow of j1 and j2, and ŵb(S) for all other jobs. Then

F̂ (S) =
∫∞
0

ŵa(S)+ ŵb(S) dt. Similarly, we split ŵ(S ′) into ŵa(S
′) and ŵb(S

′). Note that

at all time, ŵb(S) = ŵb(S
′). Also, at any time outside (t1, t2), ŵa(S) = ŵa(S

′). Thus it

suffices to compare ŵa(S) and ŵa(S
′) at any time during (t1, t2), showing that the former

is always larger than the latter, meaning F̂ (S) > F̂ (S ′).

Consider either schedule S or S ′. Suppose x units of work in ji and y units of work

in jj remains at a time t during (t1, t2). Then the corresponding ŵa at t is ρix + ρjy =

ρi(x + y) + (ρj − ρi)y. Since x + y is always the same for schedules S and S ′, whichever

schedule having the smaller y will have the smaller ŵa. Note that S decreases x before

y while S ′ decreases y before x. Therefore, y is always smaller in S ′ than in S during

(t1, t2), implying ŵa(S) > ŵa(S
′).

Lemma 5.6. Consider a set of weighted batched jobs J . Among all schedules of J using

HDF for job selection, the schedule that incurs the minimum fractional flow time plus

energy sets the speed at any time t as min{T, (ŵ(t)
α−1

)1/α}, where ŵ(t) is the total fractional

weight at t.

Proof. Since all jobs are released at time 0, HDF schedules jobs J contiguously from jn

to j1. Consider a particular time t that the optimal schedule is working on some job ji.

Chapter 5. Non-clairvoyant Flow-Energy Scheduling 88

Let Wi =
∑i−1

j=1 wj denote the total weight of all other active jobs. Then ŵ(t) = Wi +ρiqi

(recall that qi is the remaining work of ji at t). We consider the case to further process

ji for an infinitesimal amount of work x. In this case, we can assume that the speed

s is constant, and the time required is ∆t = x/s. Then the contribution to fractional

flow plus energy during this period is sα∆t + ((Wi + ρiqi) + (Wi + ρi(qi − x)))∆t/2 =

sα∆t + (Wi + ρiqi))∆t (since x → 0), i.e., (sα−1 + s−1ŵ(t))x. This is minimized when

s =
(ŵ(t)

α−1

)1/α
. The lemma follows.

Corollary 5.7. Consider a set of weighted batched jobs. The algorithm HDF-FW is

optimal for minimizing the fractional flow plus energy of the schedule.

The following lemma further relates the weighted flow time plus energy of HDF-AJW∗

and the fractional flow plus energy of HDF-FW.

Lemma 5.8. Consider a set of batched jobs. Let Ĝhf be the fractional flow plus energy

with HDF-FW. Then the weighted flow time plus energy with HDF-AJW∗ is (i) Gh ≤
(2− 1/α)Ĝhf in the infinite speed model, and (ii) Gh ≤ 2Ĝhf in the bounded speed model.

Now we prove Lemma 5.8. To ease the discussion, we add a subscript “h” to the

notations E, F , F̂ , G and Ĝ when HDF-AJW∗ is under concern, and add “hf” when

HDF-FW is under concern. We add a parameter ji if we focus on the contribution to

these measures when a job ji is running, For example, Fh(ji) denotes the contribution

to the weighted flow F in the HDF-AJW∗ schedule when ji is running. We aim to

show that the required competitiveness is achieved for each job, so summing up all these

contributions leads to the desired competitive ratio.

Lemma 5.9. In the infinite speed model, consider the HDF-AJW∗ and HDF-FW sched-

ules of a set of batched jobs J . For each jk ∈ J , Fh(jk) ≤ (2 − 1/α)F̂hf(jk) and

Eh(jk) ≤ (2− 1/α)Ehf(jk).

Proof. Due to the way HDF-AJW∗ and HDF-FW choose their speeds, Fh(jk) = (α −
1)Eh(jk) and F̂hf(jk) = (α − 1)Ehf(jk) for each job jk ∈ J . We focus on the flow time

only, and prove that Fh(jk) ≤ (2− 1/α)F̂hf(jk). Then Eh(jk) ≤ (2− 1/α)Ehf(jk) follows

immediately.

Note that both HDF-AJW∗ and HDF-FW use HDF policy. Jobs are both scheduled

in decreasing order of job density, i.e., from jn to j1. Thus we can let Wk =
∑k−1

j=1 wj be

the total weight of the remaining jobs after running jk in both schedules.

Chapter 5. Non-clairvoyant Flow-Energy Scheduling 89

We first consider the contribution of jk for HDF-FW. Consider a short period of

time where the fractional weight of jk changes by dŵk. If the time is short enough, the

running speed can be considered constant, which is s =
(

ŵk+Wk

α−1

)1/α
. The length of time

is (−dŵk)/(ρks). The contribution to F̂hf during this period is thus

−(ŵk + Wk) dŵk

(
ŵk + Wk

α− 1

)−1/α /
ρk =

−(α− 1)1/α(ŵk + Wk)
1−1/α dŵk

ρk

.

During the execution of J , ŵk changes from wk to 0, so the total contribution to F̂hf is

F̂hf(jk) =

∫ 0

wk

−(α− 1)1/α(ŵk + Wk)
1−1/α

ρk

dŵk =
(α− 1)1/α((ŵk + Wk)

2−1/α −W
2−1/α
k)

(2− 1/α)ρk

.

Now consider HDF-AJW∗, which run the job jk at speed s′ =
(

wk+Wk

α−1

)1/α
, for a period

of length wk/(ρks
′). So its contribution to Fh is

Fh(jk) = (wk + Wk) wk

(wk + Wk

α− 1

)−1/α/
ρk

= (α− 1)1/α((wk + Wk)
2−1/α − (wk + Wk)

1−1/αWk)/ρk ≤ (2− 1/α)F̂hf(jk).

Proof of Lemma 5.8. For (i) (T = ∞), by Lemma 5.9, it is obvious that Gh(jk) ≤ (2 −
1/α)Ĝhf(jk). Summing over all jobs leads to the claimed competitive ratio.

For (ii) (T < ∞), we first focus on the energy consumption of a job jk. Note that

for the part of jk that HDF-FW runs at the speed bound T (if exist), same energy

E0 is consumed by HDF-AJW∗ and HDF-FW. The energy consumption of the other

part (running in either HDF-AJW∗ or HDF-FW) is exactly the same as if the job is

run when T = ∞. Thus Lemma 5.9 holds for this part, leading to Eh(jk) − E0 ≤
(2− 1/α)(Ehf(jk)− E0). This implies Eh(jk) ≤ (2− 1/α)Ehf(jk).

We now move to the comparison between Fh(jk) and F̂hf(jk). Note that for running jk,

HDF-FW always use a speed no faster than HDF-AJW∗, so the fractional flow F̂h(jk)

incurred by HDF-AJW∗ when running the job jk is at most F̂hf(jk). Suppose HDF-AJW∗

runs the job for t unit of time during which the total fractional weight of the system

changes from wk + Wk to Wk. Then Fh(jk) = (wk + Wk)t. Since HDF-AJW∗ runs job

jk at a fixed speed, F̂h(jk) = ((wk + Wk) + Wk)t/2 = (wk/2 + Wk)t. We thus have

Fh(jk) ≤ 2F̂h(jk) ≤ 2F̂hf(jk).

Chapter 5. Non-clairvoyant Flow-Energy Scheduling 90

Summing these relations over all jobs leads to the desired competitive ratio.

We note that for any schedule, the fractional flow is at most the weighted flow time.

Thus, by Corollary 5.7 and Lemma 5.8, HDF-AJW∗ is (2−1/α)-competitive for weighted

flow time plus energy. Together with Lemma 5.1, we obtain the competitive ratio of

WRR-AJW∗.

Theorem 5.10. Consider a set of weighted batched jobs. The algorithm WRR-AJW∗ is

(i) (2−1/α)2-competitive in the infinite speed model, and (ii) 4-competitive in the bounded

speed model.

5.2 Arbitrary Jobs

In this section, we consider jobs with arbitrary release times. Under the infinite speed

model, we give an online non-clairvoyant algorithm that is O(α3)-competitive for total

flow time plus energy. Our algorithm is defined as follows.

Algorithm LAPS(δ, β). Let 0 < δ, β ≤ 1 be any real. At any time t, the

processor speed is (1 + δ)(n(t))1/α, where n(t) is the number of active jobs at

time t. The processor processes the dβn(t)e active jobs with the latest release

times (ties are broken by job ids) by splitting the processing speed equally

among these jobs.

Our main result is the following.

Theorem 5.11. When δ = 3
α

and β = 1
2α

, LAPS(δ, β) is c-competitive for total flow time

plus energy, where c = 4α3(1 + (1 + 3
α
)α) = O(α3).

The rest of this section is devoted to proving Theorem 5.11. For any time t, let Ga(t)

and Go(t) be the total flow time plus energy incurred up to time t by LAPS(δ, β) and

the optimal algorithm OPT, respectively. To show that LAPS(δ, β) is c-competitive, it

suffices to give a potential function Φ(t) such that the following four conditions hold.

• Boundary condition: Φ = 0 before any job is released and Φ ≥ 0 after all jobs are

completed.

Chapter 5. Non-clairvoyant Flow-Energy Scheduling 91

• Job arrival: When a job is released, Φ does not increase.

• Job completion: When a job is completed by LAPS(δ, β) or OPT, Φ does not

increase.

• Running condition: At any other time, the rate of change of Ga plus that of Φ is

no more than c times the rate of change of Go. That is, dGa(t)
dt

+ dΦ(t)
dt

≤ c · dGo(t)
dt

during any period of time without job arrival or completion.

Let na(t) and sa(t) be the number of active jobs and the speed in LAPS(δ, β) at time t,

respectively. Define no(t) and so(t) similarly for that of OPT. Then

dGa(t)

dt
=

dFLAPS(t)

dt
+

dELAPS(t)

dt
= na(t) + (sa(t))

α

and, similarly, dGo(t)
dt

= no(t) + (so(t))
α. We define our potential function as follows.

Potential function Φ(t). Consider any time t. For any job j, let qa(j, t) and

qo(j, t) be the remaining work of j at time t in LAPS(δ, β) and OPT, respec-

tively. Let {j1, . . . , jna(t)} be the set of active jobs in LAPS(δ, β), ordered by

their release time such that r(j1) ≤ r(j2) ≤ · · · ≤ r(jna(t)). Then,

Φ(t) = γ

na(t)∑
i=1

(
i1−1/α ·max{0, qa(ji, t)− qo(ji, t)}

)

where γ = α(1 + (1 + 3
α
)α). We call i1−1/α the coefficient of ji.

We first check the boundary, job arrival and job completion conditions. Before any

job is released or after all jobs are completed, there is no active job in both LAPS(δ, β)

and OPT, so Φ = 0 and the boundary condition holds. When a new job j arrives at

time t, qa(j, t) − qo(j, t) = 0 and the coefficients of all other jobs remain the same, so Φ

does not change. If LAPS(δ, β) completes a job j, the term for j in Φ is removed. The

coefficient of any other job either stays the same or decreases, so Φ does not increase. If

OPT completes a job, Φ does not change.

It remains to check the running condition. In the following, we focus on a certain

time t within a period of time without job arrival or completion. We omit the parameter

Chapter 5. Non-clairvoyant Flow-Energy Scheduling 92

t from the notations as t refers only to this certain time. For example, we denote na(t)

and qa(j, t) as na and qa(j), respectively. For any job j, if LAPS(δ, β) has processed less

than OPT on j at time t, i.e., qa(j) − qo(j) > 0, then we say that j is a lagging job at

time t. We start by evaluating dΦ
dt

.

Lemma 5.12. Assume δ = 3
α

and β = 1
2α

. At time t, if LAPS(δ, β) is processing less

than (1 − 1
2α

) dβnae lagging jobs, then dΦ
dt
≤ γ

α
sα

o + γ(1 − 1
α
)na. Else if LAPS(δ, β) is

processing at least (1− 1
2α

) dβnae lagging jobs, then dΦ
dt
≤ γ

α
sα

o − γ
α
na.

Proof. We consider dΦ
dt

as the combined effect due to the processing of LAPS(δ, β) and

OPT. Note that for any job j, qa(j) is decreasing at a rate of either 0 or −sa/ dβnae.
Thus the rate of change of Φ due to LAPS(δ, β) is non-positive. Similarly, the rate of

change of Φ due to OPT is non-negative.

We first bound the rate of change of Φ due to OPT. The worst case is that OPT is

processing the job with the largest coefficient, i.e., n
1−1/α
a . Thus the rate of change of Φ

due to OPT is at most γn
1−1/α
a (−dqo(jna)

dt
) = γn

1−1/α
a so. We apply Young’s Inequality [52],

which is formally stated in Lemma 2.6 in Chapter 2, by setting f(x) = xα−1, f−1(x) =

x1/(α−1), g = so and h = n
1−1/α
a . Then, we have

son
1−1/α
a ≤

∫ so

0

xα−1 dx +

∫ n
1−1/α
a

0

x1/(α−1) dx =
1

α
sα

o + (1− 1

α
)na

If LAPS(δ, β) is processing less than (1 − 1
2α

) dβnae lagging jobs, we just ignore the

effect due to LAPS(δ, β) and take the bound that dΦ
dt
≤ γ

α
sα

o + γ(1− 1
α
)na.

If LAPS(δ, β) is processing at least (1− 1
2α

) dβnae lagging jobs, let ji be one of these

lagging jobs. We notice that ji is among the dβnae active jobs with the latest release

times. Thus, the coefficient of ji is at least (na − dβnae + 1)1−1/α. Also, ji is being

processed at a speed of sa/ dβnae, so qa(ji, t) is decreasing at this rate. LAPS(δ, β) is

processing at least (1 − 1
2α

) dβnae such lagging jobs, so the rate of change of Φ due to

Chapter 5. Non-clairvoyant Flow-Energy Scheduling 93

LAPS(δ, β) is more negative than

γ

(
(1− 1

2α
) dβnae

)
(na − dβnae+ 1)1−1/α

(−sa

dβnae
)

≤ −γ(1− 1

2α
)(na − βna)

1−1/α(sa) (since −dβnae+ 1 ≥ −βna)

≤ −γ(1− 1

2α
)(1− β)(1 + δ)na (since sa = (1 + δ)n

1/α
a)

When β = 1
2α

and δ = 3
α
, simple calculation shows that (1 − 1

2α
)(1 − β)(1 + δ) ≥ 1 and

hence the last term above is at most −γna. It follows that dΦ
dt
≤ γ

α
sα

o +γ(1− 1
α
)na−γna =

γ
α
sα

o − γ
α
na.

We are now ready to show the following lemma about the running condition.

Lemma 5.13. Assume δ = 3
α

and β = 1
2α

. At time t, dGa

dt
+ dΦ

dt
≤ c · dGo

dt
, where

c = 4α3(1 + (1 + 3
α
)α).

Proof. We consider two cases depending on the number of lagging jobs that LAPS(δ, β)

is processing at time t. If LAPS(δ, β) is processing at least (1 − 1
α
) dβnae lagging jobs,

then

dGa

dt
+ dΦ

dt
= na + sα

a + dΦ
dt

≤ na + (1 + δ)αna +
γ

α
sα

o −
γ

α
na (by Lemma 5.12)

= (1 + (1 + δ)α − γ

α
)na +

γ

α
sα

o

Since δ = 3
α

and γ = α(1+(1+ 3
α
)α), the coefficient of na becomes zero and dGa

dt
+ dΦ

dt
≤ γ

α
so.

Note that γ
α

= (1 + (1 + 3
α
)α) ≤ c and dGo

dt
= no + sα

o , so we have dGa

dt
+ dΦ

dt
≤ c · dGo

dt
.

If LAPS(δ, β) is processing less than (1 − 1
2α

) dβnae lagging jobs, the number of jobs

remaining in OPT is no ≥ dβnae−(1− 1
2α

) dβnae = 1
2α
dβnae ≥ 1

2α
βna = 1

4α2 na. Therefore,

dGa

dt
+ dΦ

dt
= na + sα

a + dΦ
dt

≤ na + (1 + δ)αna +
γ

α
sα

o + γ(1− 1

α
)na (by Lemma 5.12)

= (1 + (1 + δ)α + γ(1− 1

α
))na +

γ

α
sα

o

≤ 4α2(1 + (1 + δ)α + γ(1− 1

α
))no +

γ

α
sα

o

Chapter 5. Non-clairvoyant Flow-Energy Scheduling 94

Since δ = 3
α

and γ = α(1+ (1+ 3
α
)α), the coefficient of no becomes 4α3(1+ (1+ 3

α
)α) = c.

The coefficient of sα
o is (1+ (1+ 3

α
)α) ≤ c. Since dGo(t)

dt
= no + sα

o , we obtain dGa(t)
dt

+ dΦ
dt
≤

c· dGo(t)
dt

. Note that this case is the bottleneck leading to the current competitive ratio.

Combining Lemma 5.16 with the discussion on the boundary, job arrival and job

completion conditions, Theorem 5.11 follows.

5.3 Sleep States

In this section, we consider non-clairvoyant scheduling in the model that allows both

sleep management and speed scaling, which is introduced in Section 3.1 of Chapter 3. We

consider a processor with the awake state and m ≥ 1 levels of sleep states as in Section 3.1.

Recall that in the awake state, the processor can run at any speed s, demanding the static

power σ and the dynamic power sα.

Now, job scheduling requires two components: a sleep management algorithm to

determine when to sleep or work, and a speed scaling algorithm to determine which job

and at what speed to run. The sleep management algorithm IdleLonger introduced in

Chapter 3 can work for non-clairvoyant scheduling as its decision does not depend on

the job size. When there is no sleep state and the power function is in the form of sα,

Section 5.2 has given a non-clairvoyant speed scaling algorithm LAPS that is O(α3)-

competitive for flow plus energy. We adapt LAPS to the sleep setting in a similar way as

AJC was adapted in Section 3.3; we call the resulting algorithm SLS (Sleep-aware Latest

arrival processor Sharing). We also show that IdleLonger(SLS) (i.e., IdleLonger coupled

with SLS) is O(α3)-competitive for total flow time plus energy in the infinite speed model.

Algorithm SLS. Consider any time t. Let n(t) be the number of active

jobs at time t. Then the processor speed is (1 + 3
α
)(n(t) + σ)1/α, and the

processor processes the
⌈
(1

2α
)n(t)

⌉
active jobs with the latest release times

(ties are broken by job ids) by splitting the processing speed equally among

these jobs.

To analyze the performance of IdleLonger(SLS), we divide the total cost G (i.e., flow

plus energy) into the working cost (incurred while working on jobs) and the inactive cost

Chapter 5. Non-clairvoyant Flow-Energy Scheduling 95

(incurred at other times) as in Section 3.1. For the optimal offline algorithm OPT, we

divide its total cost G∗ into two parts: W ∗ is the total wake-up energy, and C∗ = G∗−W ∗

(i.e., the total flow plus the working and idling energy). In Section 3.2, we have shown

that the inactive cost of IdleLonger is at most 3C∗ + 6W ∗ (Corollary 3.3). It remains to

upper bound the working cost of IdleLonger(SLS) in terms of OPT’s total cost.

Below, we give an analysis of the working cost of SLS when it is coupled with any

non-clairvoyant sleep management algorithm Slp (including IdleLonger). Let Ga and Fi

denote the working cost and inactive flow of Slp(SLS), respectively. Similar to Section 3.3,

we modify the potential analysis of LAPS in Section 5.2 to take Fi into consideration.

The result is stated in Theorem 5.14 below, which, together with the results on inactive

cost of IdleLonger, implies that IdleLonger(SLS) is ((4α3 + α)γ + 3)-competitive for flow

plus energy, where γ = (1 + (1 + 3
α
)α) ≤ 1 + e3.

Theorem 5.14. With respect to Slp(SLS), Ga ≤ (4α3 + 1)γC∗ + (α− 1)γFi.

Corollary 5.15. In the setting of single sleep state or multiple sleep states, the total cost

of IdleLonger(SLS) is at most ((4α3 + α)γ + 3) times of the total cost of OPT.

Proof of Corollary 5.15. Consider the coupling of IdleLonger and SLS. As proven in

Section 3.2 of Chapter 3, Fi ≤ C∗ + 2W ∗ and the inactive cost is at most 3C∗ + 6W ∗.

By Theorem 5.14, the working cost is at most (4α3 + 1)γC∗ + (α− 1)γFi. It follows that

the total cost of IdleLonger(SLS), comprised of the inactive cost and the working cost, is

at most ((4α3 + α)γ + 3)C∗ + (2(α− 1)γ + 6)W ∗. Note that γ = (1 + (1 + 3
α
)α) ≥ 2 and

hence ((4α3 + α)γ + 3) − (2(α − 1)γ + 6) = (4α3 − α)γ + (2γ − 3) ≥ 0. Therefore, the

total cost of IdleLonger(SLS) is at most ((4α3 + α)γ + 3) times OPT’s total cost.

The rest of this section is devoted to Theorem 5.14. We adapt the potential function

Φ(t) in Section 5.2 to include σ. At any time t, let na(t) and qa(j, t) denote respectively

the number of active jobs and the remaining work of job j in Slp(SLS). And no(t) and

qo(J, t) are defined similarly for OPT. We denote the set of active jobs in Slp(SLS) by

{j1, . . . , jna(t)}, listed in non-decreasing order of release times. Define

Φ(t) = αγ
∑na(t)

i=1

(
(i + σ)1−1/α ·max{0, qa(ji, t)− qo(ji, t)}

)

We call the term (i + σ)1−1/α the coefficient of ji. Intuitively, Φ(t) measures the amount

of work that Slp(SLS) is lagging behind OPT.

Chapter 5. Non-clairvoyant Flow-Energy Scheduling 96

Ideally, Theorem 5.14 can be proven by showing that dGa

dt
+ dΦ

dt
= O(dC∗

dt
+ dFi

dt
) at all

times when no discrete events occur (i.e., no job arrival, completion or speed change). Yet

this is not always correct. Note that Φ is always at least zero. When Slp(SLS) is working

and OPT is sleeping, dGa

dt
≥ σ, and dC∗

dt
and dFi

dt
may be much smaller than σ. If Φ reaches

the minimum value zero, then dΦ
dt
≥ 0 and we cannot bound dGa

dt
+ dΦ

dt
by O(dC∗

dt
+ dFi

dt
).

We extend the potential with yet another new notion Ews, the total working static

energy, which is the static power σ times the total length of working intervals. When

Slp(SLS) is working, dEws

dt
= σ. This allows us to show the following lemma.

