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In this paper, we consider the problem of finding ε-approximate frequent items over a
sliding window of size N . A recent work by Lee and Ting (2006) [7] solves the problem by
giving an algorithm that supports O ( 1

ε ) query and update time, and uses O ( 1
ε ) space. Their

query time and memory usage are essentially optimal, but the update time is not. We give
a new algorithm that supports O (1) update time with high probability while maintaining
the query time and memory usage as O ( 1

ε ).
© 2010 Elsevier B.V. All rights reserved.
1. Introduction

In many applications such as network monitoring,
telecommunications and financial monitoring, data arises
in the form of a continuous stream of data items. For ex-
ample, a flow in a network is a stream of TCP/UDP packets
containing source/destination addresses. One of the prob-
lems that are important to these applications is finding the
frequent items in a data stream. In the past, a lot of effort
has been devoted to finding frequent items in the whole
data stream seen thus far (e.g., [2–6,8,9]).

Data items are time-sensitive in most applications; we
are only interested in identifying those frequent items in a
sliding window covering the most recently seen N items
of the data stream. Arasu and Manku [1] is the first to
consider the following ε-approximate frequent items problem
over a sliding window of size N: Let θ and ε be a user-
specified threshold and a relative error bound respectively.
We are asked to maintain some data structure that allows
us to produce, at any time, a set B of items that satisfies
the following properties: (1) B only contains items that
occur at least (θ − ε)N times in the sliding window, and
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(2) any item that occurs more than θ N times in the sliding
window must be in B .

Due to practical concern, an algorithm for data stream
processing has to (1) process the data stream in only one
pass, (2) use a small amount of memory, and (3) has small
query and update times. For the ε-approximate frequent
items problem over sliding windows, Arasu and Manku [1]
gave an algorithm that supports O ( 1

ε log 1
ε ) query and up-

date time, and uses O ( 1
ε log2 1

ε ) space. Recently, Lee and
Ting [7] gave a simpler algorithm that reduces the query
and update time to O ( 1

ε ), and the memory usage to O ( 1
ε )

space.
The query time and memory usage of the algorithm by

Lee and Ting [7] are essentially optimal, while the update
time is not. Their update time depends on ε , and more
precisely, is Θ( 1

ε ). This motivates us to devise algorithms
to reduce the update time to O (1) while keeping the query
time and space requirement in O ( 1

ε ). Demaine et al. [3]
and Karp et al. [6] considered the ε-approximate frequent
items problem over the whole data stream, instead of slid-
ing window. We note that they proposed an interesting
technique such that their data structures support constant
update time with high probability. Roughly speaking, their
approach can work on counters of the data items, where
each counter only decreases at most one in any update.
However, this technique cannot be applied directly to the
algorithm in [7] for sliding windows; in an update, some
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counter may decrease by a value depending on εN , which
is much greater than one.

Our result. In this paper, we give a new algorithm for the
ε-approximate frequent items problem over sliding win-
dows. Then we show that the above technique by Demaine
et al. [3] and Karp et al. [6] can be applied on the algo-
rithm such that it has O (1) update time with high proba-
bility, while maintaining the query time and memory us-
age as O ( 1

ε ).

Organization of the paper. In Section 2, we give a new
algorithm for finding ε-approximate frequent items over
a sliding window, which uses O ( 1

ε ) space and supports

O ( 1
ε ) update time. In Section 3, we describe the technique

adopted by Demaine et al. [3] and Karp et al. [6] for re-
ducing the update time. In Section 4, we show how to
extend the algorithm given in Section 2 so that it uses
O ( 1

ε ) space, supports O (1) update time (with high proba-

bility) and O ( 1
ε ) query time.

2. An algorithm that supports O ( 1
ε ) update time

We now give an algorithm which finds frequent items
over a sliding window using O ( 1

ε ) space and requiring

O ( 1
ε ) update time. Note that this algorithm is modified

from the algorithm of Lee and Ting [7] substantially. The
change is crucial for reducing the update time in Section 4.
We will explain the changes throughout this section.

