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Abstract. In large data centers, determining the right number of oper-
ating machines is often non-trivial, especially when the workload is un-
predictable. Using too many machines would waste energy, while using
too few would affect the performance. This paper extends the traditional
study of online flow-time scheduling on multiple machines to take sleep
management and energy into consideration. Specifically, we study online
algorithms that can determine dynamically when and which subset of
machines should wake up (or sleep), and how jobs are dispatched and
scheduled. We consider schedules whose objective is to minimize the sum
of flow time and energy, and obtain O(1)-competitive algorithms for two
settings: one assumes machines running at a fixed speed, and the other
allows dynamic speed scaling to further optimize energy usage.

Like the previous work on the tradeoff between flow time and energy,
the analysis of our algorithms is based on potential functions. What is
new here is that the online and offline algorithms would use different sub-
sets of machines at different times, and we need a more general potential
analysis that can consider different match-up of machines.

1 Introduction

Energy consumption is a major concern for large-scale data centers. It has been
reported that the energy consumption of the data centers in US costs more than
$4.5 billion a year and accounts for more than 1.5% of the total electricity usage
in US [15]. When a machine (or server) is on, the power consumption is divided
into dynamic power and static power ; the former is consumed only when the
machine is processing a job, while the latter is consumed constantly (due to
leakage current) even when the machine is idle (e.g., an Intel Xeon E5320 server
requires 150W when idling and 240W when working [7]). The static power con-
sumption is cut off only when a machine is sleeping. From the energy viewpoint,
a data center should let machines sleep whenever they are idle, yet waking up a
machine later requires extra energy. It is energy inefficient to frequently switch a
machine on and off. It is challenging to determine dynamically the appropriate
number of working machines so as to strike a balance between energy usage and
quality of service (QoS), especially when the workload is unpredictable. This
paper initiates a theoretical study of online job scheduling on a pool of identical
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machines that takes sleep management, energy and QoS into consideration. We
consider both models where machines are running at a fixed speed and machines
can each scale their speed to control their power, respectively.

Flow time scheduling. A well-studied QoS measurement for job scheduling is
the total flow time. The flow time (or simply the flow) of a job is the time
elapsed since the job is released until it is completed. Without energy concern,
there is already considerable amount of research on minimizing total flow time
alone (see the survey [14]). It is well-known that the online algorithm SRPT
(shortest remaining processing time) minimizes total flow time on a single ma-
chine. For scheduling on m > 1 identical machines, no online algorithm can be
O(1)-competitive even if job migration is allowed; nevertheless, Chekuri et al.
[6] showed that the non-migratory algorithm IMD [4] is O(1 + 1

ε )-competitive
for any ε > 0 when using (1 + ε) times faster machines.

Sleep management and energy. The above results assume that all machines
are always on. This paper extends the study of multi-machine scheduling to
consider sleep management and the tradeoff between flow time and energy. When
a job arrives, we need to determine whether to wake up a sleeping machine to
process it or assign it to an awake machine. We also have to decide when to put
machines to sleep to save static power. Waking up machines too aggressively
wastes a lot of energy, while an over-conservative wake-up policy accumulates
excessive flow time. The objective is to minimize the flow plus energy. Lam et
al. [11] studied this problem in the single-machine setting and gave an O(1)-
competitive algorithm for flow time plus energy. In the multi-machine setting,
sleep management gets complicated and cannot be considered separately on each
machine; for instance, a scheduler may overload some machines to put others to
sleep earlier. No online algorithm has been known for the multi-machine setting.
A relevant work is by Khuller et al. [10] who considered an offline problem of
minimizing makespan subject to a wake-up budget for jobs all released at time 0.

Speed scaling. All the results above assume that machines run at a fixed speed.
Another energy saving technology is dynamic speed scaling, which allows a pro-
cessor to scale its speed dynamically. Running a job slower can reduce energy
usage, but it leads to longer flow time. There are several online results that take
speed scaling into consideration and attempts to minimize the total flow plus en-
ergy (see the survey [1]). Most results are based on a model in which the proces-
sor, when running at speed s ∈ [0,∞), consumes dynamic power sα, where α > 1
and is typically 3 [16]. Here a scheduler needs a speed scaling policy to determine
the speed of each processor. When there is only one processor which is assumed
to be always on, the best algorithm uses the job selection algorithm SRPT and
the speed scaling algorithm AJC, which sets its speed based on the number of
active jobs [13]. This algorithm is 2-competitive for flow plus energy [5,3]. Lam
et al. [11] have also studied single-processor scheduling that exploits both sleep
management and speed scaling, and gave an O( α

log α )-competitive algorithm for
flow plus energy.
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Existing online results on speed scaling for multiple machines do not consider
sleep management [12,9,8]. The best result in the non-migratory model is by
Gupta et al. [8]. They assume each machine runs the best single-machine speed
scaling algorithm as mentioned above, and consider a job dispatching algorithm
which assigns each new job to the machine that would result in the least in-
crease in the future flow plus energy. The algorithm is O(α)-competitive for flow
plus energy. It remains open whether there exists a competitive algorithm when
machines can exploit both speed scaling and sleep management.