Lemma 5.16. At any time when no discrete events occur, dGw

dt
+ dΦ

dt
≤ 4α3γ dC∗

dt
+ (α−

1)γ dFi

dt
+ γ dEws

dt
.

We now prove Lemma 5.16. At any time t, if Slp(SLS) is working, let sa be the

current speed of SLS. We define so similarly for OPT. Furthermore, for any job j, if

qa(j, t) − qo(j, t) > 0, we say that j is a lagging job at time t. Below we drop t from

the notations since t refers the current time. We first analyze dΦ
dt

as if Φ is modified in

two steps: (i) the execution of Slp(SLS), and (ii) the execution of OPT. We denote these

changes as dΦ1

dt
and dΦ2

dt
, respectively, i.e., dΦ

dt
= dΦ1

dt
+ dΦ2

dt
. Using the same arguments in

Lemma 5.12, we can prove the following claim.

Claim 5.17. (i) Consider sa > 0. If Slp(SLS) is processing less than (1 − 1
2α

)
⌈
(1

2α
)na

⌉

lagging jobs, then dΦ1

dt
≤ 0. Else if Slp(SLS) is processing at least (1− 1

2α
)
⌈
(1

2α
)na

⌉
lagging

jobs, then dΦ1

dt
≤ −αγ(na + σ); (ii) Consider so > 0. Then dΦ2

dt
≤ γsα

o + (α− 1)γ(na + σ).

We are now ready to show Lemma 5.16 by a case analysis of whether Slp(SLS) and

OPT is working. When sa > 0, dGa

dt
= na + sα

a + σ = na + (1 + 3
α
)α(na + σ) + σ =

(1+(1+ 3
α
)α)(na+σ) = γ(na+σ). Also, if Slp(SLS) is processing less than (1− 1

2α
)
⌈
(1

2α
)na

⌉

lagging jobs, the number of jobs remaining in OPT is no ≥
⌈
(1

2α
)na

⌉−(1− 1
2α

)
⌈
(1

2α
)na

⌉
=

1
2α

⌈
(1

2α
)na

⌉ ≥ 1
2α

((1
2α

)na) = 1
4α2 (na), i.e., na ≤ 4α2no.

Case 1: sa > 0, so > 0. In this case, dGa

dt
= γ(na + σ), dC∗

dt
= sα

o + σ + no,
dFi

dt
= 0,

and dEws

dt
= σ. If Slp(SLS) is processing less than (1 − 1

2α
)
⌈
(1

2α
)na

⌉
lagging jobs at time

t, then na ≤ 4α2no. By Claim 5.17 (i) and (ii), we have

dGa

dt
+ dΦ

dt
≤ γ(na + σ) + γsα

o + (α− 1)γ(na + σ)

≤ αγ(na + σ) + γsα
o ≤ 4α3γ(no + sα

o + σ) ≤ 4α3γ dC∗
dt

.

Chapter 5. Non-clairvoyant Flow-Energy Scheduling 97

If Slp(SLS) is processing at least (1 − 1
2α

)
⌈
(1

2α
)na

⌉
lagging jobs at time t, then by

Claim 5.17 (i) and (ii), we have

dGa

dt
+ dΦ

dt
≤ γ(na + σ)− αγ(na + σ) + γsα

o + (α− 1)γ(na + σ) ≤ γsα
o ≤ γ dC∗

dt
.

Case 2: sa > 0, so = 0. In this case, dGa

dt
= γ(na + σ), dC∗

dt
= no,

dFi

dt
= 0, and

dEws

dt
= σ. Since so = 0, it is clear that dΦ2

dt
= 0. If Slp(SLS) is processing less than

(1− 1
2α

)
⌈
(1

2α
)na

⌉
lagging jobs at time t, then na ≤ 4α2no. By Claim 5.17 (i), we have

dGa

dt
+ dΦ

dt
≤ γ(na + σ) ≤ 4α2γno + γσ ≤ 4α3γ dC∗

dt
+ γ dEws

dt
.

If Slp(SLS) is processing at least (1 − 1
2α

)
⌈
(1

2α
)na

⌉
lagging jobs at time t, then by

Claim 5.17 (i), we have

dGa

dt
+ dΦ

dt
≤ γ(na + σ)− αγ(na + σ) ≤ 0 ≤ 4α3γ dC∗

dt
.

Case 3: sa = 0, so > 0. In this case, dGa

dt
= 0, dC∗

dt
= sα

o + σ + no,
dFi

dt
= na, and

dEws

dt
= 0. Since so = 0, it is clear that dΦ1

dt
= 0. Thus, by Claim 5.17 (ii), we have

dGa

dt
+ dΦ

dt
≤ γsα

o +(α−1)γ(na+σ) ≤ (α−1)γ(sα
o +σ)+(α−1)γna ≤ 4α3γ dC∗

dt
+(α−1)γ dFi

dt
.

Case 4: sa = 0, so = 0. In this case, dGa

dt
= 0, dC∗

dt
= no,

dFi

dt
= na, and dEws

dt
= 0.

Since sa = 0 and so = 0, it is clear that dΦ
dt

= 0. Therefore, dGa

dt
+ dΦ

dt
= 0 ≤ 4α3γ dC∗

dt
.

To sum up, we have dGw

dt
+ dΦ

dt
≤ 4α3γ dC∗

dt
+ (α − 1)γ dFi

dt
+ γ dEws

dt
for all the four

cases, completing the proof of Lemma 5.16. Lemma 5.16 immediately implies that Ga ≤
4α3γC∗ + (α− 1)γFi + γEws. We further observe Ews ≤ C∗. Then Theorem 5.14 follows.

Lemma 5.18. With respect to Slp(SLS), Ews ≤ G∗.

Proof. Let x be the total size of all jobs. When Slp(SLS) is working, its speed is at least

(1 + 3
α
)(σ + 1)1/α ≥ σ1/α and thus Ews ≤ σ · (x/σ1/α) = xσ1−1/α. Recall that running

a job at the critical speed scrit = (σ/(α − 1))1/α minimizes the energy usage of the job

(see Chapter 4). Therefore, the energy usage of any schedule and hence C∗ is at least

(x/scrit) · (sα
crit + σ) = (α/(α− 1)1−1/α) · (xσ1−1/α) ≥ (α/(α− 1)1−1/α)Ews. For any α > 1,

(α/(α− 1)1−1/α) ≥ 1, and hence C∗ ≥ Ews.

Chapter 6

Space-efficient Data Stream

Algorithms

In this chapter, we study space-efficient data stream algorithms. To answer a statistics

on a data stream, we need to handle a huge volume of items from the stream, usually in

the order of gigabytes a second, and as the stream passes we have only a few nanoseconds

to react to each item. Furthermore, we usually have stringent memory, e.g., the routers

used in network monitoring are relatively cheap and have small main memory. Thus, any

algorithm for answering the statistics on a data stream must have extremely fast update

and query time, and use small memory space. This chapter focuses on the count-based

sliding window model. Precisely, let W be the size of the sliding window. The count-based

sliding window covers the most recent W data items in the data stream.

We first consider the following new problem, called Significant One Counting, which is

more flexible in space-accuracy tradeoff than the basic counting problem (see Section 1.2

for its formal definition).

Significant One Counting. For a stream of bits, let c be the number of

1-bits in the current sliding window (of size W). Given a threshold 0 < θ < 1,

and a relative error bound 0 < ε < 1, the problem is to return an estimate ĉ

of the number c of 1-bits such that if c ≥ θW , we have |ĉ− c| ≤ εc.

We prove a lower bound on the memory of any algorithm for the significant one

98

Chapter 6. Space-efficient Data Stream Algorithms 99

counting problem, showing that any algorithm for the problem must have memory at

least Ω(1
ε
log2(1

θ
) + log(εθW)) bits. Then, we give an algorithm that has constant update

and query time, and uses memory matching the lower bound, i.e., the algorithm has the

optimal time and space complexity. This algorithm returns an estimate ĉ of the number

c of 1-bits in the sliding window such that if c ≥ θW , then c ≤ ĉ ≤ c+ εc, and if c < θW ,

then c ≤ ĉ ≤ c + εθW . Note that the algorithm becomes an optimal algorithm for basic

counting when we set θ to 1/W . On the other hand, for any fixed θ, its memory usage is

only O(1
ε

+ log(εW)) bits, which is much smaller than Θ(1
ε
log2(εW)) bits.

We also study finding approximate frequent items over a count-based sliding window.

More precisely, we consider a stream of data items from a set U . Let 0 < ε < 1 be the

user-specified error bound. For any item j ∈ U , let cj be the number of j in the most

recent W data items in the stream. The problem is defined as follows.

ε-Approximate Frequent Items. Given any user-specified threshold 0 < φ < 1,

return a set F ⊆ U which includes all items j with cj ≥ φc and possibly some

items j′ with cj′ ≥ φc− εc.

We give a deterministic algorithm for the ε-approximate frequent items problem over

sliding window. This algorithm supports O(1
ε
) update and query time, and uses O(1

ε
)

words of space. This substantially improves the previous result by Arasu and Manku [5],

where their algorithm takes O(1
ε
log 1

ε
) query and update time and uses O(1

ε
log2(1

ε
)) words

of space. Note that our memory usage is essentially optimal; the number of frequent items

can be Ω(1
ε
) in the worst case and thus any algorithm must use Ω(1

ε
) words of memory.

More importantly, this algorithm is much simpler than Arasu and Manku’s result; our

algorithm has about twenty lines of codes. It uses only O(1
ε
) simple variables and O(1

ε
)

queues, and the total length of these queues is O(1
ε
). To update these data structures

when the window slides, we need only to increment/decrement some of the variables for

most cases, and we seldom need to insert or delete entries in the queues. By adapting

a technique in [5], we also extend our algorithm to identify frequent items in a sliding

window whose size can be changed by the user.

Remark. Besides frequent items, our algorithm can also find top items. We say that

an item is the top 1st item if it is the most frequent item, and in general, an item is

the top ith item if it is the ith most frequent item. Charikar et al. [25] introduced the

Chapter 6. Space-efficient Data Stream Algorithms 100

following Approximate Top-k problem: Let k and δ be two user-specified parameters. For

any integer i > 0, let Fi be the frequency of the top ith item. The problem asks for a

set S of k items such that every item s ∈ S has frequency at least (1 − δ)Fk. Note that

this problem is proposed for whole data stream originally, but it is straightforward to

generalize the problem for sliding windows. We remark that our algorithm for frequent

items can be used to solve the approximate top-k problem using O(k
δ
) words of space.

Section 6.1 gives our results on significant one counting. Section 6.2 gives our results

on approximate frequent items problem over sliding window.

6.1 Significant One Counting

This section considers the significant one counting problem. First, Section 6.1.1 gives a

lower bound of Ω(1
ε
log2 1

θ
+log εθW) bits of memory for any (deterministic) data structure

for the significant one counting problem. Then, we introduce our data structure in a

sequence of steps, as follows. In Section 6.1.2, we introduce an one-level data structure.

In Section 6.1.3, we improve the memory usage by using a multi-level data structure.

Finally, Section 6.1.4 presents our data structure, that is optimal in space, query time

and update time.

6.1.1 Lower bound

In this section, we derive two lower bounds on the size of any data structure for the sig-

nificant one counting problem; one is Ω(log εθW) and the other is Ω(1
ε
log2 1

θ
). Combining

these two results, we conclude a lower bound of Ω(1
ε
log2 1

θ
+ log εθW). Note that our

results have assumed some bounds on the values of the threshold θ and the relative error

bound ε.

Lemma 6.1. Suppose that θ ≤ 1
2

and ε ≤ 1
5
. Then, any data structure for significant

one counting with threshold θ and relative error bound ε has size Ω(log εθW) bits.

Proof. Suppose that the data stream has a sequence of W 0-bits followed by a sequence

of εθW 1-bits, where the latter sequence of 1-bits is denoted by P . For the sake of

contradiction, assume that the data structure uses o(log εθW) bits of memory. Thus,

Chapter 6. Space-efficient Data Stream Algorithms 101

there are two 1-bits in sequence P , say the x-th 1-bit and the (x + y)-th 1-bit where

x, y ∈ [1, εθW − 1], such that when they are received, the memory states are the same,

which is denoted by M .

When the x-th 1-bit is received, since x < εθW < W , the actual number of 1-bits in

the sliding window, denoted by c1, is c1 = x. Now, we modify the bit stream such that

following this x-th 1-bit is a sequence of yδ 1-bits, where δ = d(4εθW)/ye. Note that

after the arrivals of each subsequence of y 1-bits, the memory state is also equal to M .

Thus, after the arrivals of all the yδ 1-bits, the memory state is M . Since θ ≤ 1
2

and

ε ≤ 1
5
, it follows that x + yδ ≤ x + (4εθW + y) < 6εθW < W , which implies the actual

number of 1-bits in the sliding window, denoted by c2, is c2 = x + yδ.

Consider the following two cases: (Case 1) the xth 1-bit is received, and (Case 2) the

yδ 1-bits following the x-th 1-bit are received. Note that in both cases, the memory state

is M . Thus, when using the data structure to estimate the number of 1-bits, both cases

return the same estimate. That is, the data structure will give an estimate with absolute

error at least |c1 − c2|/2 ≥ (4εθW)/2 = 2εθW for one of the streams in the two cases.

Consequently, the relative error is at least

2εθW

max{c1, c2} =
2εθW

x + yd4εθW
y
e >

2εθW

θW + 4εθW + y

>
2εθW

θW + 5εθW
≥ 2εθW

2θW
= ε ,

which contradicts that the relative error of the estimate is no more than ε. Therefore,

Ω(log εθW) bits of memory is required.

The proof of the following lemma adapts the proof techniques given in [35].

Lemma 6.2. Suppose that θ ≤ 1
16

and ε ≥ 1
4θW

. Any data structure for significant one

counting with threshold θ and relative error bound ε uses Ω(1
ε
log2 1

θ
) bits of memory.

Proof. We first describe the data stream under consideration. Let ε = 1
k

for some constant

k. Since ε ≥ 1
4θW

, we have k ≤ 4θW . We list the bits in the stream from left to right,

where the rightmost bit is the most recent bit. A window of size W is divided from right

to left into blocks of size B, 2B, 4B, 8B, ..., 2jB, where B ≥ k
4

is some constant (which

will be later set to k
16

√
1
θ
) and j = blog W

B
c − 1. To simplify the discussion, we consider

Chapter 6. Space-efficient Data Stream Algorithms 102

block of 2jB bits block of 2j−1B bits · · · block of 2iB bits · · · block of B bits

· · · sub-blocks of 2i bits · · · sub-blocks of 2i bits · · ·

Figure 6.1: The bits in the sliding window are listed from left to right, where the rightmost
bit is the most recent bit, and divided into different blocks. A block of size 2iB is further
divided into B contiguous sub-blocks of size 2i bits.

the case that k and B are integers; the proof can be adapted to handle other cases. For

a block of size 2iB, where 0 ≤ i ≤ j, it is further divided into B contiguous sub-blocks of

size 2i bits, as shown in Figure 6.1.

Among the B sub-blocks, k/4 of them are all 1-bits, while the rest are all 0-bits. Let

d = dlog(4θW
k

+ 1)e. Note that d = dlog(4θW+k
k

)e ≤ dlog(8θW
k

)e. For a block of size

s > 2dB, there are
(

B
k/4

)
possible arrangements for the k/4 sub-blocks of 1-bits in the B

sub-blocks. For a block of size s ≤ 2dB, k/4 sub-blocks of the B sub-blocks are fixed

to be the sub-blocks of 1-bits. Let b denote the number of blocks of size larger than

2dB. Therefore, there are
(

B
k/4

)b
possible arrangements for the sub-blocks of 1-bits in

those blocks of size s > 2dB. Also, we have b ≥ j − d ≥ (blog n
B
c − 1) − dlog(8θn

k
)e >

((log n
B
− 1)− 1)− (log 8θn

k
+ 1) = log(k

8θB
)− 3.

Consider any two of the
(

B
k/4

)b
arrangements, say x and y. From the right to the

left, we can find the first sub-block (the z-th sub-block in the block of size 2fB, where

z ∈ [1, B] and f ∈ [d + 1, j]) such that without loss of generality, it is the c-th sub-

block of 1-bits, where c ∈ [1, k/4], in the block of size 2fB in arrangement x, and it is

a sub-block of 0-bits in arrangement y. Assume, for the sake of contradiction, that after

receiving arrangements x and y respectively, the memory states are the same, denoted by

M . Then, W − ((2f − 1)B + 2fz) 0-bits are given as input such that the z-th sub-block

in the block of size 2fB becomes the leftmost sub-block in the sliding window. After

receiving this sequence of 0-bits, for arrangement x, the number of 1-bits in the sliding

window is c1 = (2f − 1)(k/4) + 2fc, while for arrangement y, the number of 1-bits in the

sliding window is c2 = (2f − 1)(k/4) + 2f (c− 1). As the memory states in both cases are

also M before receiving the sequence of 0-bits, we should give the same estimate after

receiving the sequence of 0-bits. Thus, the estimate given has an absolute error of at least

Chapter 6. Space-efficient Data Stream Algorithms 103

|c1 − c2|/2 = 2f−1 for one of the two cases. Consequently, the relative error is at least

2f−1

max{m1, m2} =
2f−1

(2f − 1)(k
4
) + 2fc

≥ 2f−1

2f+1(k
4
)− k

4

>
2f−1

2f−1 × k
=

1

k
= ε

which contradicts that the relative error of the estimate is no more than ε. Thus, we have

to differentiate between any two of the
(

B
k/4

)b
arrangements. It implies that the required

memory is at least

log

(
B
k
4

)b

≥ log

(
B
k
4

)kb/4

>
k

4

(
log

(
k

8θB

)
− 3

)(
log

4B

k

)

=
k

4

(
log

k

64θB

)(
log

4B

k

)
.

Since θ ≤ 1
16

and B ≥ k
4
, by choosing B = k

16

√
1
θ
, the required memory is more than

k

4
log2

(
1

4

√
1

θ

)
=

k

16
log2

(
1

16θ

)
.

Therefore, Ω(1
ε
log2 1

θ
) bits of memory is required.

Combining the above two lemmas, we have the following theorem.

Theorem 6.3. Suppose that θ ≤ 1
16

and 1
4θW

≤ ε ≤ 1
5
. Any data structure for significant

one counting with threshold θ and relative error bound ε requires Ω(1
ε
log2 1

θ
+ log εθW)

bits of memory.

6.1.2 An one-level data structure

In this section, we describe a simple data structure for significant one counting. First,

we give some definitions. Consider any bit stream. Each bit in the stream has a stream

position (or simply sp), the first bit of the stream has sp = 1, the second one has sp

= 2, and etc. Each 1-bit has a 1-rank, which is its rank among all the 1-bits. Figure 6.2

Chapter 6. Space-efficient Data Stream Algorithms 104

bit stream 1 0 1 1 1 1 1 1 1 1 0 0
stream position (sp) 1 2 3 4 5 6 7 8 9 10 11 12

1-rank 1 2 3 4 5 6 7 8 9
interesting 1-bit label 1 2 3

anchor label 1 2 3 4
Expired Sliding Window

bit stream 0 1 0 0 1 0 1 1 1 1 1
stream position (sp) 13 14 15 16 17 18 19 20 21 22 23

1-rank 10 11 12 13 14 15 16
interesting 1-bit label 4 5

anchor label 5 6 7
Sliding Window

Figure 6.2: An example bit stream with ω = 3 and sliding window of size W = 15.

shows an example of a bit stream. Given a positive integer ω, a 1-bit with its 1-rank

divisible by ω is called an interesting 1-bit (with respect to ω). Each interesting 1-bit has

an interesting 1-bit label to denote its rank among all the interesting 1-bits. In Figure 6.2,

we set ω = 3. The 1-bit with sp 10 has an 1-rank of 9, which is divisible by ω. Thus,

it is an interesting 1-bit. As it is the third interesting 1-bit, its interesting 1-bit label is

3. Recall that W is the size of the sliding window. If p is the current sp, i.e., the most

recent sp, those bits with sp in [p−W + 1, p] are in the sliding window while other bits

with sp less than p−W + 1 are expired.

Basic idea

Given the bit stream, the window size W and the positive integer ω, we can estimate the

number of 1-bits in the sliding window with a bounded absolute error as follows:

We store the (interesting 1-bit label, sp) pairs of all interesting 1-bits (with

respect to ω) in the sliding window in a linked list and keep a variable count

to count the number of 1-bits arrived after the last interesting 1-bit (or the

beginning of the stream if no such interesting 1-bit exists). Let s denote the

size of the linked list. The estimate ĉ of the number of 1-bits is computed by

ĉ = s× ω + count.

For the example in Figure 6.2, the linked list contains the (interesting 1-bit label, sp) pairs

of all interesting 1-bits in the sliding window, i.e., 〈(3, 10), (4, 19), (5, 22)〉. The size s of

the linked list is 3. As there is one 1-bit arrived after the last interesting 1-bit (with label

5), the variable count is 1. Therefore, the estimate ĉ = s× ω + count = 3× 3 + 1 = 10.

Chapter 6. Space-efficient Data Stream Algorithms 105

Bounded absolute error. Let c be the actual number of 1-bits in the sliding window.

Intuitively, an interesting 1-bit b in the linked list represents ω 1-bits between its previous

interesting 1-bit bp (excluding the 1-bit bp) and the interesting 1-bit b (including the 1-bit

b). A 1-bit in the sliding window will either be counted by s × ω or count, and this

implies ĉ ≥ c. To get an upper bound on ĉ, we note that if the variable count counts an

expired 1-bit, there is no interesting 1-bit in the sliding window and thus we have s = 0.

As count ≤ ω − 1, ĉ counts at most ω − 1 expired 1-bits, so that ĉ < c + ω. Otherwise,

count does not count any expired 1-bit. Since only the least recent interesting 1-bit bl in

the sliding window can represent expired 1-bits and the 1-bit bl itself is not expired, s×ω

counts at most ω − 1 expired 1-bits. Therefore, we also have ĉ < c + ω. In conclusion,

we have c ≤ ĉ < c + ω and the absolute error of the estimate ĉ is at most ω.

Linked list with dilution. The above method can be generalized: For any positive

integer i, a linked list with dilution i stores the (interesting 1-bit label, sp) pairs of all

interesting 1-bits in the sliding window with its interesting 1-bit label divisible by 2i.

We keep three auxiliary variables, pos, nb and count, where pos is the current sp, nb is

the number of interesting 1-bits in the stream and count is the number of 1-bits arrived

after the last interesting 1-bit (or the beginning of the stream if no such interesting 1-bit

exists). For a linked list with dilution i, let s be the size of the linked list and nb′ be the

interesting 1-bit label in the tail of the linked list, i.e., the most recent interesting 1-bit

in the linked list. If there is no such interesting 1-bit, we set nb′ = 0. The estimate ĉ is

computed by ĉ = s× 2iω + (nb− nb′)× ω + count.