First, the framework of our algorithm differs from the
one in [7]. Let W p,q denote the window covering the set
of items: from the p-th item to the q-th item for some
integer p � q. Recall that sliding window is defined as
the window covering the N most recently arrived items.
Suppose the r-th item is the most recently arrived item.
Then Wr−N+1,r is the current sliding window. The window
slides whenever a new item arrives. In [7], it maintains a
set of window counters for the current window Wr−N+1,r .
Here, window counter is a data structure that is good in
estimating the frequency (i.e., number of occurrences) of
an item in W p,q for some specific p and q. If the (r + 1)-
st item arrives, it will maintain the window counters for
the new window Wr−N+2,r+1. In our approach, we main-
tain two sets of window counters at any time, one set for
W (i−1)N+1,iN and another set for W iN+1,(i+1)N , where i is
some integer such that iN +1 � r � (i+1)N . Such a change
is crucial and necessary for reducing the update time to
constant in Section 4. We will explain the advantage of
this change after describing how to implement a window
counter.

2.1. Window counter

Let us describe a useful data structure called window
counter, that is proposed in [7]. For any item a and any
i � j, let f i, j(a) be the frequency of item a in the window
W i, j . Window counter is used to estimate the frequency
f i, j(a) of an item a for some specific i and j. Consider
a window counter Ca of a particular item a. The win-
dow counter Ca comprises two variables: � and d, and
a queue Q .2 The counter samples the position of item
a with a sampling rate of λ. Suppose the r-th item is
the most recently arrived item and Q = 〈q1,q2, . . . ,q|Q |〉
where q1 < q2 < · · · < q|Q |. Conceptually, fqi+1,qi+1 (a) = λ

for any integer 1 � i < |Q | and fq|Q |+1,r(a) = �. The value
of the window counter Ca is defined as |Q |λ+�−d, where
we will set d later.

Suppose we keep a counter Ca for item a in the win-
dow W p,q where p < q. We initialize and maintain Ca as
follows.

Initialization: In the beginning, we set � and d to zero and
Q is empty.

Update: Suppose the r-th item arrives where p � r � q. If
this item is not a, we do not update Ca . Otherwise, we
increase the value of Ca by one as follows: (i) Increase
� of Ca by one. (ii) If � equals λ, we reset � to zero
and insert one entry r at the front of Q .

Suppose more than q items have arrived in the stream.
Ca will not be updated for any item arrived after the q-th
item, since Ca is maintained for the window W p,q only as
mentioned before. For p � k � q, the estimated frequency
f̂k,q(a) on fk,q(a) is defined as (n(k) − 1)λ + � where n(k)

equals to the number of entries in Q whose values are
greater or equal to k. (Note that the estimated frequency
f̂k,q(a) may be different to the value of counter Ca , which
is defined as |Q |λ + � − d.) It is obvious to see that

fk,q(a) − λ � f̂k,q(a) � fk,q(a). (1)

Note that compared with the original window counter pro-
posed in [7], there is a critical change in the way we
update the window counter: The original window counter
needs to remove the “expired entry” (i.e., the positions
not in the sliding window) in Q since at any time the
algorithm in [7] maintains the set of window counters
for the current sliding window, which shifts with the ar-
rival of new items. Our approach does not need to delete
the expired entry in Q . Thus, the value of Ca does not
change dramatically as the one in [7], in which the value
of counter will decrease by λ whenever an expired entry
in Q is removed. Our approach ensures that the value of
counter will either increase by at most one, or decrease by
at most one when an item arrives. Such a property will be
found very useful afterwards when we want to reduce the
update time.

2.2. Sketch

Suppose the r-th item is the most recently arrived item,
and i is the integer such that iN + 1 � r � (i + 1)N . Recall
that we maintain one set of window counters, or we call it
sketch for simplicity, for W (i−1)N+1,iN and another sketch
(another set of window counters) for W iN+1,(i+1)N . Let S j
denote the sketch for W ( j−1)N+1, jN for any integer j. Then
Si is used to estimate the frequency fr−N+1,iN(a) of ev-
ery item a in Wr−N+1,iN while Si+1 is used to estimate

2 There is a slight change in the data structure compared with the one
in [7]. This change is for simplifying the analysis.
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f iN+1,r(a) for every item a. Thus, after the arrival of the
(iN)-th item, we do not modify the sketch Si any more.3