Note that speed scaling and sleep management might work in opposite direc-
tions; the former prefers load balancing and working slowly, while the latter could
overload some machines (and make them run faster) so as to let other machines
sleep. Furthermore, speed scaling can be optimized separately within individual
machine, but sleep management often requires considering all machines together.

Our contribution. This paper gives the first sleep management algorithm on
multiple machines for minimizing total flow plus energy. Our results cover both
the fixed speed and speed scaling models. We only consider non-migratory sched-
ules since migration requires overheads in practice. In the fixed speed model, it
is easy to show that any online algorithm is Ω(m)-competitive even if all jobs
have unit size. In view of the lower bound, we give the online algorithm (1 + ε)-
speedup processors, which run (1 + ε) times faster but does not consume more
power. We show an online algorithm POOL that is O(1 + 1

ε )-competitive for to-
tal flow plus energy when using (1 + ε)-speedup processors. (Our result remains
valid even if a machine when running at speed (1+ ε) is charged for more power,
say, (1 + λ) times of the original power. The competitive ratio would increase
by a factor of (1 + λ).) We can adapt POOL to the speed scaling model using
AJC; it is O(α)-competitive for flow plus energy. Our new algorithm has compa-
rable performance with the best speed scaling results on multiple machines that
assume all machines are always on [12,9,8].

The core idea of our algorithm is to keep a pool of “dispatchable” machines,
which are either all asleep or all awake. A new job is dispatched only to a machine
currently in the pool. We separate the management of the pool from the job
dispatching policy; the former depends on the history of the workload while the
latter depends on the size of the current job. We exploit three simple ideas to
manage the pool: (1) uses the total flow to trigger all machines in the pool to
wake up; (2) uses the total working flow plus energy to decide when to include
more machines; and (3) uses the total idling energy to decide when to remove
a machine from the pool. Like many online algorithms, POOL is conservative in
committing resources (i.e., waking up machines). Yet POOL can keep its flow
under control even if there are many occasions when it uses too few machines.

We also face new challenge when analyzing the competitiveness. As in pre-
vious work, we need to discover the “right” potential function to account for
the difference in the progress of the online algorithm and the optimal offline
algoithm OPT. With different sleep management, POOL and OPT may indeed
operate with a different subset of machines, and it is possible that POOL makes
machine i heavily loaded while OPT puts machine i to sleep. It makes no sense
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to compare their progress of machine i in POOL and OPT. We should match
the machines of POOL and OPT with the same state and measure the progress
of each pair. This paper gives a new potential analysis that allows us to dy-
namically change the matching of the machines so as to minimize the number
of state mismatch. One might think that changing the matching might require
us to “restart” the potential analysis. Yet we observe that such change cannot
increase the potential. Another important observation is that we can restrict our
attention to those offline algorithms that at any time have at most one machine
that is sleeping and has unfinished jobs.

Definitions and notations. The input is a sequence of jobs arriving online, to
be scheduled on m ≥ 1 machines. The job’s size is arbitrary and only known at
release time. Jobs are sequential in nature (i.e., each job can be processed by one
machine at a time). We consider only non-migratory schedules, in which each job
is dispatched to one machine and is run entirely on that machine. Preemption
is allowed, and a preempted job can resume at the point of preemption.

Sleep, awake, and static power. At any time, a machine is in either the awake
state or the sleep state. It can process a job only when it is awake, and the energy
is consumed at the rate μ > 0, which includes both static and dynamic power.
An awake machine can be idle (i.e., speed = 0) and only requires the static
power σ (0 < σ < μ). It can enter the sleep state to further reduce the power
to zero. Initially, all machines are in the sleep state. Following the literature,
we assume that state transition is immediate but requires energy. A wake-up
from the sleep state to the awake state requires an amount ω of energy, and
the reverse takes zero energy. It is useful to differentiate two types of awake
state, namely, with zero speed and with positive speed, which are referred to
respectively as the awake-idle and awake-working state, or simply the idle and
working state. Furthermore, we call a sleeping machine in the procrastinating
state if the machine has jobs not yet finished.

Fixed-speed and speed scaling models. In the fixed-speed model, a working
machine runs at speed 1 (i.e., processing x units of work in x units of time) and
the power required is μ. In the speed scaling model, a working machine can run
at any speed s > 0 at any time but at different power. We assume that the power
function or the rate of energy usage is P (s) = sα +σ, where α > 1 is a constant.

Flow and energy. Consider a schedule of jobs. At any time t, a job j is said to
be active if j has been released but not yet completed. Its flow time or simply
flow F (j) is the time elapsed since it arrives and until it is completed. The total
flow is F =

∑
j F (j). Let nt be the number of active jobs at time t. We can also

view the total flow as a quantity incurring at a rate equal to the number of active
jobs, i.e., F =

∫ ∞
0 nt dt. Energy is consumed by awake machines continuously

over time and by discrete wake-up transitions. Denote the total energy as E.
The cost G of a schedule is defined to be F + E. And the objective is to find a
schedule that minimizes G. Furthermore, suppose that each job is dispatched to
some machine immediately at release time. Then we can consider the flow and
energy machine by machine. For each machine, we are particularly interested
in the flow and energy incurred over the time when it is in the working state.
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We define the working cost Gw of a schedule to be the sum over all machines of
the flow and energy incurred when the machine is in the working state. Obviously,
Gw < G as the latter includes the flow incurred when a machine is sleeping, the
energy when idle, and the wake-up energy.