For the example in Figure 6.2, the linked list with dilution 2 contains the (interesting

1-bit label, sp) pairs of all interesting 1-bits in the sliding window with its interesting

1-bit label divisible by 2, i.e., 〈(4, 19)〉. Thus, we have s = 1 and nb′ = 4. Also, the

auxiliary variables are pos = 23, nb = 5 and count = 1. Therefore, the estimate is

ĉ = s× 2ω + (nb− nb′)× ω + count = 1× 6 + (5− 4)× 3 + 1 = 10.

Lemma 6.4. Using the above procedure, the linked list with dilution i returns an estimate

ĉ of the number c of 1-bits in the sliding window such that c ≤ ĉ ≤ c+2iω, i.e., the absolute

error of the estimate is at most 2iω.

Proof. Intuitively, an interesting 1-bit b in a linked list with dilution i represents 2iω

1-bits between its previous interesting 1-bit bp with interesting 1-bit label divisible by

2i (excluding the 1-bit bp) and the interesting 1-bit b (including the 1-bit b). Let count′

Chapter 6. Space-efficient Data Stream Algorithms 106

denote the number of 1-bits arrived after the interesting 1-bit with label nb′ (or the

beginning of the stream if nb′ = 0). We have count′ = (nb− nb′)× ω + count.

A 1-bit in the sliding window will either be counted by s × 2iω or count′, and this

implies ĉ ≥ c. To get an upper bound on ĉ, we note that if count′ counts an expired

1-bit, there is no interesting 1-bit in the sliding window and s = 0. Since count′ ≤
(2i − 1)ω + (ω − 1) < 2iω, we have ĉ < c + 2iω. Suppose that count′ does not count any

expired 1-bit. As only the least recent interesting 1-bit bl in the linked list can represent

expired 1-bits, and bl itself is not expired, s× 2iω counts at most 2iω − 1 expired 1-bits.

Therefore, we also have ĉ < c + 2iω. In conclusion, we have c ≤ ĉ < c + 2iω and the

absolute error is at most 2iω.

Memory usage. Since the sliding window is of size W , we can represent a sp in

the sliding window by a modulo 2W number without ambiguity. Also, there are at most

dW/ωe interesting 1-bits in the sliding window so that an interesting 1-bit label can be

represented by a modulo d2W/ωe number. Therefore, a sp needs O(log W) bits and an

interesting 1-bit label needs O(log(W/ω)) bits, respectively. Hence, each (interesting 1-bit

label, sp) pair in the linked list needs O(log(W/ω) + log W) = O(log W) bits of memory.

To further reduce the memory usage, notice that the difference of the sp of two

consecutive interesting 1-bits is no less than the difference of their 1-ranks, i.e., ω. If

there is an interesting 1-bit with sp p, there is no other interesting 1-bit in the sp range

[(d p
ω
e−1)ω+1, (d p

ω
e)ω]. Therefore, for an interesting 1-bit with sp p, we can use p′ = d p

ω
e

to denote its position in the stream without ambiguity, and we will define the set of

all possible p′ as anchors. As p is a modulo 2W number, the memory to represent the

position of an interesting 1-bit can then be reduced from O(log W) bits to O(log(W/ω))

bits and each pair in the linked list needs only O(log(W/ω)) bits of memory.

Anchor and anchor label. Given a positive integer ω, if a sp is divisible by ω, this

sp is defined as an anchor. Each anchor has an anchor label for identification of different

anchors. In Figure 6.2, when ω = 3, those sp’s divisible by ω (e.g. 3, 6, 9) are anchors,

and the first anchor (sp 3) has an anchor label of 1.

For an interesting 1-bit with sp p, we use the anchor label d p
ω
e to denote its position.

For instance, in Figure 6.2, we use the anchor with anchor label d4
3
e = 2 to denote the

position of the interesting 1-bit with sp 4. Intuitively, we shift the sp p of an interesting

Chapter 6. Space-efficient Data Stream Algorithms 107

1-bit to the next anchor pa, i.e., sp pa = d p
ω
eω. Let pc be the current sp and assume that

pc is not an anchor. If an interesting 1-bit b arrives after the last anchor, the position

of b is the anchor label p′ = dpc

ω
e. Since pc < dpc

ω
eω, we denote the position of this

interesting 1-bit by the anchor p′ω with anchor label p′, which does not occur yet and is

not considered expired. There are at most dW
ω
e+ 1 anchors which are not expired, so we

can use a modulo (d2W
ω
e+ 2) number to represent the anchor label.

The one-level data structure

Now, we are ready to describe the one-level data structure, which includes a linked list

and four variables. The four auxiliary variables are the followings: na is the number of

anchors in the stream, dp is the difference of the last anchor and the current sp, nb is

the number of interesting 1-bits in the stream and count is the number of 1-bits arrived

after the last interesting 1-bit (or the beginning of the stream if no such interesting 1-

bit exists). The linked list is a linked list with dilution i, for some integer i, which

now stores the (interesting 1-bit label, anchor label) pairs of all interesting 1-bits in the

sliding window with its interesting 1-bit label divisible by 2i. For a linked list with

dilution i, we compute the estimate in the same way as before. More precisely, let s be

the size of the linked list and nb′ be the interesting 1-bit label in the tail of the linked

list. If there is no such interesting 1-bit, we set nb′ = 0. The estimate ĉ is computed by

ĉ = s× 2iω + (nb− nb′)× ω + count.

For instance, in Figure 6.2, a linked list with dilution 2 contains the (interesting 1-bit

label, anchor label) pair of all interesting 1-bits in the sliding window with the interesting

1-bit label divisible by 2, i.e., 〈(2, 3), (4, 7)〉. (The interesting 1-bit with interesting 1-bit

label 2 is included since the anchor with anchor label 3, i.e., sp 9, is in the sliding window.)

Removing expired items in the linked list. Since the variable pos is replaced by

variables na and dp, to determine whether the anchor with anchor label nah in the head

of the linked list is expired, the current position p is first computed by p = na× ω + dp.

If nah × ω ≤ p − W , the head is expired and is removed. (Since the anchor label is

represented by a modulo (d2W
ω
e+ 2) number, the actual operation to determine whether

nah is expired is: if nah×ω > p, the head is expired when (nah−(d2W
ω
e+2))×ω ≤ p−W ;

otherwise, the head is expired when nah × ω ≤ p −W . To simplify the discussion, such

operation for modulo numbers is not explicitly used.)

Chapter 6. Space-efficient Data Stream Algorithms 108

Theorem 6.5. For a linked list with dilution i, the above procedure returns the estimate

ĉ of the number c of 1-bits in the sliding window such that c ≤ ĉ ≤ c + 2i+1ω, i.e., the

absolute error of the estimate is at most 2i+1ω.

Proof. If the current sp is p and the least recent anchor a in the sliding window is sp

pa, we have pa ≥ p − W + 1. Thus, only expired interesting 1-bits with sp at least

p−W +1− (ω−1) = p−W −ω +2 can have its position shifted to anchor a. As there is

at most one interesting 1-bit in the sp range [p−W −ω + 2, p−W], at most one expired

interesting 1-bit is treated as in the sliding window.

In a linked list with dilution i, at most one expired interesting 1-bit is stored in the

linked list. Let s0 be the number of interesting 1-bits in the sliding window with label

divisible by 2i, and ĉ0 be the estimate obtained from a linked list with dilution i by the

procedure for Lemma 6.4. Therefore, we have s0 ≤ s ≤ s0 + 1. Since ĉ = s× 2iω + (nb−
nb′)×ω+count ≥ s0×2iω+(nb−nb′)×ω+count = ĉ0, by Lemma 6.4, ĉ ≥ ĉ0 ≥ c. On the

other hand, ĉ = s×2iω+(nb−nb′)×ω+count ≤ (s0 +1)×2iω+(nb−nb′)×ω+count =

ĉ0 + 2iω. By Lemma 6.4, it follows that ĉ ≤ ĉ0 + 2iω ≤ c + 2iω + 2iω = c + 2i+1ω.

Therefore, the absolute error of the estimate is at most 2i+1ω.

Definition of ωl,ε. By Theorem 6.5, the estimate obtained from a linked list with

dilution 0 has absolute error at most 2ω. Given some fixed constant l, for c ≥ W/2l, the

relative error is at most 2ω/c ≤ 2ω/(W/2l) = 2l+1ω/W . Let ωl,ε be the value of ω such

that the relative error of the estimate is at most ε for c ≥ W/2l. Therefore, we have

2l+1ωl,ε/W = ε, i.e., ωl,ε = εW/2l+1.

Memory usage for significant one counting. To solve the significant one counting

problem, we use a linked list with dilution 0. We set l = log(1/θ) such that W/2l = θW

and ω = ωl,ε = εW/2l+1 = εθW/2. For the auxiliary variables, na and nb need

O(log W
ω

) = O(log 2
εθ

) = O(log 1
εθ

) bits, and dp and count need O(log ω) = O(log εθW)

bits. Since each (interesting 1-bit label, anchor label) pair in the linked list needs

O(log W
ω

) = O(log 1
εθ

) bits and the size of the linked list is at most dW
ω
e = O(1

εθ
), the

linked list requires O(1
εθ

log 1
εθ

) bits of memory. By storing the differences of (interesting

1-bit label, anchor label) pairs in the linked list except for the head of the list, the memory

can be reduced to O(log 1
εθ

+ 1
εθ

log(2/εθ
1/εθ

)) = O(log 1
εθ

+ 1
εθ

) = O(1
εθ

) bits. Therefore, the

total memory needed is O(1
εθ

+ log 1
εθ

+ log εθW) = O(1
εθ

+ log εθW).

Chapter 6. Space-efficient Data Stream Algorithms 109

6.1.3 Improvement in memory: a multilevel data structure

In the one-level data structure, we set l = log(1/θ) and the absolute error of the estimate

is 2ωl,ε = εθn regardless of the number c of 1-bits in the sliding window. In fact, if the

number c of 1-bits in the sliding window is large, i.e., c > θW , the absolute error allowed

is εc, which is larger than εθW . In this section, we make use of this observation to

improve the memory usage. Throughout our discussion, we assume that ω = ωl,ε, which

is equal to εW/2l+1. Recall that this value of ω guarantees that the relative error of the

estimate given by the one-level data structure (with dilution 0) is at most ε for c ≥ W/2l.

Lemma 6.6. Let c be the number of 1-bits in the sliding window. If c ≥ W/2l−i, then

the estimate ĉ of c obtained from a linked list with dilution i has relative error at most ε.

Proof. By Theorem 6.5, the estimate ĉ has an absolute error of at most 2i+1ω = 2i+1ωl,ε =

(2i+1)(εW/2l+1) = εW/2l−i. Therefore, if c ≥ W/2l−i, the relative error is at most

(εW/2l−i)/c ≤ ε.

Lemma 6.7. Let c be the number of 1-bits in the sliding window. If a linked list with

dilution i has a size of at least dW/(2l−1ωl,ε)e+ 2, then c ≥ W/2l−i−1.

Proof. Let s be the size of the linked list. Recall that ĉ = s×2iω+(nb−nb′)×ω+count.

By Theorem 6.5, if an estimate ĉ of c is obtained from a linked list with dilution i, we

have c ≤ ĉ ≤ c + 2i+1ωl,ε. It follows that c ≥ ĉ− 2i+1ωl,ε = s× 2iωl,ε + (nb− nb′)× ωl,ε +

count− 2i+1ωl,ε ≥ (dW/(2l−1ωl,ε)e+ 2)× 2iωl,ε + count− 2i+1ωl,ε ≥ W/2l−i−1.

Multi-level data structure. We use the same set of auxiliary variables na, nb,

dp, count, and we set ω = ωl,ε as before. However, instead of keeping a linked list with

dilution 0, we keep l levels of linked list, numbered 0 to l− 1. (Recall that l = log(1/θ).)

The level k linked list is a linked list with dilution k of size at most dW/(2l−1ωl,ε)e + 2,

which keeps the (interesting 1-bit label, anchor label) pairs of the dW/(2l−1ωl,ε)e+2 most

recent interesting 1-bits in the sliding window with interesting 1-bit label divisible by 2k.

For each level i ∈ [0, l − 1] linked list, we introduce the variables pair (nbi, nai), which is

set to be the (interesting 1-bit label, anchor label) pair of most recent interesting 1-bit

removed from the linked list. Initially, (nbi, nai) is set to (0, 0). To return an estimate

ĉ, we first find the smallest level j which contains the most recent expired interesting

1-bit in (nbj, naj) among all levels, i.e., naj is the anchor label of the most recent expired

Chapter 6. Space-efficient Data Stream Algorithms 110

anchor among all levels. The estimate is then obtained from the level j linked list as

follows. Let s be the size of the level j linked list and nb′ be the interesting 1-bit label in

the tail of the level j linked list. If there is no such interesting 1-bit, we set nb′ = 0. The

estimate ĉ is computed by ĉ = s× 2jω + (nb− nb′)× ω + count.

Theorem 6.8. Let l = log 1
θ

(or equivalently ωl,ε = εθW/2). The above procedure returns

an estimate ĉ of the number c of 1-bits in the sliding window with a relative error at most

ε for c ≥ θW and an absolute error at most εθW for c < θW , using O(1
ε
log2 1

θ
+log εθW)

bits of memory.

Proof. In the above procedure, if a level i ∈ [0, l − 1] linked list has (nbi, nai) where

nai is the anchor label of an anchor in the sliding window, then the level i linked list is

truncated to have a size at most dW/(2l−1ωl,ε)e + 2. Note that when a linked list with

dilution i ∈ [0, l − 1] is truncated, we cannot apply Theorem 6.5 and Lemma 6.6 on the

estimate from this linked list. The number of interesting 1-bits in the sliding window

with interesting 1-bit label divisible by 2l−1 is at most dW/2l−1ωl,εe < dW/2l−1ωl,εe + 2

. Therefore, the level l − 1 linked list can store all the interesting 1-bits in the sliding

window with label divisible by 2l−1. Since the level l − 1 linked list is not truncated,

among all the levels, there is at least one level (i.e., level l − 1) that Theorem 6.5 and

Lemma 6.6 can be applied on the estimate from that level.

Note that the interesting 1-bit with label nbj is the most recent expired 1-bit in the

data structure. Furthermore, nbj is divisible by 2j since it is removed from the level j

linked list. As naj is the anchor label of an expired anchor, the level j linked list is

not truncated, and thus Theorem 6.5 and Lemma 6.6 can be applied on the estimate

from the level j linked list. If j > 0, as nbj is divisible by 2j, nbj is also divisible by

2j−1. Since level j is the smallest level containing this interesting 1-bit, level j − 1 must

keep dW/2l−1ωl,εe + 2 interesting 1-bits in the sliding window. By Lemma 6.7, we have

c ≥ W/2l−(j−1)−1 = W/2l−j. Therefore, by Lemma 6.6, the estimate ĉ obtained from

the level j linked list has a relative error of at most ε. Note that for j > 0, we have

c ≥ W/2l−j ≥ W/2l−1 = 2(W/2l) = θW . If j = 0, since ω = ωl,ε, the estimate obtained

from the level j = 0 linked list has relative error at most ε for c ≥ W/2l. Therefore,

for c ≥ W/2l = θW , the procedure returns an estimate ĉ with a relative error at most

ε. Also, for c < θW , the estimate is obtained from the level 0 linked list, i.e., a linked

list with dilution 0. By Theorem 6.5, the absolute error of the estimate is at most

2ω = 2ωl,ε = εθW .

Chapter 6. Space-efficient Data Stream Algorithms 111

Memory usage. The auxiliary variables still needs O(log 1
εθ

+log εθW) bits of mem-

ory. Since each (interesting 1-bit label, anchor label) pair in the linked list and (nbi, nai)

for i ∈ [0, l − 1] need O(log W
ω

) = O(log 1
εθ

) bits and the size of a linked list is at

most dW/2l−1ωl,εe + 2 = d4
ε
e + 2 = O(1

ε
), a level i linked list with (nbi, nai) requires

O((1
ε

+ 1) log 1
εθ

) = O(1
ε
log 1

εθ
) bits of memory. By storing the differences of (interesting

1-bit label, anchor label) pairs in the linked list except for the head of the linked list, the

memory can be reduced to O(2 log 1
εθ

+ 1
ε
log(2/εθ

4/ε
)) = O(1

ε
log 1

θ
) bits. Therefore, the total

memory needed is O((1
ε
log 1

θ
)l + log 1

εθ
+ log εθW + 1) = O(1

ε
log2 1

θ
+ log εθW) bits.

6.1.4 Improvement in time: the optimal data structure

Note that by setting l = log 1
θ
, the data structure described in the last section takes

O(l) = O(log 1
θ
) time to answer a query because it takes O(l) time to find the smallest

level j containing the most recent expired interesting 1-bit with label nbj among all the

levels. Also, for the per-item processing, we have to insert and remove an interesting

1-bit to/from at most l levels, which also costs O(l) = O(log 1
θ
) time. In this section, we

improve the per-item processing time and query time to O(1).

In our optimal data structure, we let l = log 1
θ

and ω = ωl,ε; the latter is εθW/2. We

still keep the set of the four auxiliary variables na, nb, dp, count as in Section 6.1.2 and

keep the l levels of linked list as in Section 6.1.3. In addition, we use one more auxil-

iary variable lb to store the interesting 1-bit label of the most recent expired interesting

1-bit removed from the l levels, which is 0 initially. The estimate ĉ is then computed

by ĉ = (nb − lb) × ω + count. Also, we insert an interesting 1-bit only to the maximum

level containing it. Thus, the size of the level i ∈ [0, l − 2] linked list is halved, i.e.,
1
2
(dW/2l−1ωl,εe + 2), while the size of the level l − 1 linked list is not changed. Further-

more, we keep one more linked list L of (interesting 1-bit label, anchor label) pairs of all

the interesting 1-bit stored in all the l levels so that only O(1) time is needed to remove

an interesting 1-bit. The updating algorithm is shown as follows, where ω = ωl,ε = εθW/2:

Initially, variables na, nb, dp, count and lb are set to 0.

For per-item processing (when a bit b arrives):

1. Increment dp.

Chapter 6. Space-efficient Data Stream Algorithms 112

2. If dp = ω (i.e., 0 mod ω), increment na.

3. Check for expiration: If the head (nbh, nah) of the linked list L has expired, i.e.,

nah × ω ≤ na× ω + dp−W , set lb = nbh and remove (nbh, nah) from L and thus

the corresponding level.

4. If b = 1, increment count.

5. If b = 1 and count = ω (i.e., count = 0 mod ω),

• Increment nb.

• Determine the largest level k such that nb is a multiple of 2k.

• If the level k linked list reaches its the maximum size, remove its head from

the level k linked list and thus the linked list L at the same time.

• If dp = 0, add (nb, na) to the tail of the level k linked list and the tail of L;

else, add (nb, na + 1) to the tail of the level k linked list and the tail of L.

For answering a query:

Return an estimate ĉ = (nb− lb)× ω + count = (nb− lb)× (εθW/2) + count.

Theorem 6.9. The above algorithm returns an estimate ĉ of the number c of 1-bits in

the sliding window with a relative error at most ε, i.e., c ≤ ĉ ≤ c+εc, for c ≥ θW and an

absolute error at most εθW , i.e., c ≤ ĉ ≤ c+εθW , for c < θW using O(1
ε
log2 1

θ
+log εθW)

bits of memory with O(1) per-item processing and O(1) query time.

Proof. Let j be the minimum level containing the interesting 1-bit with label lb when it is

expired. Let nbt be the interesting 1-bit label in the tail of the level j linked list. The level

j linked list thus has size s = (nbt−lb)/2j. By the procedure for Theorem 6.5, the estimate

from the linked list with dilution j is computed by ĉ = s×2jω +(nb−nbt)×ω + count =

((nbt − lb)/2j) × 2jω + (nb − nbt) × ω + count = (nb − lb) × ω + count. Therefore, the

estimate is equal to that obtained from the level j linked list. Note that in the proof of

Theorem 6.8, the interesting 1-bit with label nbj is the most recent expired 1-bit in the

data structure and it is removed from the level j linked list. Thus, we have lb = nbj. By

Theorem 6.8, the above algorithm returns an estimate ĉ of the number c of 1-bits in the

sliding window with a relative error at most ε, i.e., c ≤ ĉ ≤ c + εc, for c ≥ θW and an

absolute error at most εθW , i.e., c ≤ ĉ ≤ c + εθW , for c < θW .

Chapter 6. Space-efficient Data Stream Algorithms 113

As the variable lb needs O(log W
ω

) = O(log 1
εθ

) bits of memory, the set of auxiliary

variables still needs O(log 1
εθ

+ log εθW) bits of memory. Since each (interesting 1-bit

label, anchor label) pair in the linked list needs O(log 1
εθ

) bits and the size of a linked

list remains O(1
ε
), a linked list requires O(1

ε
log 1

εθ
) bits of memory. By storing differences

of (interesting 1-bit label, anchor label) pairs in the linked list except for the head of

the linked list, the memory can be reduced to O(log 1
εθ

+ 1
ε
log(2/εθ

2/ε
)) = O(1

ε
log 1

θ
) bits.

Therefore, the total memory needed is still O(1
ε
log2 1

θ
+ log εθW). Moreover, in the

algorithm, all operations in per-item processing and query can be done in O(1) time.

6.2 Finding Frequent Items over Sliding Window

This section considers finding ε-approximate frequent items over a count-based sliding

window, where ε ∈ (0, 1) is the error bound. To ease discussion, a set of items is said

to be a (θ, ε)-frequent item set if it is an answer to the ε-approximate frequent items

problem with threshold θ. We give an algorithm for identifying (θ, ε)-frequent item set

over a sliding window, which improves the previous work by Arasu and Manku [5]. Both

Arasu and Manku’s algorithm and our algorithm are based on an algorithm of Misra and

Gries [73]. This algorithm, which we call the MG algorithm, finds (θ, ε)-frequent item set

over the whole data stream using O(1
ε
) space and supporting O(1

ε
) update and query time.

However, unlike Arasu and Manku’s algorithm, which uses the MG algorithm as a black

box, our algorithm applies a technique, which we call the batch-decrement technique,

introduced in the MG algorithm. To apply this technique to find (θ, ε)-frequent item set

over the entire data stream, the MG algorithm uses O(1
ε
) counters to count the frequency

of O(1
ε
) items. To find (θ, ε)-frequent item set over the sliding window, our idea is to

replace the simple counter by some data structure called λ-counters that counts the

items over the sliding window. Throughout this section, we let n be the window size.