When the r-th item arrives, only Si+1 is updated.
We now describe how to maintain the set of window

counters in a sketch for W p,q for some integers p � q in
such a way that we can answer the query correctly at any
time. Since memory space is limited, we cannot maintain
a counter for every item that may appear in the stream. At
any time, we keep at most m window counters for m dif-
ferent items (m will be set later). When an item a′ arrives,
we first search for the window counter of a′ . If this counter
exists, we update this counter as described. Otherwise, we
initialize the new counter Ca′ and update it as described.
Then if there exists exactly m counters, we carry out a
batch decrement: we decrease the value of every counter by
one. This can be done by increasing the value of d of ev-
ery counter by one. Any counter whose value equals zero
will be removed. After this step, we will have less than
m counters again. Suppose at least q items have arrived.
When we need to estimate the frequency of a in the win-
dow Wk,q for any p � k � q, we check if the counter Ca

exists. If Ca does not exist, the estimated frequency of a
is zero. Otherwise, the estimated frequency f̂k,q(a) is the
same as defined previously (i.e., (n(k) − 1)λ + �). Together
with inequality (1), we have the following guarantee in our
scheme:

fk,q(a) − λ − dmax � f̂k,q(a) � fk,q(a),

where dmax denotes the maximum possible number of
batch decrements carried out. Then it is obvious to see that
dmax � � q−p+1

m � since each batch decrement decreases the
value of m from all the counters and the total amount can
be deducted by batch decrements is at most q − p + 1.
Thus, we have

fk,q(a) − λ −
⌈

q − p + 1

m

⌉
� f̂k,q(a) � fk,q(a). (2)

For every sketch, we set λ = εN/4 and set m = 4/ε .4

Let Wr−N+1,r denote the current sliding window. Re-
call that we maintain Si for W (i−1)N+1,iN and Si+1 for
W iN+1,(i+1)N where iN + 1 � r � (i + 1)N . For any item a,

its estimated frequency in the sliding window, f̂ r−N+1,r(a),
is defined as f̂ r−N+1,iN (a) + f̂ iN+1,r(a). We can calculate
the former term from Si and calculate the latter term from
Si+1.

Lemma 1. Consider any sliding window Wr−N+1,r . For any item
a, we have

fr−N+1,r(a) − εN � f̂ r−N+1,r(a) � fr−N+1,r(a).

Proof. Note that Si+1 is actually maintaining the window
counters for W iN+1,r . Thus, we can apply inequality (2)
for the upper and lower bounds of f̂ iN+1,r(a). Together

3 When there are more than (i + 2)N items arrived, we can discard Si

for saving the space because Si is useless for answering a query after-
wards.

4 For simplicity, we assume that εN/4 and 4/ε are integers.
with the facts that λ = εN/4 and m = 4/ε , the lemma fol-
lows. �
Theorem 2. Let θ be the user-specified threshold. We solve
the ε-approximate frequent items problem by returning items
whose estimated frequencies in the sliding window are no less
than (θ − ε)N.

Proof. For any item a returned, we have fr−N+1,r(a) �
f̂ r−N+1,r(a) � (θ − ε)N . Consider any item e whose actual
frequency fr−N+1,r(e) � θ N . By Lemma 1, f̂ r−N+1,r(e) �
fr−N+1,r(e) − εN � (θ − ε)N . Therefore, e must be re-
turned, implying all items with a frequency at least θ N
are returned. �
3. The technique for reducing update time

Note that Demaine et al. [3] and Karp et al. [6] sug-
gested an approach to reduce the update time for finding
ε-approximate frequent items in the whole data stream. As
stated in [3], such a way of implementation supports con-
stant update time with high probability. We describe their
approach in this section.

Suppose we maintain a set of O ( 1
ε ) counters for esti-

mating the frequency of the items. First, we adopt dynamic
perfect hashing in order to keep a hash table of size O ( 1