In Section 6.2.1, we give details on the λ-counters and prove some important properties

about them. In Section 6.2.2, we describe our algorithm for identifying (θ, ε)-frequent

item set and prove its correctness. Finally Section 6.2.3 extends our algorithm to sliding

window with variable size.

Chapter 6. Space-efficient Data Stream Algorithms 114

position 1 2 3 4 5 6 7 8 9 10 11 12
bit stream 1 0 1 1 1 1 1 1 1 1 0 0

λ-sampled 1-bit
√ √ √

window W23

position 13 14 15 16 17 18 19 20 21 22 23
bit stream 0 1 0 0 1 0 1 1 1 1 1

λ-sampled 1-bit
√ √

window W23

Figure 6.3: An example with λ = 3 and window size n = 15.

6.2.1 λ-snapshot and λ-counter

In this section, we introduce a sampling technique for estimating the number of 1-bits of a

bit stream over a sliding window. Then, we give its implementation. Note that λ-counter

is a simple variant of the window counter given in Section 6.1.

Consider any bit stream δ = b1b2b3 · · · . Recall that n is the sliding window size. For

any 1 ≤ i ≤ j, let [i..j] denote the window from positions i to j of the stream; in other

words, [i..j] covers the bits bi, bi+1, . . . , bj. For any p ≥ n, let Wp denote the window

[(p − n + 1)..p], which ends at position p and has size n. We let Wp = [1..p] if p < n.

Let λ be any positive integer. A 1-bit in δ is said to be a λ-sampled 1-bit, or simply a

sampled 1-bit, if it is the (iλ)th 1-bit in δ for some integer i ≥ 1. Thus, the (λ)th, (2λ)th

and (3λ)th 1-bits in δ are all sampled 1-bits. Figure 6.3 shows the sampled 1-bits of a bit

stream at or before position 23. Note that for any two consecutive sampled 1-bits bi and

bj (i < j), there are exactly λ− 1 (non-sampled) 1-bits between them. We say that these

λ−1 bits, as well as the bit bj, are covered by bj. For example, in Figure 6.3, the 1-bits at

positions 14, 17 and 19 are covered by the 1-bit at position 19. Our sampling technique

for estimating the number of 1-bits over a sliding window is based on λ-snapshot, which

is defined as follows.

Definition 6.10. The λ-snapshot of a bit stream δ over window Wp is the pair (Q, `)

where

• Q is a queue storing the (sorted) positions of the sampled 1-bits of δ over Wp, and

• ` is the number of 1-bits at or before position p that are not covered by any sampled

1-bit at or before p.

For example, in Figure 6.3, the λ-snapshot of the bit stream over window W23 is

(Q, `) = (〈10, 19, 22〉, 1). (Note that W23 has size 15 and the bits at positions from 1

Chapter 6. Space-efficient Data Stream Algorithms 115

to 8 are expired.) It should be clear that ` ≤ λ − 1 and the ` 1-bits mentioned in the

definition must be the last ` 1-bits over [1..p] (and some of them may be outside Wp and

at positions smaller than p− n + 1). The following lemma proves that λ-snapshot gives

good estimate of the number of 1-bits over a sliding window.

Lemma 6.11. Let (Q, `) be the λ-snapshot of bit stream δ = b1b2b3 . . . over window Wp.

Let m be the number of 1-bits of δ over Wp. Then,

m ≤ |Q|λ + ` < m + λ (6.1)

where |Q| denotes the length of Q.

Proof. If |Q| = 0, all the m 1-bits over Wp are not covered and thus m ≤ `. Together with

the fact that ` ≤ λ− 1, we have m ≤ ` ≤ λ− 1 < m + λ and (6.1) holds. Suppose that

|Q| ≥ 1 and Q = 〈i1, i2, . . . , i|Q|〉. Then, the sampled 1-bits over Wp are bi1 , bi2 , . . . , bi|Q| ,

which cover a total of |Q|λ 1-bits. Note that among the m 1-bits over Wp, the first m−` of

them are covered by bi1 , bi2 , . . . , bi|Q| . It follows that m− ` ≤ |Q|λ and the first inequality

of (6.1) holds. Note also that all of bi1 , bi2 , . . . , bi|Q| , as well as the (λ − 1)(|Q| − 1) non-

sampled 1-bits covered by bi2 , bi3 , . . . , bi|Q| , must be over Wp. Together with the last `

1-bits, we have m ≥ |Q| + (λ − 1)(|Q| − 1) + ` = λ|Q| + ` − (λ − 1), which implies the

second inequality of (6.1).

We now describe the λ-counter for maintaining the λ-snapshot over a sliding window.

The counter has a queue Q and a variable `. To speed up the update time, Q is imple-

mented as a deque, which allows us to remove an entry from both ends of Q (using the

operations pop head and pop tail), and to append an entry to the end (using the opera-

tion push tail). We also have a global variable p for remembering the current position,

i.e., the position of the most recently read bit. Initially, Q is empty and ` is equal to 0.

In the following, we implement the operation shift () for a λ-counter C: when a new bit

b arrives, we execute shift (b) to update the λ-snapshot stored in C.

The following lemma is for the correctness of λ-counter and its proof is straightforward.

Lemma 6.12. Let δ = b1b2b3 · · · be a bit stream and C be a λ-counter. Suppose

that initially, C’s queue Q is empty and its variable ` = 0. Then, after executing

1Note that a data stream is potentially infinite. To ensure that the current position can be stored in
the variable p, we may store it as a modulo 2n integer without any ambiguity.

Chapter 6. Space-efficient Data Stream Algorithms 116

C.shift (b) :

1: p ← p + 1 1

2: if |Q| > 0 and head[Q] < p− n + 1 then
3: pop head(Q) {remove the expired head of Q}
4: if b = 1
5: ` ← (` + 1) mod λ
6: if ` = 0 then {this bit is a sampled 1-bit}
7: push tail(Q, p) {append p to Q}

C.shift (b1), C.shift (b2), . . . , C.shift (bp) for any p ≥ 1, the queue Q and variable ` form a

λ-snapshot (Q, `) of δ over Wp.

To estimate the number of 1-bits over a sliding window, we define the value of the λ-

counter C to be v(C) = |Q|λ+ `. Let Nδ(1,Wp) denote the number of 1-bits of bit stream

δ over Wp. The lemma below gives the accuracy of v(C) and the space requirement of C.

Lemma 6.13. Given a λ-counter C, if its queue Q and variable ` form a λ-snapshot

(Q, `) of bit stream δ over window Wp, then

Nδ(1,Wp) ≤ v(C) < Nδ(1,Wp) + λ. (6.2)

Furthermore, the size of C is at most dNδ(1,Wp)/λe+ 1.

Proof. The inequality (2) follows directly from Lemma 6.11. For the size of C, note that

there are at most dNδ(1,Wp)/λe entries in Q. Together with the variable `, we have the

bound.

In the rest of this section, we describe how to decrement a positive λ-counter (i.e.,

decrease its value by 1); we need this operation to implement the technique of batch-

decrement (see Section 6.2.2). Suppose that we have used a λ-counter C to count the bit

stream δ = b1b2 . . . bp by executing C.shift (b1), C.shift (b2), . . . , C.shift (bp), and afterward

the value v(C) of C is greater than zero. Note that v(C) = |Q|λ + ` > 0 implies that at

least one of the following cases is true: (i) the queue Q is not empty, or (ii) ` is greater

than 0. To decrement C, we modify Q and ` such that C becomes the λ-snapshot of

the stream obtained from δ by replacing its last 1-bit with a 0-bit. Following is the

implementation.

Chapter 6. Space-efficient Data Stream Algorithms 117

C.decrement ():

1: if v(C) = 0 then return error
{We will see later that we execute the operation only when v(C) > 0.}

2: else if ` > 0 then
3: ` ← `− 1
4: else {i.e., ` = 0, and this implies Q is not empty}
5: pop tail(Q) {delete the last entry from Q}
6: ` ← λ− 1

For any sequence σ of decrement () and shift () operations, we say that σ is associated

with the bit stream b1b2 . . . bp if shift (b1)shift (b2) · · · shift (bp) is the subsequence of all shift

operations in σ. For any bit streams b′1b
′
2 . . . b′p and b1b2 . . . bp, we say that b′1b

′
2 . . . b′p ≤

b1b2 . . . bp if b′i ≤ bi for every 1 ≤ i ≤ p. The following lemma generalizes Lemma 6.12.

Lemma 6.14. Let σ = σ1σ2 · · · σk be a sequence of shift () and decrement () operations on

the λ-counter C, whose initial value is zero. Suppose that σ is associated with b1b2 · · · bp

and it executes C.decrement () only when v(C) > 0. Let d be the number of decrement ()

operations in σ. Then, after executing the last operation σk, C will be storing the λ-

snapshot of some bit stream b′1b
′
2 · · · b′p over window Wp where b′1b

′
2 . . . b′p ≤ b1b2 . . . bp and

there are d positions i ∈ [1..p] with b′i 6= bi.

Proof. We prove the lemma by induction on the length k of the sequence. The lemma

is obviously true for k = 0. Suppose that it is true for any sequence with length smaller

than k and we now consider the sequence σ = σ1σ2 · · · σk given in the lemma. Depending

on σk, we consider the following two cases.

• If σk is a shift operation, then it must be C.shift (bp). This implies σ1σ2 · · · σk−1

is associated with b1b2 · · · bp−1 and has d decrement operations. The induction

hypothesis asserts that after executing σk−1, C stores the λ-snapshot S of some

bit stream b′1b
′
2 . . . b′p−1 over window Wp−1 where b′1b

′
2 . . . b′p−1 ≤ b1b2 . . . bp−1 and

there are d positions i ∈ [1..p − 1] with b′i 6= bi. By design, C.shift (bp) transforms

S to the λ-snapshot of bit stream b′1b
′
2 · · · b′p−1b

′
p over Wp where b′1b

′
2 · · · b′p−1b

′
p =

b′1b
′
2 · · · b′p−1bp. Since b′p = bp, we still have b′1b

′
2 · · · b′p ≤ b1b2 . . . bp−1bp and the

number of positions i ∈ [1..p] with b′i 6= bi is still d.

• If σk is a C.decrement () operation, then σ1σ2 · · · σk−1 must be associated with the bit

stream b1b2 . . . bp and has d−1 decrement operations. By the induction hypothesis,

Chapter 6. Space-efficient Data Stream Algorithms 118

after executing σk−1, C stores the λ-snapshot S of some bit stream c1c2 · · · cp over

window Wp where c1c2 . . . cp ≤ b1b2 . . . bp and there are d− 1 positions with ci 6= bi.

Then, σk will transform S to the λ-snapshot of the stream b′1b
′
2 . . . b′p obtained by

replacing the last 1-bit of c1c2 . . . cp with a 0-bit. Therefore, b′1b
′
2 . . . b′p ≤ c1c2 . . . cp ≤

b1b2 . . . bp, and the number of positions with b′i 6= bi is increased to d.

6.2.2 Finding (θ, ε)-frequent item set

In this section, we describe a simple and efficient algorithm for finding (θ, ε)-frequent

item sets. Our algorithm applies the batch-decrement technique introduced in [73]. For

ease of discussion, we first describe an implementation that uses |Π| λ-counters where Π

is the set of all possible items. Then, we note that most of these counters have value

0 and need not be stored physically. We prove that this improved implementation uses

O(1
ε
) space and supports O(1

ε
) query and update times.

Let δ = e1e2e3 . . . be a stream of items in Π. For any window W and any item e,

let Nδ(e,W) denote the number of occurrences of e in δ over W . Define δe to be the bit

stream b1b2b3 . . . where

bi =

1, if ei = e;

0, otherwise.
(6.3)

For example, if δ = aaababbca . . . , then δa = 111010001 Note that Nδe(1,W) is

the number of occurrences of 1-bits in δe over W , and Nδ(e,W) = Nδe(1,W). To iden-

tify δ’s frequent items over a sliding window, our algorithm maintains a data structure

BD(n, λ, c), which has, for each item e ∈ Π, a λ-counter Ce to count the 1-bit in δe, or

equivalently, to count the item e in δ. The parameter c determines when we need to do

a batch of decrement() operations. In our implementation, we let λ = εn/4 and c = 4/ε.

Roughly speaking, the λ-counters we use are (εn/4)-counters and we perform a batch

of decrement () operations whenever there are more than c = 4/ε λ-counters with value

greater than 0. The main operation supported by BD(n, λ, c) is Update (); to process

the item stream δ = e1e2e3 . . . , we execute Update (e1),Update (e2),Update (e3), The

implementation of Update () is given in the subrountine Update (e).

Note that all the λ-counters are initialized to zero. The following fact gives an invariant

preserved by BD(n, λ, c).

Chapter 6. Space-efficient Data Stream Algorithms 119

Update (e) :

1: Ce.shift (1)
2: for each item x 6= e do Cx.shift (0)
3: if there are more than c items x with v(Cx) > 0 then
4: for each item x with v(Cx) > 0 do Cx.decrement ()

Fact 6.15. There are at most c positive counters (i.e., counters with value > 0) in

BD(n, λ, c) after each Update () operation.

Note that if a λ-counter has value 0, its queue Q must be empty and its variable ` must

store a 0; storing it physically in BD(n, λ, c) will not give us extra information. Therefore,

in the actual implementation of BD(n, λ, c), we will only store the few λ-counters with

positive values, with the understanding that any λ-counter that is not in BD(n, λ, c) has

value 0.

We now analyze the accuracy of BD(n, λ, c) for processing δ = e1e2e3 Note that

if Line 4 of Update () is executed, we will make a batch of decrement () operations. The

key step in our analysis is to estimate how many batches of decrement we can make (i.e.,

how many times Line 4 is executed) during a sequence of updates.

Lemma 6.16. Suppose that given the item stream δ = e1e2 . . . ep, we have updated

BD(n, λ, c) by executing Update (e1),Update (e2), . . . ,Update (ep). Let Dt be the number

of batches of decrement () operations made during the last t updates, that is, during

Update (ep−t+1), . . . ,Update (ep). Then, Dt < n+t
c

+ λ.

Proof. Recall that for each item e ∈ Π, BD(n, λ, c) uses λ-counter Ce to count the bit

stream δe defined in (6.3). We first estimate the total value of these counters just before

executing Update (ep−t+1). From Lemma 6.14, we conclude that at this moment, Ce is

storing the λ-snapshot of some bit stream δ′e over Wp−t where δ′e[1..p − t] ≤ δe[1..p − t].

Together with Lemma 6.13, we have

∑
e∈Π

v(Ce) =
∑

e∈Π,v(Ce)>0

v(Ce) ≤
∑

e∈Π,v(Ce)>0

(Nδ′e(1,Wp−t) + λ)

≤
∑

e∈Π,v(Ce)>0

(Nδe(1,Wp−t) + λ) =
∑

e∈Π,v(Ce)>0

(Nδ(e,Wp−t) + λ).

Since
∑

e∈Π Nδ(e,Wp−t) = |Wp−t| ≤ n, and there are at most c positive counters (Fact 6.15),

Chapter 6. Space-efficient Data Stream Algorithms 120

the total value of the counters just before executing Update (ep−t+1) is at most n + cλ.

Since the t remaining operations Update (ep−t+1),Update (ep−t+2), . . . , Update (ep) will

increase this total value by at most t, there are at most (n + cλ) + t units for the Dt

batches of decrement () made during Update (ep−t+1), . . . , Update (ep) to take away. Note

that each batch of decrement () would take away more than c units from the counters,

and since the counters cannot have negative values, we conclude that cDt < n + cλ + t.

The lemma follows.

We are now ready to show that the λ-counters maintained by BD(n, λ, c) give estimates

good enough for us to identify (θ, ε)-frequent item set over a sliding window. Recall that

in our implementation, we set λ = εn/4 and c = 4/ε.

Lemma 6.17. Suppose that in processing the stream δ = e1e2 . . . ep, we have made Dn

batches of decrement () during the last n updates (i.e., from Update (ep−n+1) to Update (ep)).

Then, after the last operation Update (ep), we have the following.

(i) For each item e,

Nδ(e,Wp)−Dn ≤ v(Ce) < Nδ(e,Wp) + λ. (6.4)

(ii) The set

S =
{
e

∣∣ v(Ce) ≥ (θ − ε)n + λ
}

(6.5)

is a (θ, ε)-frequent item set of δ over Wp.

Proof. We first prove (i). As argued in the proof of Lemma 6.16, after executing Update (ep),

Ce stores the λ-snapshot of some bit stream δ′e where δ′e ≤ δe, and

v(Ce) < Nδ′e(1,Wp) + λ ≤ Nδe(1,Wp) + λ = Nδ(e,Wp) + λ,

which is the second inequality of (6.4). For the first inequality, recall that δ′e is obtained

from δe by replacing some 1-bits of δe with 0-bits, and each of these replacements results

from a distinct call of Ce.decrement (). Note that only those Ce.decrement () called after

Update (ep−n) can change the 1-bits of δe over Wp = [p − n + 1..p]. Since there are

only Dn batches of decrement () made after Update (ep−n), we call Ce.decrement () at

most Dn times and hence there are at most Dn positions i ∈ Wp with δ′e[i] < δe[i].

Chapter 6. Space-efficient Data Stream Algorithms 121

It follows that Nδ′e(1,Wp) ≥ Nδe(1,Wp) − Dn, and together with Lemma 6.13, we have

v(Ce) ≥ Nδ′e(1,Wp) ≥ Nδe(1,Wp)−Dn = Nδ(e,Wp)−Dn.

We now prove (ii). From the second inequality of (6.4) and the definition of S, we

conclude that every item e ∈ S satisfies

Nδ(e,Wp) > v(Ce)− λ ≥ (
(θ − ε)n + λ

)− λ = (θ − ε)n.

By the first inequality of (6.4), Lemma 6.16, and the fact that λ = εn/4 and c = 4/ε, we

conclude that any item e with Nδ(e,Wp) ≥ θn satisfies

v(Ce) ≥ Nδ(e,Wp)−Dn ≥ θn−Dn ≥ θn− 2n
c
− λ = θn− εn + λ,

and hence is in S. Hence, S is a (θ, ε)-frequent item set.

Lemma 6.17 suggests that we can find (θ, ε)-frequent item sets as follows.

Query () :

1: S ← ∅
2: for each e ∈ Π do
3: if v(Ce) ≥ (θ − ε)n + λ then S ← S ∪ {e}
4: output S

The following theorem gives bounds on the size of BD(n, λ, c) and the query and update

times supported by BD(n, λ, c).

Theorem 6.18. BD(n, λ, c) uses O(1
ε
) space, and it takes O(1

ε
) time to execute the

Query () and Update () operations.

Proof. Suppose that we have executed Update (e1), Update (e2), . . ., Update (ep). To esti-

mate the space requirement, recall that we will only store in BD(n, λ, c) those λ-counters

with positive values. Together with Lemma 6.13 and Fact 6.15, we conclude that the size

of BD(n, λ, c) is

∑

e∈Π,v(Ce)>0

(
1 +

Nδ′e (1,Wp)

λ

)
≤ c +

∑
e∈Π

Nδe(1,Wp)

λ
= c +

∑
e∈Π

Nδ(e,Wp)

λ
= c + n

λ
,

which is 8
ε

because c = 4
ε

and λ = εn
4

.

Chapter 6. Space-efficient Data Stream Algorithms 122

To estimate the time needed for executing Query (), we note that all items e in the set

returned by Query () have v(Ce) > 0. Hence their λ-counters are stored in BD(n, λ, c) and

we can identify them by scanning the data structure once; the time needed is proportional

to the size of BD(n, λ, c), which is O(1
ε
).

For Update (e), we need to execute Ce.shift (1) once and decrement () at most c + 1

times. We also need to execute Cx.shift (0) for the other items x. However, note that if

v(Cx) = 0, then the value is still 0 after executing Cx.shift (0). Therefore, we only need to

execute Cx.shift (0) for the O(c) counters Cx with positive values. In conclusion, we need

to execute the shift () and decrement () operations O(c) times. Since c = O(1
ε
) and each

of shift () and decrement () takes O(1) time, the time bound on Update (e) follows.

6.2.3 Algorithm extensions

In this section, we extend our algorithm to handle variable-size windows. We first give

some notations for our discussion. For any position p and size s, let Wp,s denote the

window [p− s + 1..p], which is of size s and ends at position p. Given any stream δ, let

δ[i] denote its item at position i, and for any 1 ≤ p ≤ q, let δ[p..q] denote the sequence of

items δ[p]δ[p + 1] . . . δ[q].

In Section 6.2.2, we gave a data structure for identifying (θ, ε)-frequent item sets of a

data stream δ over window Wp = Wp,n. Below, we show that by increasing the “sampling

rate”, our data structure would be accurate enough for us to identify, for any 1
2
n ≤ s ≤ n,

a (θ, ε)-frequent item set over Wp,s (i.e., an item set S that contains only item e with

Nδ(e,Wp,s) > (θ−ε)s, and all items e with Nδ(e,Wp,s) ≥ θs are in S). Then, we show that

by maintaining a collection of O(log n) such data structures, we are able to handle any

size between 1 and n. Finally, we describe how to maintain this collection dynamically

so that we can change the size n of a sliding window during the processing. This new

algorithm uses O(1
ε
log εn) space and supports O(1

ε
log εn) query and update times.

Variable-size windows

Observe that for any λ-snapshot (Q, `) over window Wp = Wp,n, (Q, `) contains, for each

1 ≤ s ≤ n, a unique λ-snapshot (Qs, `s) over sub-window Wp,s: Qs is simply the queue

Chapter 6. Space-efficient Data Stream Algorithms 123

of positions in Q that are in Wp,s and `s = `. For example, in Figure 6.3, the λ-snapshot

(〈10, 19, 22〉, 1) over W23,15 contains the λ-snapshot (〈19, 22〉, 1) over W23,9 = [15, 23].

To estimate the number of 1-bits over Wp,s, we extend the definition of the value of a

λ-counter C as follows.

Suppose that C is storing the λ-snapshot (Q, `) over Wp,n. For any 1 ≤ s ≤ n,

define the value of C over Wp,s to be v(C, s) = λ|Qs|+ `s where (Qs, `s) is the

λ-snapshot over Wp,s contained in (Q, `).

The following lemma extends Lemma 6.11.

Lemma 6.19. If the λ-counter C is storing the λ-snapshot of bit stream δ over window

Wp,n, then, for each 1 ≤ s ≤ n, Nδ(1,Wp,s) ≤ v(C, s) < Nδ(1,Wp,s) + λ.

Proof. Replace n by s in the proof of Lemma 6.11.

The next lemma, which generalizes Lemma 6.17, shows that by reducing λ from ε
4
n

to ε
16

n, the data structure BD(n, λ, c) is accurate enough to find (θ, ε)-frequent item sets

over many sub-windows of Wp,n. Its proof is almost identical to that of Lemma 6.17.

Lemma 6.20. Let λ = ε
16

n. Suppose that we have used BD(n, λ, c) = BD(n, ε
16

n, c) to

process the item stream δ = e1e2 . . . ep by calling Update (e1),Update (e2), . . . , Update (ep),

and we have made Ds batches of decrement () during the last s updates (i.e., from Update (ep−s+1)

to Update (ep)). Then, after the last operation Update (ep), the followings hold for any
n
2
≤ s ≤ n:

(i) For each item e, Nδ(e,Wp,s)−Ds ≤ v(Ce, s) < Nδ(e,Wp,s) + λ.

(ii) The set S =
{
e

∣∣ v(Ce, s) ≥ (θ−ε)s+λ
}

is a (θ, ε)-frequent item set of δ over Wp,s.

Proof. Consider any item e. Lemma 6.14 asserts that the λ-counter Ce is storing the

λ-snapshot of bit stream δ′e ≤ δe over Wp,n. Together with Lemma 6.19, we conclude

that v(Ce, s) ≤ Nδ′e(1,Wp,s) + λ ≤ Nδe(1,Wp,s) + λ = Nδ(e,Wp,s) + λ. On the other

hand, if we make Ds batches of decrement () during Update (ep−s+1), . . . , Update (ep), we

change at most Ds 1-bits in δe[p− s + 1..p] to 0-bits, and by Lemma 6.19 again, we have

v(Ce, s) ≥ Nδ′e(1,Wp,s) ≥ Nδe(1,Wp,s)−Ds = Nδ(e,Wp,s)−Ds. Statement (i) follows.

Chapter 6. Space-efficient Data Stream Algorithms 124

For Statement (ii), note that every item e ∈ S satisfies Nδ(e,Wp,s) > v(Ce, s) − λ ≥
(θ−ε)s (the first inequality is from Statement (i) and the second follows from the definition

of S.) On the other hand, by Statement (i), Ds ≤ n+s
c

+ λ (Lemma 6.16), and the fact

that c = 4
ε
, λ = ε

16
n and n ≤ 2s, we have, for any item e with Nδ(e,Wp,s) ≥ θs, v(Ce, s) ≥

Nδ(e,Wp,s)−Ds ≥ Nδ(e,Wp,s)− (n+s
c

+ λ) = Nδ(e,Wp,s)− (n+s
c

+ 2λ) + λ ≥ θs− εs + λ,

and hence e is in S. It follows that S is a (θ, ε)-frequent item set over Wp,s.

Note that in Lemma 6.20, we can treat n as a parameter. By substituting n with

n/2, the lemma asserts that BD(n
2
, ε

16
n
2
, c) enables us to find (θ, ε)-frequent item sets over

Wp,s for any n
4
≤ s ≤ n

2
. Therefore, by maintaining both BD(n, ε

16
n, c) and BD(n

2
, ε

16
n
2
, c),

we would be able to find (θ, ε)-frequent item sets over Wp,s for any size n
4
≤ s ≤ n. This

leads us to the following implementation for finding (θ, ε)-frequent item sets over Wp,s for

any size 1 ≤ s ≤ n.

Let ε̂ = ε
16

and h be an integer with n ≤ 2h. Let BDi denote the data structure

BD(ni, λi, c) = BD(2i, ε̂2i, c). We maintain the following set of data structures

BD∗ =
{
BDi | dlog 1

ε̂
e ≤ i ≤ h

}
,

as well as a queue Q∗ storing the last d1
ε̂
e items over the sliding window2.

Note that each BDi enables us to find (θ, ε)-frequent item sets over Wp,s for any s ∈
[2i−1..2i] (Lemma 6.20) and hence BD∗ can handle any size s ∈ ⋃

dlog 1
ε̂
e≤i≤h[2

i−1..2i], which

includes all sizes from 1
ε̂

to n. For any 1 ≤ s < 1
ε̂
, we can find the frequent item set

over Wp,s by scanning Q∗ directly. Therefore, by maintaining BD∗ and Q∗, we can find

(θ, ε)-frequent items set over Wp,s for any 1 ≤ s ≤ n. Note that BD∗ has space O(1
ε
log εn)

and supports O(1
ε
log εn) query and update times.

Maintaining BD∗ dynamically

It is straightforward to maintain BD∗ = {BDi | dlog 1
ε̂
e ≤ i ≤ h} if h is fixed; to process the

item stream δ = e1e2 . . . , we simply call Update (e1),Update (e2), . . . for each BDi ∈ BD∗.

In this section, we describe how to maintain BD∗ dynamically. In particular, we show

2Note that we do not keep BDi for any i < dlg 1
ε̂ e because these data structures cover windows of size

smaller than 1
ε̂ , and Q∗ is storing all the items in these windows.

Chapter 6. Space-efficient Data Stream Algorithms 125

how to construct the next data structure BDh+1 for BD∗ during the processing. Obviously,

we cannot construct BDh+1 from scratch because most of the items necessary for its

construction may have gone. Our idea is to construct BDh+1 from BDh.

Note that a fundamental difference between BDh and BDh+1 is that the counters in BDh

concern only the last 2h arrived items, while those in BDh+1 concern the last 2h+1 arrived

items. In general, a counter C in BD(n, λ, c) is only interested in the last n arrived items;

when processing the pth item in the stream, it would delete any entry from its queue

whose position falls outside the window [p − n + 1..p]. To emphasize this behaviour of

C, we say that C has limit n. Therefore, every counter Ch
e in BDh is an ε̂2h-counter with

limit 2h. To create BDh+1, we need to construct, for each item e, an ε̂2h+1-counter Ch+1
e

with limit 2h+1. Our construction is based on the following notion of dilution.

Let (Q, `) be a λ-snapshot of some bit stream δ over Wp,n. The dilution (Q′, `′) of

(Q, `) is a snapshot defined as follows.

• If Q = the empty queue 〈 〉, then (Q′, `′) = (Q, `).

• If Q = 〈i1〉, then (Q′, `′) = (〈 〉, λ + `).

• If Q = 〈i1, i2, . . . , ik〉, then (Q′, `′) =

(〈i2, i4, . . . , ik〉, `), if k is even;

(〈i2, i4, . . . , ik−1〉, λ + `), otherwise.

It is easy to verify that (Q′, `′) is a (2λ)-snapshot of δ over Wp,n and

2λ|Q′|+ `′ = λ|Q|+ `. (6.6)

We create BDh+1 from BDh by diluting every counter in BDh as follows.

Dilute (BDh):

1: for each counter Ch
e in BDh with v(Ch

e) > 0 do 3

2: Create an ε̂2h+1-counter Ch+1
e with limit 2h+1 storing

the dilution (Q′, `′) of the snapshot (Q, `) currently stored in Ch
e ;

3: Add Ch+1
e to BDh+1.

It is important to note that if (Q, `) is an ε̂2h-snapshot over Wp,2h , then its dilution

(Q′, `′) is an ε̂2h+1-snapshot over Wp,2h , not over Wp,2h+1 . Hence, a newly created Ch+1
e

3If v(Ch
e) = 0, then v(Ch+1

e) = 0 and we do not need to store the counter physically in BDh+1.

Chapter 6. Space-efficient Data Stream Algorithms 126

cannot give accurate estimate over Wp,2h+1 even though its limit is 2h+1. We say that

Ch+1
e has coverage g if it is storing a snapshot over some window of size g. Obviously,

g ≤ 2h+1. The following fact promises that after 2h shift operations, a newly created

Ch+1
e will have its coverage increased from 2h to its full coverage 2h+1.

Fact 6.21. Suppose that a newly created counter Ch+1
e is storing the ε̂2h+1-snapshot

of bit stream δ[1..p] over Wp,2h. Then, after calling shift (δ[p + 1]), shift (δ[p + 2]), . . . ,

shift (δ[p + r]), the counter will be storing the ε̂2h+1-snapshot of bit stream δ[1..(p + r)]

over window Wp+r,g where g = min{2h + r, 2h+1}.

To show that BD∗ is accurate enough for finding (θ, ε)-frequent item sets even if it is

maintained dynamically, suppose that we are processing the item stream δ = e1e2e3

Let io = dlog 1
ε̂
e. Recall that for each item e, δe is the bit stream where δe[i] = 1 if

δ[i] = ei = e. Throughout the processing, we maintain a queue Q∗ storing the last d1
ε̂
e

arrived items. Suppose that we create BDio from Q∗ just after processing the item epio
,

and for any io < i ≤ h, we create BDi by calling Dilute (BDi−1) just after processing the

item epi
. We assume that when we call Dilute (BDi−1), all counters in BDi−1 have full

coverage 2i−1. (We will explain later that this is not a serious restriction.) To process a

newly arrived item ep in δ, we update Q∗ and call Update (ep) for each BDi in BD∗.

Lemma 6.22. Suppose that we maintain Q∗ and BD∗ as described above. Then, for

any i ≥ io, after creating BDi at pi and executing Update (epi+1), . . . ,Update (ep), each

counter Ci
e in BDi will be storing the ε̂2i-snapshot of some bit stream δi

e over Wp,gi
=

Wp,min{2i−1+p−pi,2i} where

(i) δi
e[1..p] ≤ δe[1..p], and

(ii) for any 1 ≤ s ≤ gi, there are at most 2i+s
c

+λi = 2i+s
c

+ ε̂2i positions u ∈ [p−s+1..p]

with δi
e[u] 6= δe[u].

Proof. We prove the lemma by induction. For the base case, note that BDio is created

from Q∗, which stores all the necessary items for us to construct the counters in BDio

from scratch. Thus, BDio is created and maintained normally without using dilution,

and as in Section 6.2.2, we can prove that (i) and (ii) hold for BDio . Suppose that

the lemma is true for BDio , . . . , BDi−1, and we consider BDi, which is created by calling

Dilute (BDi−1) after processing epi
. Recall that each counter Ci−1

e in BDi−1 is assumed

to have full coverage at this moment and thus it is storing the ε̂2i−1-snapshot of δi−1
e

Chapter 6. Space-efficient Data Stream Algorithms 127

over Wpi,2i−1 . It follows that the counter C i
e in the newly created BDi is storing the ε̂2i-

snapshot of δi−1
e over Wpi,2i−1 . During Update (epi+1),Update (epi+2), . . . ,Update (ep), we

execute shift (δe[pi +1]), shift (δe[pi +2]), . . . , shift (δe[p]) on Ci
e. If there is no decrement ()

operation, then we conclude from Fact 6.21 that after these shift operations, Ci
e would

be storing the ε̂2i-snapshot of

δi
e[1..p] = δi−1

e [1..pi]δe[pi + 1..p] (6.7)

over Wp,gi
. If there are decrement () operations, some bits of the stream in (6.7) may be

reset. Together with δi−1
e [1..pi] ≤ δe[1..pi] (by induction hypothesis), (i) follows.

To prove (ii), we consider two cases.

1. p− s + 1 > pi : From (i), we conclude that after Update (ep−s), each counter Ci
e in

BDi = BD(2i, ε̂2i, c) is storing the ε̂2i-snapshot of δi
e[1..p − s] ≤ δe[1..p − s] over

window Wp−s,g = Wp−s,min{2i,2i−1+p−s−pi}. Together with the fact that there are

always no more than c counters in BDi with positive values, we conclude that the

total value of these counters immediately after Update (ep−s) is

∑

v(Ci
e)>0

v(C i
e) ≤

∑

v(Ci
e)>0

(
Nδ(e,Wp−s,g) + λi) = |Wp−s,g|+

∑

v(Ci
e)>0

ε̂2i ≤ 2i + cε̂2i .

Together with the s units added to the counters during the processing of ep−s+1, . . . , ep,

there are at most 2i + cε̂2i + s units for the batch of decrement () operations to

take away during Update (ep−s+1), . . . ,Update (ep). It follows that there are at most
2i+s

c
+ ε̂2i batches of decrement made during this period, and they will reset at most

2i+s
c

+ ε̂2i bits in δi
e[p− s + 1..p], (ii) follows.

2. p− s + 1 ≤ pi : We first estimate the number of batches of decrement () made by

BDi after its creation. Note that

• Equation (6.6) asserts that each newly created counter C i
e in BDi has its value

equal to that of Ci−1
e , and

• (i) asserts that Ci−1
e is storing the ε̂2i−1-snapshot of some bit stream δi−1

e [1..pi] ≤
δe[1..pi] over Wpi,2i−1 at this moment.

Chapter 6. Space-efficient Data Stream Algorithms 128

Thus, we have

∑
e

v(Ci
e) =

∑
e

v(Ci−1
e) ≤

∑

v(Ci−1
e)>0

(
Nδ(e,Wpi,2i−1) + λi−1

) ≤ 2i−1 + cε̂2i−1.

The operations Update (epi+1), . . . ,Update (ep) will add another p−pi units to these

counters for the batches of decrement () to take away. It follows that there are at

most 2i−1+p−pi

c
+ ε̂2i−1 batches of decrement () made to BDi since its creation.

Consider any counter Ci
e in BDi. Again, if there is no batch of decrement , Ci

e

will be storing the ε̂2i-snapshot of the bit stream δi
e[1..p] = δi−1

e [1..pi]δe[pi..p] after

Update (ep). Recall that s ≤ gi = min{2i, 2i−1+p−pi}, and this implies s−(p−pi) ≤
2i−1. Thus, we can apply the induction hypothesis on BDi−14 and asserts that in the

window [p− s+1..pi] = [[pi− (s− (p−pi))+1..pi], there are at most 2i−1+s−(p−pi)
c

+

ε̂2i−1 positions u with δi−1
e [u] 6= δe[u]. Together with the possible 2i−1+p−pi

c
+ ε̂2i−1

bits reset by the decrement operations made during Update (epi+1), . . . ,Update (ep),

there are at most

2i−1+s−(p−pi)
c

+ ε̂2i−1 + 2i−1+p−pi

c
+ ε̂2i−1 = 2i+s

c
+ ε̂2i

positions u ∈ [pi − s + 1..pi] with δi
e[u] 6= δe[u]; (ii) follows.

The following lemma generalizes Lemma 6.20; the correctness of our approach follows

from the lemma directly.

Lemma 6.23. Suppose that we have executed Update (epi+1), . . . , Update (ep) after the

creation of BDi at pi. Let gi = min{2i−1 + p − pi, 2
i}. Then, for any 2i−1 ≤ s ≤ gi, we

have the following:

(i) For each item e, the counter Ci
e ∈ BDi satisfies

Nδ(e,Wp,s)− (2i+s
c

+ λi) ≤ v(Ci
e, s) ≤ Nδ(e,Wp,s) + λi.

(ii) The set S =
{
e

∣∣ v(Ci
e, s) ≥ (θ − ε)s + λi

}
is a (θ, ε)-frequent item set of δ over

Wp,s.

4Recall that we assume BDi−1 has full coverage 2i−1 when we call Dilute (BDi−1) to create BDi after
processing epi .

Chapter 6. Space-efficient Data Stream Algorithms 129

Proof. Consider any item e. From Lemma 6.22, we conclude that Ci
e is storing the λi-

snapshot of bit stream δi
e ≤ δe over Wp,gi

. Together with Lemma 6.19, we conclude

that

v(Ce, s) ≤ Nδi
e
(1,Wp,s) + λi ≤ Nδe(1,Wp,s) + λi = Nδ(e,Wp,s) + λi.

On the other hand, Lemma 6.22 also asserts that there are at most 2i+s
c

+ λi positions

u ∈ [p− s + 1, p] with δi
e[u] 6= δe[u], and with Lemma 6.19 again, we have

v(Ce, s) ≥ Nδi
e
(1,Wp,s) ≥ Nδe(1,Wp,s)− (2i+s

c
+ λi) = Nδ(e,Wp,s)− (2i+s

c
+ λi),

and (i) follows. Given (i), we can prove (ii) as in the proofs of Lemma 6.20.

Remark. Recall that we assume that BDi has full coverage when we call Dilute (BDi).

Note that this is not a serious restriction because if BDi does not have full coverage, then

any arrival of a new item will automatically increase its coverage by one; we do not need

to dilute the counter to increase the size of sliding window. Furthermore, it is trivial to

reduce the sliding window size, and to save space, we can throw away BDh from BD∗ as

soon as the sliding window size becomes smaller than 2h−1.

Chapter 7

Communication-efficient Data

Stream Algorithms

In this chapter, we study communication-efficient algorithms for continuous monitoring

of multiple, distributed data streams. The formal problem is as follows. We have k ≥ 1

remote sites each monitoring a data stream, and there is a root (or coordinator) respon-

sible for computing some global statistics. The data stream at each remote site is a

sequence of items from a totally ordered set U . Each item is associated with an integral

time-stamp recording its creation time. A remote site needs to maintain certain statistics

itself, and has to communicate with the root often enough so that the root can compute,

at any time, the statistics of the union of all data streams within a certain error ε ∈ (0, 1).

We focus on time-based sliding window, where given a positive integer W as the window

size, the statistics is computed on all items whose time-stamps are within the last W

time units. Note that algorithms for time-based sliding window are applicable to both

the models of whole data stream and count-based sliding window. We study the four

classical ε-approximate queries, namely, basic counting, approximate counting, frequent

items and quantiles, as defined below. For any stream σ, let cj,σ and cσ be the count

of item j and all items, respectively, in the current window. Denote cj =
∑

σ cj,σ and

c =
∑

σ cσ as the total count of item j and all items in the streams from the remote sites,

respectively.

• Basic Counting. Return an estimate ĉ on the total count c such that |ĉ − c| ≤ εc.

(Note that this query can be generalized to count data items of a fixed subset

130

Chapter 7. Communication-efficient Data Stream Algorithms 131

X ⊆ U ; the literature often refers to the special case with U = {0, 1} and X = {1}.)

• Approximate Counting. Given any item j, return an estimate ĉj such that |ĉj−cj| ≤
εc. (Note that this query gives estimate for any item, not just the frequent items.)

• Frequent Items. Given any 0 < φ < 1, return a set F ⊆ U which includes all items

j with cj ≥ φc and possibly some items j′ with cj′ ≥ φc− εc.

• Quantiles. Given any 0 < φ < 1, return an item whose rank is in [φc− εc, φc + εc]

among the c items in the current sliding window.

To handle these queries, we need an algorithm to determine when and how the remote

sites communicate with the root, so that the root can answer the queries at any time. The

objective is to minimize the worst-case communication cost by any remote site within a

window of W time units.

Our results. Consider a sliding window of W time units and let B be the maximum

number of items arriving at each stream within a window. We prove that for basic

counting, any remote site needs to communicate Ω(1
ε
log(εB)) bits with the root within

a window of W time units in the worst case, and Ω(1
ε
log(εB)) words for the other three

queries. For upper bounds, our analysis shows that basic counting requires O(1
ε
log(εB))

bits within any window, and approximate counting O(1
ε
log B) words. Note that the

estimates given by approximate counting is sufficient to find frequent items, and thus

the latter problem has the same communication cost. For quantiles, it takes O(1
ε2 log B)

words. Note that all our algorithms do not need to know the value of B in advance, it is

only needed in the analysis.

Out-of-order streams. Our algorithms can be readily applied to out-of-order streams,

where items may arrive in any order of their time-stamps. This is in contrast to an in-

order streams, where items arrive in non-decreasing order of their time-stamps. Recall

that for an out-of-order stream, we say that the stream has tardiness τ if any item with

time-stamp t must arrive within τ time units from t, i.e., at any time in [t, t+τ]. Without

loss of generality, we assume that τ ∈ {0, 1, 2, . . . , W − 1} (if an item time-stamped at t

arrives after t+W−1, it has already expired and can be ignored). Note that in-order data

streams have tardiness 0. The previous lower bounds for in-order streams are all valid

in the out-of-order setting. In addition, we obtain a lower bound related to τ , namely,

Chapter 7. Communication-efficient Data Stream Algorithms 132

Ω(W
W−τ

) bits for basic counting and Ω(W
W−τ

) words for the other three problems. Regard-

ing upper bounds, our algorithms when applied to out-of-order streams with tardiness τ

will just increase the communication cost by a factor of W
W−τ

.

We first present upper bound results. Assuming in-order streams, Sections 7.1 and 7.2

analyzes the algorithm for basic counting and approximate counting, respectively. Sec-

tion 7.3 discusses frequent items, quantiles, and out-of-order streams. Finally, Section 7.4

gives the lower bound results.

7.1 Basic Counting

This section presents a simple algorithm for each individual stream to communicate to

the root so that the root can answer at any time an ε-approximate basic counting query

over all streams. Recall that the sliding window includes W time units and B denotes

the maximum number of items arriving within a window. Below we let t denote the

current time, and let to = t−W + 1 be the starting time of the current window. We first

give an algorithm that requires each stream to send O(1
ε
log(εB)) words in a window.

Then we exploit an “estimate discretization” technique to reduce the communication to

O(1
ε
log(εB)) bits, which matches the lower bound.

Let 0 < λ < 1/9 be the local error parameter (to be set to ε/9 later). For each

stream σ, we maintain a λ-approximate data structure [35] locally that can report an

estimate ĉ(t) of the count c(t) of the total items arriving in the current window such that

(1−λ)c(t) ≤ ĉ(t) ≤ (1+λ)c(t). The following algorithm specifies when and what message

the stream σ sends to the root.

Algorithm BC. At any time t, let p < t be the last time when an estimate ĉ(p)

is sent to the root. The stream σ sends ĉ(t) to the root if one of the following

events occur.

• Up: ĉ(t) > (1 + 4λ) ĉ(p).

• Down: ĉ(t) < (1− 4λ) ĉ(p).

The root’s perspective. Suppose the root is required to estimate the total count in

the current window over all streams within an error of ε, where 0 < ε < 1. We set

Chapter 7. Communication-efficient Data Stream Algorithms 133

λ = ε/9 and make all streams to use the communication algorithm BC. At any time

t, let rσ(t) be the last estimate sent by stream σ at or before time t, then the root can

estimate within an error of ε, the total count by summing rσ(t) over all streams. This

is because for each stream σ, BC ensures that 1
1+4λ

ĉ(t) ≤ rσ(t) ≤ 1
1−4λ

ĉ(t); otherwise

the stream σ would have sent a new estimate to the root. With respect to σ, ĉ(t) is an

λ-approximation of c(t), and rσ(t) ≤ 1
1−4λ

ĉ(t) ≤ 1+λ
1−4λ

c(t) ≤ (1 + 9λ)c(t) = (1 + ε)c(t)

(recall that λ = ε/9 ≤ 1/9). Similarly, we can show that rσ(t) ≥ (1− ε)c(t).