ε )

such that we can access every counter in O (1) time and
update the hash table in O (1) time with high probabil-
ity. Second, we maintain c doubly linked lists, where c
is the largest value among all the counter. Counters with
the same value are put in the same doubly linked list. We
also maintain a linked list L = (v1, v2, . . . , vi, . . . , vc) of c
pointers. For any i, pointer vi points to the doubly linked
list of counters with the value i. Moreover, every counter
in this linked list have a pointer pointing back to vi . To in-
crease the value of a counter with value i by one, we use
two steps: (i) access the counter by accessing the hash ta-
ble in O (1) time, and then (ii) remove the counter from
the doubly linked list pointed by vi and add it to the
doubly linked list pointed by vi+1. If there is a batch decre-
ment, we will move the head of L to point to v2 and then
delete the pointer v1. Garbage collection of v1 and the
corresponding doubly linked list will be carried out in sub-
sequent rounds by the system. All these steps are carried
out in constant time per item arrival. If in one of the next
rounds there is an arrival of an item whose counter should
have been removed but not yet garbage collected, the ab-
sence of v1 can tell our algorithm that this counter should
have actually been removed. We also update the hash table
by removing this item from the hash table. Note that we
can also handle such a process of the garbage collection
manually so that we do not need to rely on the system for
the garbage collection.

Such a data structure supports constant update time,
but the space becomes O ( 1

ε + c) instead of O ( 1
ε ) where c

is the maximum count of an item. We can have a slight
modification in our algorithm such that the space is re-
duced to O ( 1

ε ): we replace any maximal subsequence of
L, say vi, vi+1, . . . , vi+k , where these pointers do not point
to any counter, with a pointer from vi−1 to vi+k+1 with
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a field length of k + 2. Then we can get the value of the
counter by summing the field lengths of the pointers start-
ing from v1. It is easy to verify that the update time re-
mains O (1).

4. Algorithm supports constant update time

In this section, we describe how to extend the algo-
rithm given in Section 2 using the technique described in
Section 3 such that the extended algorithm supports con-
stant update time with high probability.

We implement our sketch by the following technique.
Upon the arrival of the r-th item a,

1. Search for the counter of item a by the hash table. If
there is no such a counter in the hash table, we create
one for item a;

2. Increase the counter Ca by 1: (i) remove the counter
from the doubly linked list pointed by vi and add it
to the one pointed by vi+1 where i is the value of the
counter originally. (ii) In that counter, we also increase
� by one; if � equals λ, we will add one entry r to the
queue Q and set � to zero; and

3. Carry out batch decrement if there are exactly 4
ε coun-

ters: we move the head of L to point to v2 and then
remove v1 and all the counters in that doubly linked
list. These will be garbage collected in the subsequent
rounds. Note that we do not update the variable d in
every counter since this costs O ( 1

ε ) time. In fact, we
do not have such a variable d in any counter in our
implementation. This variable is just used for convey-
ing the concept easier.

It can be verified easily that the space required is still
O ( 1

ε ), each update takes O (1) time and Theorem 2 still
applies in our new implementation. The following shows
that we answer the query correctly in O ( 1

ε ) time.

Theorem 3. We answer the query correctly in O ( 1
ε ) time.

Proof. By Theorem 2, we can answer the query correctly
by returning the items whose estimated frequencies are
no less than (θ − ε)N . However, checking the estimated
frequency of every item takes too long time because there
are too many items. Note that we only need to check the
items for which a counter is maintained since all other
items must not be the answer to the query.

We can have a faster approach as follows. For every
counter Ca that is kept for item a in Si+1, we check
whether there also exists a counter Ca for a in Si . This
can be done in constant time since we maintain a hash ta-
ble for the counters kept in any sketch. Note that when we
calculate the estimated frequency of an item in the sketch,
we need to scan the queue Q of the counter. Thus, for any
item a kept in Si+1, we can sum up the estimated frequen-
cies of the item in both sketches in O (|Q ′| + |Q ′′|) time
where we let Q ′ and Q ′′ denote the queues maintained
for a in Si and Si+1 respectively. Since there are at most
O ( 1

ε ) counters kept in a sketch, we check the hash table

for all the counters in Si for O ( 1
ε ) times, and thus, the to-

tal time needed is O ( 1
ε ). Since there are O ( 1

ε ) entries in
all the queues in all the counters in every sketch, we use
O ( 1

ε ) time for estimating the frequencies of all the O ( 1
ε )

items kept. So the total time required is O ( 1
ε ) time. Sim-

ilarly, for every counter Ca′ that is kept for item a′ in Si ,
we check whether there also exists a counter Ca′ for a′ in
Si+1, and get the sum of the estimated frequencies of the
item in both sketches. This also takes O ( 1

ε ) time. Thus, the

total time complexity for answering a query is O ( 1
ε ). �
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