Communication complexity. Below we first show that each stream σ has at most

O(1
λ

log(λB)) ups or downs in a window. Thus the stream sends at most O(1
λ

log(λB))

words per window. For any time t1 ≤ t2, it is useful to define σ[t1,t2] (resp. σj,[t1,t2]) as the

multi-set of all items (resp. item j only) arriving at σ within [t1, t2], and |σ[t1,t2]| as the

size of this multi-set.

Suppose there are m ups in the current window [to, t], occurring at times t1 < t2 <

· · · < tm. To upper bound m, the key idea is to associate each ti with a suitable charac-

teristic set Si of items. A natural choice would be those items that contribute to c(ti),

i.e., σ[ti−W+1,ti], yet this is not useful. Instead we define Si as the items arriving within

[to, ti], i.e., Si = σ[to,ti]. Then we can show that Si increases by at least a multiplicative

factor of 1 + λ as i increases.

Lemma 7.1. For any 2 ≤ i ≤ m, |Si| > (1 + λ)|Si−1|.

Proof. For any 2 ≤ i ≤ m, let pi < ti be the latest time when an up or down occurs. Since

there is an up at ti, we have ĉ(ti) > (1 + 4λ)ĉ(pi) ≥ (1 + 4λ)(1 − λ)c(pi). Furthermore,

ĉ(ti) ≤ (1+λ)c(ti). Thus, c(ti) > (1+4λ)(1−λ)
1+λ

c(pi) ≥ (1+λ)c(pi), and c(ti)−c(pi) > λc(pi).

Note that the extra items come from σ[pi+1,ti]. We conclude that |Si| − |Si−1| = |σ[to,ti]| −
|σ[to,ti−1]| ≥ |σ[pi+1,ti]| ≥ c(ti)− c(pi) > λc(pi) = λ|σ[pi−W+1,pi]| ≥ λ|σ[to,pi]| ≥ λ|σ[to,ti−1]| =
λ|Si−1|.

As |Sm| ≤ B, Lemma 7.1 implies that m = O(1
λ

log B). Below is a tighter analysis.

Corollary 7.2. m = O(1
λ

log(λB)).

Proof. Let ` be the smallest integer such that |S`| ≥ 1/λ (if no such ` exists, let ` = m+1).

Since |Si| > (1 + λ)|Si−1| for 2 ≤ i ≤ m, we have 0 ≤ |S1| < |S2| < · · · < |S`−1| < 1
λ
,

Chapter 7. Communication-efficient Data Stream Algorithms 134

and B ≥ |Sm| > (1 + λ)|Sm−1| > · · · > (1 + λ)m−`|S`| ≥ (1 + λ)m−`(1
λ
). This implies that

` ≤ 1
λ

+ 1 and m− ` ≤ log1+λ(λB), and m = O(1
λ

+ 1
λ

log(λB)).

The analysis of down events is symmetric. For an item with time-stamp t, we define

the first expiry time to be t + W , and it is said to expire after t + W − 1. Suppose there

are m′ downs in [to, t], occurring at times d1 < d2 < · · · < dm′ . Define the characteristic

set Hi of each di as those items whose first expiry time is within [di +1, t], or equivalently,

Hi = σ[di−W+1,to−1]. Similar to Lemma 7.1, we can prove that Hi decreases by a constant

factor as i increases.

Lemma 7.3. For any 2 ≤ i ≤ m′, |Hi| < 1
1+λ

|Hi−1|. Furthermore, m′ = O(1
λ

log(λB)).

From O(1
λ

log(λB)) words to O(1
λ

log(λB)) bits. When using BC, a message sent

at time t is the current estimate ĉ(t), which occupies up to a word. Thus BC sends

O(1
λ

log(λB)) words in a window. To reduce the message size, we first observe that the

data structure kept for each stream σ can be made to produce a “restricted” estimate that

is chosen from a “small” fixed set (with only O(1
λ

log(λB)) numbers), while the desired

error bound can still be maintained. Denote this set as K = {k0, k1, . . . , kh}. When BC

needs to send an estimate ky ∈ K to the root and the last estimate that should be sent is

kx, it simply communicates the difference of the indices (y− x). This requires log(y− x)

bits, reducing the communication cost substantially.

Intuitively, different definitions of K would give different tradeoff between accuracy

and communication. The following definition optimizes the communication, while meeting

the desired error bound. Let α = d 3
λ
e and let d be the smallest integer such that (1 +

λ
2
)dα ≥ B. Define K = {0, 1, 2, . . . , α} ∪ {(1 + λ

2
)α, (1 + λ

2
)2α, . . . , (1 + λ

2
)dα}. Note that

|K| = O(1
λ

+ 1
λ

log(λB)).

Lemma 7.4. We can keep a data structure for σ, which at any time t can give an estimate

ĉ(t) such that ĉ(t) ∈ K and (1− λ)c(t) ≤ ĉ(t) ≤ (1 + λ)c(t).

Proof. We keep the data structure of [35] with a better error bound of λ
3
. Hence, it

can return an estimate c̃(t) such that (1 − λ
3
)c(t) ≤ c̃(t) ≤ (1 + λ

3
)c(t). We can assume

c̃(t) ≤ B and we define ĉ(t) from c̃(t) as follows. If c̃(t) ≤ α, we simply let ĉ(t) = c̃(t)

and ĉ(t) satisfies the requirements obviously. Otherwise, let ĉ(t) = (1 + λ
2
)iα, where i is

Chapter 7. Communication-efficient Data Stream Algorithms 135

the smallest integer with (1 + λ
2
)iα ≥ c̃(t). Then ĉ(t) ∈ K, and

• ĉ(t) = (1 + λ
2
)iα ≥ c̃(t) ≥ (1− λ

3
)c(t) ≥ (1− λ)c(t), and

• ĉ(t) = (1 + λ
2
)(1 + λ

2
)i−1α < (1 + λ

2
)c̃(t) ≤ (1 + λ

2
)(1 + λ

3
)c(t) ≤ (1 + λ)c(t).

Lemma 7.4 guarantees that the local data structure can maintain the required accu-

racy when restricting the estimates to some values in K. Thus, using the same up and

down thresholds, the root can answer the ε-approximate basic counting queries correctly.

To analyze the communication cost, we need the following technical lemma to translate

the actual distance between c(t) and ĉ(t) to a relative distance with respect to K.

Lemma 7.5. At any time t, let ĉ(t) = ki for some ki ∈ K. Then, we have kmax{0,i−4} ≤
c(t) ≤ kmin{i+4,h}.

Proof. We consider two cases depending on i ≤ α+2 or i > α+2. First assume i ≤ α+2.

By Lemma 7.4, c(t) ≤ 1
1−λ

ki = ki + λ
1−λ

ki. Note that λ
1−λ

ki ≤ λ
1−λ

(1 + λ
2
)2α ≤ 4 (since

λ < 1/9 and i ≤ α + 2). Hence c(t) ≤ ki + 4. Since c(t) ≤ B ≤ kh and ki + 4 ≤ ki+4 if

i+4 ≤ h, we conclude that c(t) ≤ kmin{i+4,h}. Similarly, c(t) ≥ 1
1+λ

ki = ki− λ
1+λ

ki. Using

the same argument above, we have c(t) ≥ ki − 4 and c(t) ≥ kmax{0,i−4}.

Then assume i > α + 2. If i + 4 ≤ h, we have ki+4 = (1 + λ
2
)4ki ≥ 1

1−λ
ki ≥ c(t), where

the first inequality follows from λ < 1/9 and the second inequality from Lemma 7.4.

Together with c(t) ≤ B ≤ kh, we conclude c(t) ≤ kmin{i+4,h}. On the other hand, c(t) ≥
1

1+λ
ki ≥ 1

1+λ
(1 + λ

2
)2ki−2 ≥ ki−2. Thus, c(t) ≥ ki−2 > ki−4 and c(t) ≥ kmax{0,i−4}.

Suppose there are m ups in the current window [to, t], occurring at times t1 < t2 <

· · · < tm. To analyze the total number of bits sent due to ups in a window [to, t], we

need to relate the growth of the characteristic set Si at each up event time ti with the

difference of indices sent in each message. Recall that we define Si as the items arriving

within [to, ti], i.e., Si = σ[to,ti]. Let ` be the smallest integer with |S`| ≥ kα+8. If no such

` exists, let ` = m + 1.

Lemma 7.6. Let kyi
and kxi

be the estimates kept by the stream σ at the up event time ti

and at the last time when an up or down occurs before ti, respectively. (i) For any 2 ≤ i ≤
`− 1, |Si| − |Si−1| ≥ (yi− xi− 8). (ii) For any ` + 1 ≤ i ≤ m, |Si| ≥ (1 + λ

2
)yi−xi−8|Si−1|.

Chapter 7. Communication-efficient Data Stream Algorithms 136

Proof. For any 2 ≤ i ≤ m, let pi < ti be the latest time when an up or down occurs. The

lemma is obviously true if yi − xi − 8 ≤ 0. Below, we assume yi − xi − 8 > 0. Also note

that |σ[to,ti]| − |σ[to,pi]| = |σ[pi+1,ti]| ≥ c(ti)− c(pi).

For (i), consider any 2 ≤ i ≤ ` − 1. By Lemma 7.5, c(ti) − c(pi) ≥ kmax{0,yi−4} −
kmin{xi+4,h} ≥ yi − xi − 8. Thus, |Si| − |Si−1| = |σ[to,ti]| − |σ[to,ti−1]| ≥ |σ[to,ti]| − |σ[to,pi]| ≥
yi − xi − 8.

For (ii), consider any ` + 1 ≤ i ≤ m. Let ∆i = (1 + λ
2
)yi−xi−8. By Lemma 7.5,

kmin{yi+4,h} ≥ c(ti) ≥ |Si| ≥ kα+8, so we have yi ≥ α + 4. Similarly, we have xi ≥
α + 4. It implies kyi−4 = (1 + λ

2
)(yi−4)−(xi+4)kxi+4 = ∆ikxi+4. By Lemma 7.5, c(ti) ≥

kyi−4 = ∆ikxi+4 ≥ ∆ic(pi). Note that |σ[to,ti]| − |σto,pi]| ≥ c(ti) − c(pi) ≥ (∆i − 1)c(pi) ≥
(∆i − 1)|σ[to,pi]|, and hence |σ[to,ti]| ≥ ∆i|σto,pi]|. Finally, |Si| = |σ[to,ti]| ≥ ∆i|σ[to,pi]| ≥
∆i|σ[to,ti−1]| = ∆i|Si−1|.

With Lemma 7.6, a simple counting would show that O(1
λ

log(λB)) bits are sent for

the up events in the window [to, t]. The analysis of the down events is again symmetric.

Thus we have the following theorem.

Theorem 7.7. The number of bits sent due to ups and downs in a window is O(1
λ

log(λB)).

Proof. We first consider ups. We use the same definitions of xi and yi as in Lemma 7.6.

The total number of bits sent due to ups is at most

log y1 +
∑m

i=2 log(yi − xi) ≤ y1 +
∑`−1

i=2(yi − xi) + (y` − x`) +
∑m

i=`+1(yi − xi).

Note that y1 and (y` − x`) are at most |K| = O(1
λ

log(λB)). We bound the remaining

two terms as follows.

• For
∑`−1

i=2(yi − xi), we consider the non-trivial case that ` ≥ 3. By Lemma 7.6(i),∑`−1
i=2(yi − xi − 8) ≤ ∑`−1

i=2(|Si| − |Si−1|) = |S`−1| − |S1| < kα+8 = (1 + λ
2
)8α ≤ 2α

for λ < 1/9. Thus,
∑`−1

i=2(yi − xi) ≤ 2α + 8(`− 2) = 2d 3
λ
e+ 8(`− 2) = O(1

λ
+ `).

• For
∑m

i=`+1(yi−xi), we consider the non-trivial case that m ≥ `+2. By Lemma 7.6(ii),

B ≥ |Sm| ≥ ∆m|Sm−1| ≥ · · · ≥ (
∏m

i=`+1 ∆i)|S`| ≥ (
∏m

i=`+1 ∆i)kα+8 where ∆i =

(1 + λ
2
)yi−xi−8. It follows that

∏m
i=`+1 ∆i = (1 + λ

2
)
∑m

i=`+1(yi−xi−8) ≤ B/kα+8,

Chapter 7. Communication-efficient Data Stream Algorithms 137

and
∑m

i=`+1(yi − xi) ≤ log1+λ/2(B/kα+8) + 8(m− `) = O(1
λ

log(λB) + m− `).

Summing up these four bounds, and using the fact that ` ≤ m + 1 = O(1
λ

log(λB)) (by

Corollary 7.2), we conclude that the total number of bits sent due to the up events in a

window is O(1
λ

log(λB)).

For downs, we have the following assertion, which is symmetric to Lemma 7.6, and

can be proved similarly. Suppose that there are m′ downs occurring at time d1 < d2 <

· · · < d′m. Recall that the characteristic set Hi of each di is those items whose first expiry

time is within [di + 1, t], or equivalently, Hi = σ[di−W+1,to−1]. For any 2 ≤ i ≤ m′, let

ui < di be the latest time when an up or down occurs. Let `′ be the largest integer such

that |H`′| ≥ kα+8 (if `′ does not exist, let `′ = 0). Let ĉ(ui) = kx′i and ĉ(di) = ky′i . Then,

(1) for any 2 ≤ i ≤ `′ − 1, |Hi−1| ≥ (1 + λ
2
)x′i−y′i−8|Hi|, and

(2) for any `′ + 1 ≤ i ≤ m, |Hi−1| − |Hi| ≥ x′i − y′i − 8.

Then, we can count the bits sent as above and conclude that the total number of bits

sent due to downs in a window is O(1
λ

log(λB)). Thus, the theorem follows.

7.2 Approximate Counting of All Items

This section presents algorithms for the streams to communicate to the root so that the

root at any time can approximate the count of each item. As a warm-up, we first consider

the simple algorithm in which a stream will inform the root whenever its count of an item

increases or decreases by a certain fraction of its total item count. We show that each

stream sends at most O((∆ + 1
ε
) log B) words in a window, where ∆ is the number of

distinct items (Section 7.2.1). We then modify the algorithm so that a stream can “turn

off” items whose counts are too small, and we give a more complicated analysis to deal

with the case when many such items increase their counts rapidly (Section 7.2.2). The

communication cost is reduced to O(1
ε
log B) words.

Chapter 7. Communication-efficient Data Stream Algorithms 138

7.2.1 A simple algorithm

Consider a stream σ. At any time t, let c(t) and cj(t) be the number of all items and

item j arriving at σ in [t −W + 1, t], respectively. Let λ < 1/11 be a positive constant

(which will be set to ε/11 later). We maintain two λ-approximate data structures (the

data structures in [35] and in Section 6.2 of Chapter 6, respectively) at σ locally, which

can report estimates ĉ(t) and ĉj(t) for c(t) and cj(t), respectively, such that 1

(1− λ/6)c(t) ≤ ĉ(t) ≤ (1 + λ/6)c(t); and cj(t)− λc(t) ≤ ĉj(t) ≤ cj(t) + λc(t).

Simple algorithm. At any time t, for any item j, let p < t be the last time

ĉj(p) is sent to the root. The stream sends the estimate 〈j, ĉj(t)〉 to the root if the

following event occurs.

• Up: ĉj(t) > ĉj(p) + 9λĉ(t).

• Down: ĉj(t) < ĉj(p)− 9λĉ(t).

The root’s perspective. At any time t, let rj,σ(t) be the last estimate received from

a stream σ for item j (at or before t). The root can estimate the total count of item

j over all streams by summing all rj,σ(t) received. More precisely, for any 0 < ε < 1,

we set λ = ε/11 and let each stream use the simple algorithm. Then for each stream

σ, the approximate data structures for ĉj(t) and ĉ(t) together with the simple algorithm

guarantee that cj(t)−11λc(t) ≤ rj,σ(t) ≤ cj(t)+11λc(t). Summing rj,σ(t) over all streams

would give the root an estimate of the total count of item j within an error of ε of the

total count of all items.

Communication complexity. At any time t, we denote the reference window as [to, t],

where to = t −W + 1. Assume that there are at most ∆ distinct items. We first show

that a stream σ encounters O((1
λ
+∆) log B) up events and sends O((1

λ
+∆) log B) words

within [to, t]. The analysis of down events is similar, to be detailed later. Recall that for

any time t1 ≤ t2, we define σ[t1,t2] (resp. σj,[t1,t2]) as the multi-set of all items (resp. item

j only) arriving at σ within [t1, t2], and |σ[t1,t2]| as the size of this multi-set.

1The constant 6 in the inequality is arbitrary. It can be replaced with any number provided that other
constants in the algorithm and analysis (e.g., the constant 9 in the definition of up events) are adjusted
accordingly.

Chapter 7. Communication-efficient Data Stream Algorithms 139

Consider an up event Uj of some item j that occurs at time v ∈ [to, t]. Define the

previous event of Uj to be the latest event (up or down) of item j that occurs at time p < v.

We call p the previous-event time of Uj. The number of up events with previous-event

time before to is at most ∆. To upper bound the number of up events with previous-event

time p ≥ to is, however, non-trivial; below we call such an up event a follow-up (event).

Intuitively, a follow-up can be triggered by frequent arrivals of an item, or mainly the

relative decrease of the total count. This motivates us to classify follow-ups into two

types and analyze them differently. A follow-up Uj is said to be absolute if c(p) ≤ 6
5
c(v),

and relative otherwise. Define Recent-items(Uj) to be the multi-set of item j’s that arrive

after the previous event of Uj, i.e., Recent-items(Uj) = σj,[p+1,v].

Absolute follow-ups. To obtain a tight bound of absolute follow-ups, we need a better

characteristic-set argument that can consider the growth of different items together. Let

t1, t2, ..., tk be the times in [to, t] when some absolute follow-ups (of one or more items)

occur. Let xi be the number of items having an absolute follow-up at ti. Note that for

all i, xi ≤ min{1/(7λ), ∆},2 and
∑k

i=1 xi is the number of absolute follow-ups in [to, t].

We define the characteristic set Si at each ti as follows:

Si = the union of Recent-items(Uj) over all absolute follow-ups Uj occurring at t1, t2, . . . , ti.

Lemma 7.8. (i) For any 2 ≤ i ≤ k, |Si| > (1 + 6xiλ)|Si−1|. (ii) There are
∑k

i=1 xi =

O(1
λ

log B) absolute follow-ups within [to, t].

Proof. For (i), consider an absolute follow-up Uj of an item j, occurring at time ti with

previous-event time pi. Note that the increase in the count of item j from pi to ti must

be due to the recent items. We have

|Recent-items(Uj)| ≥ cj(ti)− cj(pi)

≥ ĉj(ti)− ĉj(pi)− λc(ti)− λc(pi) (guarantee by σ’s data structures)

> 9λĉ(ti)− λc(ti)− λc(pi) (definition of an up event)

≥ (9λ(1− λ
6
)− λ− 6

5
λ)c(ti) ≥ 6λc(ti) (Uj is absolute)

There are xi absolute follow-ups at ti, so |Si| > |Si−1| + xi (6λc(ti)). Since Si ⊆ σ[to,ti],

2If an up event of an item j occurs at time ti, then cj(ti) ≥ ĉj(ti)−λc(ti) > 9λĉ(ti)−λc(ti) ≥ 7λc(ti).
Thus the number of up events at time ti is at most c(ti)/(7λc(ti)) = 1/(7λ).

Chapter 7. Communication-efficient Data Stream Algorithms 140

c(ti) ≥ |Si| ≥ |Si−1|. Therefore, we have |Si| > |Si−1|+ 6xiλ|Si| ≥ (1 + 6xiλ)|Si−1|.

For (ii), we note that B ≥ |Sk| >
∏k

i=2(1 + 6xiλ)|S1|, and |S1| ≥ 1. Thus,
∏k

i=2(1 +

6xiλ) < B, or equivalently, ln B >
∑k

i=2 ln(1+6xiλ). The latter is at least
∑k

i=2
6xiλ

1+6xiλ
≥

λ
∑k

i=2 xi. The last inequality follows from that xi ≤ 1/(7λ) for all i. Thus,
∑k

i=1 xi ≤
x1 + 1

λ
ln B = O(1

λ
log B).

Relative follow-ups. A relative follow-up occurs only when a lot of items expire,

and relative follow-ups of the same item cannot occur too frequently. Below we define

O(log B) time intervals and argue that no item can have two relative follow-ups within

an interval. Recall that for an item with time-stamp t1, we define the first expiry time to

be t1 + W . At any time u in [to, t], define Hu to be the set of all items whose first expiry

time is within [u + 1, t], i.e., Hu = σ[u−W+1,to−1]. |Hu| is non-increasing as u increases.

Consider the times to = u0 < u1 < u2 < · · · < u` ≤ t such that for i ≥ 1, ui is the first

time such that |Hui
| < 5

6
|Hui−1

|. For convenience, let u`+1 = t + 1. Note that |Hu0| ≤ B

and ` = O(log B).

Lemma 7.9. (i) Every item j has at most one relative follow-up Uj within each interval

[ui, ui+1 − 1]. (ii) There are at most O(∆ log B) relative follow-ups within [to, t].

Proof. For (i), assume Uj occurs at time v in [ui, ui+1 − 1], and its previous event occurs

at time p. By definition, c(p) > 6
5
c(v). Thus,

|Hp| − |Hv| = |σ[p−W+1,v−W]| ≥ c(p)− c(v) > 1
5
c(v) ≥ 1

5
|σ[v−W+1,to−1]| = 1

5
|Hv| ,

and |Hv| < 5
6
|Hp|. On the other hand, v < ui+1 and |Hv| ≥ 5

6
|Hui

|. Thus, |Hp| > |Hui
|

and p < ui. For (ii), since there are ∆ distinct items, there are at most ∆ relative follow-

ups within each interval [ui, ui+1 − 1], and at most O(∆ log B) relative follow-ups within

[to, t].

Down events. The analysis is symmetric to that of up events. The only non-trivial

thing is the definition of the characteristic set for bounding the absolute follow-downs Dj,

which is defined in an opposite sense: Assume Dj occurs at time v and its previous event

occurs at p ≥ to. Dj is said to be absolute if c(p) ≤ 6
5
c(v). Let Expire(Dj) be the multi-set

of item j’s whose first expiry time is within [p + 1, v]. I.e., Expire(Dj) = σj,[p−W+1,v−W].

Chapter 7. Communication-efficient Data Stream Algorithms 141

It is perhaps a bit tricky that instead of defining the characteristic set of absolute follow-

downs at the time they occur, we consider the times of the corresponding previous events

of these follow-downs. Let p1, p2, ..., pk be the times in [to, t] such that there is at least

one event Ej (up or down) at pi which is the previous event of an absolute follow-down

Dj occurring after pi. Let yi be the number of such previous events at pi, and let AD(pi)

be the set of corresponding absolute follow-downs. Note that yi (unlike xi) only admits

a trivial upper bound of ∆. We define the characteristic set Ti for each pi as follows:

Ti = the union of Expire(Dj) over all Dj ∈ AD(pi), AD(pi+1), . . . , AD(pk).

Similar to Lemma 7.8, we can show that |Ti| > (1+5yiλ)|Ti+1|. Owing to a weaker bound

of individual yi, the number of absolute follow-downs, which equals
∑k

i=1 yi, is shown to

be O((1
λ

+ ∆) log B).

Combining the analyses on up and down events, we have the following.

Theorem 7.10. For approximate counting, each individual stream can use the simple

algorithm with λ = ε/11 and it sends at most O((1
ε

+ ∆) log B) words to the root within

a window.

7.2.2 The full algorithm

In this section, we extend the previous algorithm and give a new characteristic-set analysis

that is based on future events (instead of the past events) to show that the communication

cost per window can be reduced to O(1
λ

log B) words. Intuitively, when the estimate ĉj(t)

of an item j is too small, say, less than 3λĉ(t), the algorithm treats this estimate as 0

and set the offj flag of j to be true. This restricts the number of items with a positive

estimate to O(1
λ
). Initially, the offj flag is true for all items j. Given 0 < λ < 1/11, the

stream communicates with the root as follows.

Algorithm AC. At any time t, for any item j, let `j(p) be the last estimate of

j sent to the root at some time p < t. The stream sends the estimate of j to the

root if the following event occurs.

Chapter 7. Communication-efficient Data Stream Algorithms 142

• Up: If ĉj(t) > `j(p) + 9λĉ(t), send 〈j, ĉj(t)〉 and set offj = false .

• Off: If offj = false and ĉj(t) < 3λĉ(t), send 〈j, 0〉 and set offj = true.

• Down: If offj = false and ĉj(t) < `j(p)− 9λĉ(t), send 〈j, ĉj(t)〉.

It is straightforward to check that the root can answer the approximate counting query

for any item. We analyze the communication complexity by considering different events,

as follows.

Fact 7.11. At any time v, the number of items j with offj = false is at most 1
λ
.3

Off events. At any time t, consider the current window [to, t]. By Fact 7.11, just before

to, there are at most 1
λ

items with offj = false. Within [to, t], only an up event can set

the off flag to false. Thus the number of off events within [to, t] is bounded by 1
λ

plus the

number of up events.

Up and Down events. The assumption of ∆ gives a trivial bound on those events

involving items with very small counts and in particular, those up events immediately

following the off events. Such up events are called poor-up events or simply poor-ups.

Using the off flag, we can easily adapt the analysis of the simple algorithm to bound all

the down and up events of the full algorithm, but except the poor-ups. The following

simple observations, derived from Fact 1, allow us to replace ∆ with 1/λ in the previous

analysis to obtain a tighter upper bound of O(1
λ

log B). Let v by any time in [to, t].

• There are at most 1/λ items whose first event after v is a down event.

• There are at most 1/λ non-poor-up events after v such that its previous event is

before v.

It remains to analyze the poor-ups. Consider a poor-up Uj at time v in [to, t]. By

definition, offj = false at time v. The trick of analyzing Uj’s is to consider when the

corresponding items will be “off” again instead of what items constitute the up events.

Then a characteristic set argument can be formulated easily. Specifically, we first observe

3For any item j, if offj = false, then ĉj(v) ≥ 3λĉ(v) and cj(v) ≥ ĉj(v)−λc(v) ≥ (3λ(1−λ)−λ)c(v) ≥
λc(v). Thus the number of items j with offj = false is at most c(v)/λc(v) = 1

λ .

Chapter 7. Communication-efficient Data Stream Algorithms 143

that, by Fact 1, there are at most 1
λ

poor-ups whose off flags remain false up to time

t. Then it remains to consider those Uj whose off flags will be set to true at some time

d ≤ t. Below we refer to d as the first off time of Uj.

Poor-up with early off. Consider a poor-up Uj that occurs at time v in [to, t] and has

its first off time at d in [v + 1, t]. Let F-Expire(Uj) be all the item j whose first expiry

time is within [v + 1, d]. I.e., F-Expire(Uj) = σj,[v+1−W,d−W]. As an early off can be due

to the expiry of many copies of item j or the arrival of a lot of items, it is natural to

divide the poor-ups into two types: with an absolute off if c(d) ≤ 6
5
c(v), and relative off

otherwise. For the case with absolute off, we consider the distinct times t1, t2, . . . , tk in

[to, t] when such poor-ups occur. Let xi be the number of such poor-ups at time ti. Note

that xi ≤ 1/(7λ). For each time ti, we define the characteristic set

Fi = the union of F-Expire(Uj) over all Uj occurring at ti, ti+1, . . . , tk.

Lemma 7.12. (i) For any 1 ≤ i ≤ k− 1, |Fi| > (1 + xiλ)|Fi+1|. (ii) Within [to, t], there

are
∑k

i=1 xi = O(1
λ

log B) poor-ups each with an absolute off.

Proof. For (i), let Uj be a poor-up with an absolute off of an item j, where Uj occurs at

time ti with first off time di. Note that the decrease in cj must be due to expiry of item

j. Then

|F-Expire(Uj)| ≥ cj(ti)− cj(di) ≥ ĉj(ti)− ĉj(di)− λc(ti)− λc(di)

> 9λĉ(ti)− 3λĉ(di)− λc(ti)− λc(di) (definition of up and off)

≥ (9λ(1− λ
6
)− λ)c(ti)− (3λ(1 + λ

6
) + λ)c(di) ≥ 7λc(ti)− 5λc(di)

≥ (7− 5(6
5
))λc(ti) = λc(ti) (definition of absolute off)

Therefore, |Fi| > |Fi+1| + xi (λc(ti)). Since Fi ⊆ σ[ti−W+1,t−W], |Fi| ≤ c(ti). This implies

|Fi| > |Fi+1|+xiλ|Fi| > (1+xiλ)|Fi+1|. We can prove (ii) similarly to Lemma 7.8 (ii).

Analyzing poor-ups with a relative off is again based on an isolating argument. We

divide [to, t] into O(log B) intervals according to how fast the total item count starting

from to grow; specifically, we want two consecutive time boundaries ui−1 and ui to satisfy

|σ[to,ui]| > 6
5
|σ[to,ui−1]|. Then we show that for any poor-up within [ui−1, ui−1], its relative

off, if exists, occurs at or after ui. Thus there are at most 1
λ

such poor-ups within each

Chapter 7. Communication-efficient Data Stream Algorithms 144

interval and a total of O(1
λ

log B) within [to, t].

Lemma 7.13. (i) Consider a poor-up Uj with a relative off. Suppose it occurs at time v

in [to, t], and its first off time is at d in [v + 1, t]. Then |σ[to,d]| > 6
5
|σ[to,v]|. (ii) Within

[to, t], there are at most O(1
λ

log B) poor-ups each with a relative off.

Proof. For (i), by the definition of a relative off, c(v) < 5
6
c(d). Thus, |σ[to,d]| − |σ[to,v]| =

|σ[v+1,d]| ≥ c(d)− c(v) > 1
6
c(d) ≥ 1

6
|σ[to,d]|. This implies |σ[to,d]| > 6

5
|σ[to,v]|.

For (ii), consider the times to = u0 < u1 < u2 < · · · < u` ≤ t such that for i ≥ 1, ui

is the first time such that |σ[to,ui]| > 6
5
|σ[to,ui−1]|. For convenience, let u`+1 = t + 1. Note

that |σ[to,t]| ≤ B and ` = O(log B). Furthermore, for any time v ∈ [ui−1, ui− 1], |σ[to,v]| ≤
6
5
|σ[to,ui−1]|. Therefore, by (i), for any poor-up of an item j within [ui−1, ui−1], its relative

off, if exists, occurs at or after ui, which implies at time ui − 1, cj(ui − 1) ≥ λc(ui − 1).

Then within each interval [ui−1, ui − 1], the number of such j as well as the number of

poor-ups with a relative off are at most 1
λ
. Within [to, t], there are ` = O(log B) intervals

and hence O(1
λ

log B) poor-ups each with a relative off.

To sum up, the following is our main result.

Theorem 7.14. For approximate counting, each individual stream can use the algorithm

AC with λ = ε/11 and it sends at most O(1
ε
log B) words to the root within a window.

Memory usage on each remote site. Recall that we use two λ-approximate data

structures (the data structures in [35] and in Section 6.2 of Chapter 6, respectively) for

the total item count and individual item counts, which respectively require O(1
λ

log2(λB))

bits and O(1
λ
) words. Note that O(1

λ
log2(λB)) bits is equivalent to O(1

λ
log(λB)) words.

Furthermore, at any time, we only need to keep track of the last estimate sent to the

root of all item j with offj = false, which by Fact 7.11, requires O(1
λ
) words. By setting

λ = ε/11 (see Theorem 7.14), the total memory usage of a remote site is O(1
λ

log(λB)) =

O(1
ε
log(εB)) words.

7.3 Other Extensions

This section shows how to extend the previous algorithms and techniques to the problems

of frequent items and quantiles. We also explain how to handle out-of-order streams.

Chapter 7. Communication-efficient Data Stream Algorithms 145

7.3.1 Frequent items

Using the algorithms BC and AC, the root can answer the ε-approximate frequent items

as follows. Each stream σ communicates with the root using BC with error parameter

ε/24 and AC with error parameter 11ε/24. Hence, σ sends at most O(1
ε
log B) words

within any time window. At any time t, let rσ(t) and rj,σ(t) be the latest estimates of the

numbers of all items and item j, respectively, received by the root from σ. In the root’s

perspective, to answer a query of frequent items with threshold φ ∈ (0, 1] at time t, it

can return all items j with
∑

σ rj,σ(t) ≥ (φ− ε
2
)
∑

σ rσ(t) as the set of frequent items.

To see the correctness, let cσ(t) and cj,σ(t) be the number of all items and item j in σ

at time t, respectively. Algorithm BC guarantees |rσ(t)− cσ(t)| ≤ ε
24

cσ(t), and algorithm

AC guarantees |rj,σ(t) − cj,σ(t)| ≤ 11ε
24

cσ(t). Therefore, if an item j is returned by the

root, then
∑

σ cj,σ(t) ≥ ∑
σ rj,σ(t) − 11ε

24

∑
σ cσ(t) ≥ (φ − ε

2
)
∑

σ rσ(t) − 11ε
24

∑
σ cσ(t) ≥

(φ− ε
2
)(1− ε

24
)
∑

σ cσ(t)− 11ε
24

∑
σ cσ(t) ≥ (φ− ε

2
− φ ε

24
− 11ε

24
)
∑

σ cσ(t) where the second

inequality comes from the definition of the algorithm. The last term above is at least

(φ − ε)
∑

σ cσ(t), so j is a frequent item. If an item j is not returned by the root, then∑
σ rj,σ(t) < (φ− ε

2
)
∑

σ rσ(t) and we can show similarly that
∑

σ cj,σ(t) < φ
∑

σ cσ(t).

7.3.2 Quantiles

We give an algorithm where each stream sends at most O(1
ε2 log B) words per window.

Let λ = ε/20. For each stream, we keep track of the λ-approximate φ-quantiles for

φ = 5λ, 10λ, 15λ, . . . , 1. We update the root for all these φ-quantiles when one of the

following two events occurs: (i) for any k, the value of the (5kλ)-quantile is larger than

the value of the (5(k + 1)λ)-quantile last reported to the root, or (ii) for any k, the value

of the (5kλ)-quantile is smaller than the value of the (5(k − 1)λ)-quantile last reported

to the root. The stream also communicates with the root using BC with error parameter

λ. In the root’s perspective, at any query time t, let φ ∈ (0, 1] be the query given and

let rσ(t) be the last estimate sent by σ for the number of all items. The root sorts the

quantiles last reported by all streams and for each stream σ, gives a weight of 5λrσ(t) to

each quantile of σ. Then the root returns the smallest item j in the sorted sequence such

that the sum of weights for all items no greater than j is at least dφ ∑
σ rσ(t)e. Careful

counting can show that j is an ε-approximate φ-quantile.

Chapter 7. Communication-efficient Data Stream Algorithms 146

For the communication cost, we observe that when an event occurs, many items have

either arrived or expired after the previous event. Using similar analysis as before, we

can show that within a window, there are at most O(1
ε
log B) such events and thus each

stream sends O(1
ε2 log B) words. Note that the lower bound of O(1

ε
log(εB)) words per

window for approximate frequent items carries to approximate quantiles, as we can answer

approximate frequent items using approximate quantiles, as follows. The root poses ε-

approximate φ-quantile queries for φ = ε, 2ε, . . . , 1. Given the threshold φ′ for frequent

items, the root returns all items that repeatedly occur as φ′
ε
− 2 (or more) consecutive

quantiles, and we can show that these items are (4ε)-approximate frequent items.

7.3.3 Out-of-order streams

All our algorithms can be extended to out-of-order stream with a communication cost

increased by a factor of W
W−τ

, as follows. Each stream uses the data structures for

out-of-order streams (e.g., [22, 30]) to maintain the local estimates. Then each stream

uses our communication algorithms for in-order streams. It is obvious that the root can

answer the corresponding queries. For the communication cost, consider any time interval

P = [t − (W − τ) + 1, t] of size W − τ . Items arriving in P must have time-stamps in

[t−W +1, t], so at most B items arrive in P . Also, at most B items expire in P . Using the

same arguments as before, we can show the same communication cost of each algorithm,

but only for a window of size W − τ instead of W . Equivalently, in any window of size

W , the communication cost is increased by a factor of O(W
W−τ

).

7.4 Lower Bounds

This section presents the lower bounds. We assume the two-way communication model,

and the results also hold when only one-way communication is allowed. We start with

the sliding window setting, and consider the whole data stream and out-of-order stream

settings afterwards.

Theorem 7.15. For the ε-approximate basic counting problem on a sliding window, the

communication cost between any stream and the root is Ω(1
ε
log(εB)) bits in every 2W

time units in the worst case.

Chapter 7. Communication-efficient Data Stream Algorithms 147

Proof. Consider any ε < 1/3. Let x0 < x1 < x2 < . . . be an increasing sequence such

that x0 = 0, x1 =
⌈

1
ε

⌉
and for i ≥ 2, xi = d(1 + 3ε)xi−1e. Consider the time window

[1,W] and any stream σ. At each time i ≥ 1, we release xi−xi−1 items to σ and no item

to other streams4. Note that there are exactly xi items in the window of σ at time i. The

last item arrives at time m where m is the largest integer such that xm ≤ B. Note that

x1 =
⌈

1
ε

⌉
< 2

ε
, and for any i = 2, . . . m, xi = d(1 + 3ε)xi−1e ≤ (1 + 3ε)xi−1 + εxi−1 =

(1 + 4ε)xi−1. Since B < xm+1, we have m = Ω(log1+4ε(εB/2)) = Ω(1
ε
log(εB)).

At any time i, the root can return an estimate r(i) such that (1−ε)xi < r(i) < (1+ε)xi.

Note that (1 − ε)xi ≥ (1 − ε)(1 + 3ε)xi−1 = (1 + 2ε − 3ε2)xi−1 > (1 + ε)xi−1 (since

ε < 1/3). Thus, at each time i, the root must have a different estimate. It implies

that σ communicates at least 1 bit with the root at each time i = 1, . . . , m, and hence

the communication cost is Ω(1
ε
log(εB)) bits in [1,W]. We do not release items during

[W + 1, 2W], so all items expire no later than 2W . We can repeat the sequence above,

and the theorem follows.

Theorem 7.16. For the ε-approximate frequent items problem on a sliding window, the

communication cost between any stream and the root is Ω(1
ε
log(εB)) words in every 2W

time units in the worst case.

Proof. Consider any ε < 1/12. Let x0 < x1 < x2 < . . . be an increasing sequence such

that x0 = 0, x1 =
⌈

1
ε

⌉
and for any i ≥ 2, xi = d(1 + 4ε)xi−1e. Consider the time window

[1,W] and any stream σ. Let {j1, j2, . . . } be a set of distinct item types. At each time

i ≥ 1, we release xi − xi−1 item ji’s to σ and no items to other streams. Note that there

are totally xi items in the window of σ at time i. The last item arrives at time m where m

is the largest integer such that xm ≤ B. Note that x1 =
⌈

1
ε

⌉
< 2

ε
, and for any i = 2, . . .m,

xi = d(1 + 4ε)xi−1e ≤ (1 + 4ε)xi−1 + εxi−1 = (1 + 5ε)xi−1. Since B < xm+1, we have

m = Ω(log1+5ε(εB/2)) = Ω(1
ε
log(εB)).

Let φ = 2ε. At any time i, the number of item ji is xi − xi−1 ≥ 4εxi−1. Note that

xi = d(1 + 4ε)xi−1e < (1 + 4ε)xi−1 + 1. Hence, 4εxi−1 > 4ε(xi − 1)/(1 + 4ε), which is at

least 2εxi = φxi for ε < 1/12 and xi ≥ 1/ε. Thus, for each i = 1, . . . , m, ji becomes a

new frequent item at time i. It implies that σ communicates at least 1 word with the root

(to determine the label of ji) at each time i = 1, . . . , m, and hence the communication

4Our argument can be extended such that items arrive in more than one stream and each of them
needs to communicate with the root.

Chapter 7. Communication-efficient Data Stream Algorithms 148

cost is Ω(1
ε
log(εB)) words in [1,W]. We do not release items during [W + 1, 2W], so

all items expire no later than 2W . We can repeat the sequence above, and the theorem

follows.

As shown in Section 7.3, we can solve the frequent items problem using the ap-

proximate counting or quantiles queries, together with the basic counting queries. The

basic counting problem requires only O(1
ε
log(εB)) bits communication. Thus, by Theo-

rem 7.16, we obtain the lower bounds for approximate counting or quantiles.

Corollary 7.17. For the ε-approximate counting and ε-approximate quantiles problems

on a sliding window, the communication cost between any stream and the root is Ω(1
ε
log(εB))

words in every 2W time units in the worst case.

Whole data stream. For any stream σ, let n be the total number of items that

arrive in σ. Using the same arguments as that for the sliding window setting, we can

obtain the same lower bounds with B replaced by n. Specifically, the communication cost

between σ and the root is Ω(1
ε
log(εn)) bits for basic counting, and Ω(1

ε
log(εn)) words

for frequent items, approximate counting and quantiles in the worst case.

Out-of-order streams. An in-order stream is a special case of an out-of-order

stream, so the previous lower bounds still hold for out-of-order streams with any tardiness

τ . The following theorem gives stronger lower bounds of communication for the four

queries.

Theorem 7.18. Consider the out-of-order streams setting with tardiness 0 ≤ τ ≤ W −1.

• For the ε-approximate basic counting problem, the communication cost between any

stream and the root is Ω(max{ W
W−τ

, 1
ε
log(εB)}) bits in every 2W time units in the

worst case.

• For the ε-approximate frequent items, ε-approximate counting and ε-approximate

quantiles problems, the communication cost between any stream and the root is

Ω(max{ W
W−τ

, 1
ε
log(εB)}) words in every 2W time units in the worst case.

Proof. Consider any stream σ. We want to show that in every 2W time units, σ and the

root need to communicate Ω(W
W−τ

) bits for the basic counting problem, and Ω(W
W−τ

) words

Chapter 7. Communication-efficient Data Stream Algorithms 149

for the frequent items, approximate counting and quantiles problems. Then, together with

Theorems 7.15 and 7.16 and Corollary 7.17, the theorem follows.

Consider the sequence that at each time ti = i(W − τ + 1), i = 1, 2, . . . , a distinct

item arrives with time-stamp ti − τ , and the last item arrives at time tm where m is

the largest integer such that tm ≤ W . Note that the item arriving at ti expires at time

ti − τ + W = ti+1 − 1. Thus, there are exactly one item in the sliding window during

[ti, ti+1 − 1) and exactly zero item at ti+1 − 1. At each ti+1 − 1, the stream σ needs

to communicate with the root at least 1 bit for basic counting and at least 1 word (an

item label) for the other queries. Thus, during [1,W], the communication cost is Ω(W
W−τ

)

bits the basic counting problem, and Ω(W
W−τ

) words for the frequent items, approximate

counting and quantiles problems. We do not release items during [W + 1, 2W], so all

items expire no later than 2W . We can repeat the sequence above to obtain the required

results.

Chapter 8

Conclusion

In this thesis, we have presented several new results on online job scheduling and data

stream algorithms. For online job scheduling, we studied four problems on online flow-

energy scheduling, namely, flow-energy scheduling on a single processor, flow-energy

scheduling with sleep states, non-migratory multi-processor flow-energy scheduling, and

non-clairvoyant flow-energy scheduling. For data stream algorithms, we studied both

space-efficient and communication-efficient data stream algorithms.

For flow-energy scheduling on a single processor, we introduce a new speed function

AJC that depends on the number of active jobs. AJC is a more stable speed function than

existing speed functions [12,16]; existing speed functions depend on the remaining work of

active jobs and therefore change continuously, which is undesirable practically, while AJC

changes only at job arrival or completion. Using AJC leads to an algorithm SRPT-AJC,

which is O(1)-competitive for total flow time plus energy in both the infinite and bounded

speed models. These results improve the best competitive ratios in the infinite speed

model [16] and the bounded speed model [12], respectively. More importantly, under the

bounded speed model, SRPT-AJC does not require extra maximum processor speed as

the existing algorithm [12] does.

Nowadays, energy saving can be achieved not only by speed scaling of the processors,

but also by allowing a processor to enter a low-power sleep state. We initiate the study of

flow-energy scheduling that exploits both speed scaling and sleep states. We give a sleep

management algorithm called IdleLonger, which determines when the processor should

sleep, idle, and work. IdleLonger works for a processor with one or multiple levels of sleep

150

Chapter 8. Conclusion 151

states and works in both infinite and bounded speed models. We adapt the speed scaling

algorithm SRPT-AJC and show that this adapted algorithm together with IdleLonger is

O(1)-competitive for total flow plus energy in both infinite and bounded speed models.

We extend the study of flow-energy scheduling to the setting with m ≥ 2 processors.

This extension is not only of theoretical interest, as modern processors adopt multi-

core technology (dual-core and quad-core are getting common). A multi-core processor

is essentially a pool of parallel processors. We aim at schedules that do not require job

migration among processors; in practice, migrating jobs requires overheads and is avoided

in many applications. We introduce the job dispatching policy CRR, which leads to a

online non-migratory algorithm CRR-A. We analyze CRR-A under the bounded speed

model (the results also hold in the infinite speed model). When job size is restricted to

power-of-2, CRR-A is O(log P)-competitive for flow plus energy, where P is the ratio of

the maximum job size to the minimum job size. For jobs of arbitrary size, CRR-A is

O(1)-competitive for flow plus energy, using slightly higher maximum processor speed.

We also show that any online scheduling algorithm (without extra maximum speed) is

Ω(log P)-competitive. When jobs are all power-of-2 size, this lower bound still holds and

CRR-A is therefore optimal (up to a constant factor) for such jobs.

In some applications like operating systems, job size is only known when the job

finishes, which is referred to as the non-clairvoyant model. We initiate the study of

non-clairvoyant flow-energy scheduling. When all jobs are released at the same time,

we give an algorithm that is (2 − 1
α
)-competitive and 2-competitive in the infinite and

bounded speed model, respectively. The latter inherits a lower bound of 2 from flow-

time scheduling [74] and is therefore optimal. We can further generalize this result for

minimizing weighted flow time plus energy, and the corresponding ratios become (2− 1
α
)2

and 4, respectively. For jobs with arbitrary release times, we focus on the infinite speed

model. We give an algorithm that is O(1)-competitive for flow plus energy. This algorithm

can be adapted to the model with sleep states and the adapted algorithm together with

the sleep management algorithm IdleLonger remains O(1)-competitive. It is open whether

an online algorithm can be O(1)-competitive in the bounded speed model, and our work

serves as a step towards this more difficult problem.

For space-efficient data stream algorithms, we focus on count-based sliding window

of size W and consider two problems. The first problem is about counting the number

of 1-bits in a bit stream, which is a fundamental data stream problem. We introduce

Chapter 8. Conclusion 152

the Significant One Counting problem, which asks for an estimate with bounded relative

error ε ∈ (0, 1) only when the number of 1-bits in the window is at least θW for some

threshold θ ∈ (0, 1). This problem provides more flexibility in space-accuracy tradeoff

than the basic counting problem, which asks for an estimate with bounded relative error

in any case. In particular, by setting θ = 1/W , the new problem becomes the basic

counting problem. We show that any algorithm for significant one counting must use

at least Ω(1
ε
log2(1

θ
) + log(εθW)) bits of memory. Then, we give an algorithm that has

constant update and query time, and uses memory matching the lower bound, i.e., the

algorithm has the optimal time and space complexity. The second problem is finding

ε-approximate frequent items over sliding window. We give an algorithm which supports

O(1
ε
) update and query time, and uses O(1

ε
) words of memory which is essentially optimal.

This substantially improves the previous result by Arasu and Manku [5]. We also extend

our algorithm to the setting where the window size W can be changed by the user. This

extended algorithm uses O(1
ε
log W) space.

Finally, we study communication-efficient algorithms for continuous monitoring of

multiple, distributed data streams. We initiate a mathematical study of algorithms for

monitoring distributed data streams over a time-based sliding window (which contains

a variable number of items and possibly out-of-order items). The concern is how to

minimize the communication between individual streams and the root (or the coordina-

tor), while allowing the root, at any time, to be able to report the global statistics of

all streams within a given error bound. We present communication-efficient algorithms

for four classical statistics, namely, basic counting, approximate counting, frequent items

and quantiles. The worst-case communication cost over a window is O(1
ε
log(εB)) bits for

basic counting and O(1
ε
log B) words for the remaining, where B is the maximum number

of items that can arrive in a time window, and ε < 1 is the desired error bound. Matching

and almost matching lower bounds are also presented. The upper bound results directly

imply those for the whole data stream and count-based sliding window.

8.1 Future Work

Our work gives a better understanding of different flow-energy scheduling problems and

different space-efficient and communication-efficient data stream algorithms. Yet, there

are still many interesting directions that deserve investigation, as shown below.

Bibliography 153

Non-migratory multi-processor flow-energy scheduling. We have shown that

under the bounded speed model, any online scheduling algorithm is Ω(log P)-competitive

for flow plus energy, where P is the ratio of maximum job size to minimum job size. The

online non-migratory algorithm CRR-A achieves this optimal competitive ratio only when

job sizes are restricted to power-of-2. It would be interesting to see if CRR-A remains

O(log P)-competitive for flow plus energy when scheduling arbitrary jobs.

Non-clairvoyant flow-energy scheduling. When jobs have arbitrary release time,

we have given an online non-clairvoyant algorithm that is O(1)-competitive for flow plus

energy in the infinite speed model, yet not much is known for the bounded speed model.

Related results are on flow-time scheduling (without energy concern), where it has been

known that any online non-clairvoyant algorithm has a competitive ratio of Ω(n1/3) for

total flow time [74], where n is the number of jobs, and given extra processor speed, for

any ε > 0, SETF is (1+ ε)-speed O(1+ 1
ε
)-competitive for total flow time [61]. Therefore,

extra maximum processor speed is necessary to achieve O(1)-competitiveness for flow

plus energy. It remains open if extra speed is sufficient to achieve O(1)-competitiveness.

Space-efficient data stream algorithms. We have given space-optimal algorithm

for finding approximate frequent items over sliding windows. Recently, Cormode et al. [30]

has extended the study of this problem to out-of-order streams, yet there is a huge gap

on the upper bound and lower bound. It is interesting to close the gap and discover the

real memory requirement of the problem. Another direction is to study the quantiles

statistics (for in-order stream). It has been long open whether there is an algorithm with

memory usage matching the trivial lower bound of Ω(1/ε) words, even in the whole data

stream setting.

Communication-efficient data stream algorithms. We have shown communication-

efficient algorithms for four classical statistics, namely, basic counting, approximate count-

ing, frequent items and quantiles. Assuming in-order streams, our upper bounds and lower

bounds on the communication cost for the problems match or almost match with each

other. Yet, for out-of-order stream, our simple adaptation of the algorithms lead to a

relatively larger gap on the upper bound and lower bound (see Table 1.3 in Section 1.2.2).

It is interesting to design more sophisticated algorithms for out-of-order streams in order

to close the gap. Another direction is to extend the study of communication-efficient

algorithms to more complicated statistics, e.g., the join aggregates and L2-norm queries.

Bibliography

[1] C. Aggarwal. Data streams: models and algorithms. Springer, 2006.

[2] S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time minimization.

ACM Transactions on Algorithms, 3(4):49, 2007.

[3] S. Albers, F. Muller, and S. Schmelzer. Speed scaling on parallel processors. In

Proceedings of ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA), pages 289–298, 2007.

[4] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the

frequency moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.

[5] A. Arasu and G. Manku. Approximate counts and quantiles over sliding windows.

In Proceedings of ACM SIGMOD-SIGACT-SIGART Symposium on Principles of

Database Systems (PODS), pages 286–296, 2004.

[6] J. Augustine, S. Irani, and C. Swany. Optimal power-down strategies. In Proceedings

of IEEE Symposium on Foundations of Computer Science (FOCS), pages 530–539,

2004.

[7] N. Avrahami and Y. Azar. Minimizing total flow time and total completion time

with immediate dispatching. In Proceedings of ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA), pages 11–18, 2003.

[8] B. Awerbuch, Y. Azar, S. Leonardi, and O. Regev. Minimizing the flow time without

migration. SIAM Journal on Computing, 31(5):1370–1382, 2002.

[9] B. Babcock, M. Datar, and R. Motwani. Sampling from a moving window over

streaming data. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 633–634, 2002.

154

Bibliography 155

[10] B. Babcock and C. Olston. Distributed top-k monitoring. In Proceedings of ACM

SIGMOD International Conference on Management of Data (SIGMOD), pages 28–

39, 2003.

[11] K. R. Baker. Introduction to Sequencing and Scheduling. Wiley, New York, 1974.

[12] N. Bansal, H. L. Chan, T. W. Lam, and L. K. Lee. Scheduling for speed bounded

processors. In Proceedings of International Colloquium on Automata, Languages and

Programming (ICALP), pages 409–420, 2008.

[13] N. Bansal, H. L. Chan, and K. Pruhs. Speed scaling with an arbitrary power function.

In Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

693–701, 2009.

[14] N. Bansal and K. Dhamdhere. Minimizing weighted flow time. ACM Transactions

on Algorithms, 3(4):39, 2007.

[15] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and temper-

ature. Journal of the ACM, 54(1):3, 2007.

[16] N. Bansal, K. Pruhs, and C. Stein. Speed scaling for weighted flow time. In Pro-

ceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 805–813,

2007.

[17] L. Becchetti and S. Leonardi. Nonclairvoyant scheduling to minimize the total flow

time on single and parallel machines. Journal of the ACM, 51(4):517–539, 2004.

[18] L. Benini, A. Bogliolo, and G. de Micheli. A survey of design techniques for system-

level dynamic power management. IEEE Transactions on VLSI Systems, 8(3):299–

316, 2000.

[19] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-

bridge University Press, 1998.

[20] D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva, A. Buyuktosunoglu,

J. D. Wellman, V. Zyuban, M. Gupta, and P. W. Cook. Power-aware microarchi-

tecture: Design and modeling challenges for next-generation microprocessors. IEEE

Micro, 20(6):26–44, 2000.

Bibliography 156

[21] D. P. Bunde. Power-aware scheduling for makespan and flow. In Proceedings of ACM

Symposium on Parallel Algorithms and Architectures (SPAA), pages 190–196, 2006.

[22] C. Busch and S. Tirthapua. A deterministic algorithm for summarizing asynchronous

streams over a sliding window. In Proceedings of International Symposium on The-

oretical Aspects of Computer Science (STACS), pages 465–476, 2007.

[23] H. L. Chan, W. T. Chan, T. W. Lam, L. K. Lee, K. S. Mak, and P. W. H. Wong.

Energy efficient online deadline scheduling. In Proceedings of ACM-SIAM Symposium

on Discrete Algorithms (SODA), pages 795–804, 2007.

[24] H. L. Chan, T. W. Lam, and K. K. To. Nonmigratory online deadline scheduling on

multiprocessors. SIAM Journal on Computing, 34(3):669–682, 2005.

[25] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data

streams. In Proceedings of International Colloquium on Automata, Languages and

Programming (ICALP), pages 693–703, 2002.

[26] C. Chekuri, A. Goel, S. Khanna, and A. Kumar. Multi-processor scheduling to

minimize flow time with ε resource augmentation. In Proceedings of ACM Symposium

on Theory of Computing (STOC), pages 363–372, 2004.

[27] C. Chekuri, S. Khanna, and A. Zhu. Algorithms for minimizing weighted flow time.

In Proceedings of ACM Symposium on Theory of Computing (STOC), pages 84–93,

2001.

[28] G. Cormode and M. Garofalakis. Sketching streams through the net: distributed

approximate query tracking. In Proceedings of International Conference on Very

Large Data Bases (VLDB), pages 13–24, 2005.

[29] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi. Holistic aggregates

in a networked world: distributed tracking of approximate quantiles. In Proceedings

of ACM SIGMOD International Conference on Management of Data (SIGMOD),

pages 25–36, 2005.

[30] G. Cormode, F. Korn, and S. Tirthapura. Time-decaying aggregates in out-of-order

streams. In Proceedings of ACM SIGMOD-SIGACT-SIGART Symposium on Prin-

ciples of Database Systems (PODS), pages 89–98, 2008.

Bibliography 157

[31] G. Cormode and S. Muthukrishnan. What’s hot and what’s not: Tracking most

frequent items dynamically. ACM Transactions on Database Systems, 30(1):249–

278, 2005.

[32] G. Cormode, S. Muthukrishnan, and K. Yi. Algorithms for distributed func-

tional monitoring. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 1076–1085, 2008.

[33] G. Cornuejos, G. L. Nemhauser, and L. Wosley. The uncapacitated facility location

problem. In P. Mirchandani and R. Francis, editors, Discrete Location Theory, pages

119–171. John Wiley & Sons, 1990.

[34] A. Das, S. Ganguly, M. Garofalakis, and R. Rastogi. Distributed set-expression

cardinality estimation. In Proceedings of International Conference on Very Large

Data Bases (VLDB), pages 312–323, 2004.

[35] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over

sliding windows. SIAM Journal on Computing, 31(6):1794–1813, 2002.

[36] M. Datar and S. Muthukrishnan. Estimating rarity and similarity over data stream

windows. In Proceedings of European Symposium on Algorithms (ESA), pages 323–

334, 2002.

[37] E. D. Demaine, A. Lopez-Ortiz, and J. I. Munro. Frequency estimation of inter-

net packet streams with limited space. In Proceedings of European Symposium on

Algorithms (ESA), pages 348–360, 2002.

[38] D. Dilman and D. Raz. Efficient reactive monitoring. IEEE Journal on Selected

Areas in Communications, 20(4):668–676, 2002.

[39] D. R. Dooly, S. A. Goldman, and S. D. Scott. On-line analysis of the TCP acknowl-

edgment delay problem. Journal of the ACM, 48(2):243–273, 2001.

[40] J. Edmonds. Scheduling in the dark. Theoretical Computer Science, 235(1):109–141,

2000.

[41] J. Edmonds and K. Pruhs. Scalably scheduling processes with arbitrary speedup

curves. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 685–692, 2009.

Bibliography 158

[42] C. Estan and G. Varghese. New directions in traffic measurement and accounting.

ACM SIGCOMM Computer Communication Review, 32(4):323–336, 2002.

[43] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and S. Shenker. On a net-

work creation game. In Proceedings of ACM Symposium on Principles of Distributed

Computing (PODC), pages 347–351, 2003.

[44] P. B. Gibbons and Y. Matias. New sampling-based summary statistics for improving

approximate query answers. In Proceedings of ACM SIGMOD International Confer-

ence on Management of Data (SIGMOD), pages 331–342, 1998.

[45] P. B. Gibbons and S. Tirthapura. Estimating simple functions on the union of data

streams. In Proceedings of ACM Symposium on Parallel Algorithms and Architectures

(SPAA), pages 281–291, 2001.

[46] P. B. Gibbons and S. Tirthapura. Distributed streams algorithms for sliding win-

dows. In Proceedings of ACM Symposium on Parallel Algorithms and Architectures

(SPAA), pages 63–72, 2002.

[47] L. Golab, D. DeHaan, E. D. Demaine, A. López-Ortiz, and J. I. Munro. Identifying

frequent items in sliding windows over on-line packet streams. In Proceedings of

ACM SIGCOMM Conference on Internet Measurement, pages 173–178, 2003.

[48] L. Golab, D. DeHaan, A. López-Ortiz, and E. D. Demaine. Finding frequent items in

sliding windows with multinomially-distributed item frequencies. In Proceedings of

International Conference on Scientific and Statistical Database Management, pages

425–426, 2004.

[49] M. B. Greenwald and S. Khanna. Power-conserving computation of order-statistics

over sensor networks. In Proceedings of ACM SIGMOD-SIGACT-SIGART Sympo-

sium on Principles of Database Systems (PODS), pages 275–285, 2004.

[50] D. Grunwald, P. Levis, K. I. Farkas, C. B. Morrey, and M. Neufeld. Policies for

dynamic clock scheduling. In Proceedings of Symposium on Operating System Design

and Implementation (OSDI), pages 73–86, 2000.

[51] S. Guha, N. Koudas, and K. Shim. Data-streams and histograms. In Proceedings of

ACM Symposium on Theory of Computing (STOC), pages 471–475, 2001.

Bibliography 159

[52] G. H. Hardy, J. E. Littlewood, and G. Polya. Inequalities. Cambridge University

Press, 1952.

[53] L. Huang, X. Nguyen, M. Garofalakis, J. Hellerstein, A.D. Joseph, M. Jordan, and

N. Taft. Communication-efficient online detection of network-wide anomalies. In

Proceedings of IEEE International Conference on Computer Communications (IN-

FOCOM), pages 134–142, 2007.

[54] P. Indyk. Stable distributions, pseudorandom generators, embeddings and data

stream computation. In Proceedings of IEEE Symposium on Foundations of Com-

puter Science (FOCS), pages 148–155, 2000.

[55] S. Irani and K. Pruhs. Algorithmic problems in power management. ACM SIGACT

News, 32(2):63, 2005.

[56] S. Irani, S. Shukla, and R. Gupta. Online strategies for dynamic power manage-

ment in systems with multiple power-saving states. ACM Transactions on Embedded

Computing Systems, 2(3):325–346, 2003.

[57] S. Irani, S. Shukla, and R. K. Gupta. Algorithms for power savings. ACM Transac-

tions on Algorithms, 3(4):41, 2007.

[58] N. Jain, P. Yalagandula, M. Dahlin, and Y. Zhang. INSIGHT: A distributed mon-

itoring system for tracking continuous queries. In Proceedings of ACM Symposium

on Operating Systems Principles (SOSP), pages 1–7, 2005.

[59] C. Jin, W. Qian, C. Sha, J. X. Yu, and A. Zhou. Dynamically maintaining frequent

items over a data stream. In Proceedings of ACM Conference on Information and

Knowledge Management (CIKM), pages 287–294, 2003.

[60] B. Kalyanasundaram and K. Pruhs. Eliminating migration in multi-processor

scheduling. Journal of Algorithms, 38:2–24, 2001.

[61] B. Kalyanasundaram and K. Pruhs. Minimizing flow time nonclairvoyantly. Journal

of the ACM, 50(4):551–567, 2003.

[62] A. Karlin, M. Manasse, L. McGeoch, and S. Owicki. Competitive randomized al-

gorithms for non-uniform problems. In Proceedings of ACM-SIAM Symposium on

Discrete Algorithms (SODA), pages 301–309, 1990.

Bibliography 160

[63] A. R. Karlin, C. Kenyon, and D. Randall. Dynamic TCP acknowledgement and other

stories about e/(e−1). In Proceedings of ACM Symposium on Theory of Computing

(STOC), pages 502–509, 2001.

[64] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A simple algorithm for finding

frequent elements in streams and bags. ACM Transactions on Database Systems,

28(1):51–55, 2003.

[65] R. Keralapura, G. Cormode, and J. Ramamirtham. Communication-efficient dis-

tributed monitoring of thresholded counts. In Proceedings of ACM SIGMOD Inter-

national Conference on Management of Data (SIGMOD), pages 289–300, 2006.

[66] J. H. Kim and K. Y. Chwa. Non-clairvoyant scheduling for weighted flow time.

Information Processing Letters, 87(1):31–37, 2003.

[67] T. W. Lam, L. K. Lee, I. K. K. To, and P. W. H. Wong. Speed scaling functions

for flow time scheduling based on active job count. In Proceedings of European

Symposium on Algorithms (ESA), pages 647–659, 2008.

[68] L. K. Lee and H. F. Ting. Maintaining significant stream statistics over sliding

windows. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 724–732, 2006.

[69] S. Leonardi and D. Raz. Approximating total flow time on parallel machines. In

Proceedings of ACM Symposium on Theory of Computing (STOC), pages 110–119,

1997.

[70] J. Y. T. Leung, editor. Handbook of Scheduling: Algorithms, Models, and Perfor-

mance Analysis. CRC Press, 2004.

[71] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding (recently) fre-

quent items in distributed data streams. In Proceedings of International Conference

on Data Engineering (ICDE), pages 767–778, 2005.

[72] J. McCullough and E. Torng. SRPT optimally utilizes faster machines to mini-

mize flow time. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms

(SODA), pages 350–358, 2004.

[73] J. Misra and D. Gries. Finding repeated elements. Science of Computer Program-

ming, 2(2):143–152, 1982.

Bibliography 161

[74] R. Motwani, S. Phillips, and E. Torng. Nonclairvoyant scheduling. Theoretical

Computer Science, 130(1):17–47, 1994.

[75] K. Mouratidis, S. Bakiras, and D. Papadias. Continuous monitoring of top-k queries

over sliding windows. In Proceedings of ACM SIGMOD International Conference on

Management of Data (SIGMOD), pages 635–646, 2006.

[76] T. Mudge. Power: A first-class architectural design constraint. Computer, 34(4):52–

58, 2001.

[77] S. Muthukrishnan. Data streams: algorithms and applications. Now Publishers,

2005.

[78] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over

distributed data streams. In Proceedings of ACM SIGMOD International Conference

on Management of Data (SIGMOD), pages 563–574, 2003.

[79] C. A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via

resource augmentation. In Proceedings of ACM Symposium on Theory of Computing

(STOC), pages 140–149, 1997.

[80] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embed-

ded operating systems. In Proceedings of ACM Symposium on Operating Systems

Principles (SOSP), pages 89–102, 2001.

[81] K. Pruhs. Competitive online scheduling for server systems. SIGMETRICS Perfor-

mance Evaluation Review, 34(4):52–58, 2007.

[82] K. Pruhs, J. Sgall, and E. Torng. Online scheduling. In J. Y. T. Leung, editor,

Handbook of Scheduling: Algorithms, Models, and Performance Analysis, chapter

15.1–15.41. CRC Press, 2004.

[83] K. Pruhs, P. Uthaisombut, and G. Woeginger. Getting the best response for your

erg. ACM Transactions on Algorithms, 4(3):38, 2008.

[84] K. Pruhs, R. van Stee, and P. Uthaisombut. Speed scaling of tasks with precedence

constraints. In Proceedings of International Workshop on Approximation and Online

Algorithms (WAOA), pages 307–319, 2005.

Bibliography 162

[85] N. Rohrer. The IBM PowerPC 970FX power envelope and power management.

http://www.ibm.com/developerworks/library/pa-powerenv/.

[86] L. Schrage. A proof of the optimality of the shortest remaining processing time

discipline. Operations Research, 16(3):687–690, 1968.

[87] J. Sgall. On-line scheduling. In A. Fiat and G. J. Woeginger, editors, Online Algo-

rithms: The State of Art, pages 196–231. Springer, 1998.

[88] I. Sharfman, A. Schuster, and D. Keren. A geometric approach to monitoring thresh-

old functions over distributed data streams. ACM Transactions on Database Systems,

32(4):23, 2007.

[89] D. D. Sleator and R. E. Tarjan. Amortized efficiency of list update and paging rules.

Communications of the ACM, 28(2):202–208, 1985.

[90] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced CPU en-

ergy. In Proceedings of Symposium on Operating System Design and Implementation

(OSDI), pages 13–23, 1994.

[91] A. C. Yao. Some complexity questions related to distributive computing. In Proceed-

ings of ACM Symposium on Theory of Computing (STOC), pages 209–213, 1979.

[92] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy.

In Proceedings of IEEE Symposium on Foundations of Computer Science (FOCS),

pages 374–382, 1995.

[93] K. Yi and Q. Zhang. Optimal tracking of distributed heavy hitters and quantiles. To

appear in Proceedings of ACM SIGMOD-SIGACT-SIGART Symposium on Princi-

ples of Database Systems (PODS), 2009.

View publication statsView publication stats

https://www.researchgate.net/publication/29844589