2 Sleep Management for Fixed-Speed Machines

This section focuses on fixed-speed machines and gives our algorithm POOL that
handles sleep management, job dispatching and scheduling in an integrated way.
POOL is using m > 1 machines that are (1 + ε) times faster than the offline
optimal algorithm OPT, while using the same power. (Recall that without extra
speed, any online algorithm is Ω(m)-competitive.) Following is our main result.

Theorem 1. For any ε > 0, POOL is O(1+ 1
ε )-competitive for flow plus energy

when using (1 + ε)-speedup machines.

Remaining working cost (rwc). As to be shown, POOL schedules jobs using
SRPT. It is useful to compute the remaining working cost (rwc) required to
serve the remaining jobs on any machine i that runs SRPT at a speed s ≥ 1. For
any time t and any q ≥ 0, let ni,t(q) be the number of active jobs in machine
i with remaining work at least q. Then at any time t, the rwc of machine i

equals
∫ ∞

q=0

∑ni,t(q)
k=1 (k+μ

s ) dq. Moreover, if a job j of size p(j) arrives at time t
and is dispatched to machine i immediately, the increase in rwc due to j equals
∫ p(j)

q=0(
ni,t(q)+1+μ

s ) dq (note that ni,t(q) refers to the number before j arrives).
Obviously, for a sequence of jobs J , the sum of the increases in rwc at their
release times equals the total working cost of serving J .

2.1 Algorithm POOL

The core idea is to maintain a small pool P of dispatchable machines. P contains
one sleeping machine initially and is always non-empty. At any time, machines
in P are either all asleep or all awake, and P is said to be asleep and awake,
respectively. Machines not in P are all asleep and do not have active jobs. POOL

would gradually include more machines into P as jobs arrive, and they are put
into the same state as P . POOL exploits three simple concepts to manage P : (1)
total flow for triggering all machines in P to wake up; (2) total working cost for
determining when to include more machines into P ; and (3) total idling energy
for determining when to put an idle machine to sleep and remove it from P .

To this end, POOL maintains three (real-value) counters B, C and D to keep
track of the accumulated flow (when P is asleep), increase in working cost and
idling energy, respectively. Initially, all counters equal 0. C only increases when a
job arrives. When P is asleep, B increases (continuously) at rate of the number
of active jobs. When P is awake, D increases at rate of σ times the number of
idle machine, but once D reaches ω, its value is capped there. Intuitively, when
D reaches ω, we could remove one idle machine from P . But this turns out to
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be too aggressive. Let Pidle be the set of idle machines in P . Indeed POOL never
sleeps an idle machine if it is the only idle machine in P (i.e., |Pidle| = 1) but
|P | ≥ 2; it does so only if there are two or more idle machines or |P | = 1.

When a job j arrives, POOL first assumes that j is dispatched to a machine
with no active jobs and calculates the increase in rwc. Denote this amount of
increase as null Inc rwc(j). If null Inc rwc(j) can compensate the wake-up
energy, POOL will include one machine into P and dispatch j to this machine
(even if P already has an idle machine). Otherwise, POOL dispatches j to a
machine i in P that minimizes the increase in rwc; below we denote machine i
as �(j, P ) and the amount of increase in rwc as min Inc rwc(j, P ). Note that
min Inc rwc(j, P ) ≥ null Inc rwc(j), and the total rwc also increases by the
same amount in both cases. C keeps track of the increase in rwc; whenever it
reaches a multiple of ω, we include one more machine into P .

Job dispatching (& expand P ): When a job j arrives,
If ((|P | < m) & (C + null Inc rwc(j) ≥ ω)),
add a machine to P ; dispatch j to this machine; C=C+null Inc rwc(j)−ω;
else dispatch j to �(j, P ); C = C + min Inc rwc(j, P );
While ((C ≥ ω) & (|P | < m)) do { add a machine to P ; C = C − ω. }
If C > ω then C = ω.

Wake up P : If (P is asleep) & (B = ω), wake up all P ’s machines; reset B = 0.
Sleep a machine (& shrink P ): When D = ω,
• if |Pidle| ≥ 2, remove one idle machine from P and put it to sleep; reset D = 0;
• if |Pidle| = |P | = 1, put P to sleep; reset C = D = 0.

Job scheduling in each machine of P : When awake, use SRPT policy.

Intuitively, scheduling for a small job (say, null Inc rwc(j) < ω) is not ob-
vious. It is too small to justify waking up a machine, yet dispatching it to an
awake machine may preempt other jobs there (due to SRPT policy) and sud-
denly cause a huge increase of rwc. Interestingly, POOL can maintain a useful
property that it always has at least one awake machine with a small workload
and dispatching j to it cannot increase the rwc too much (say, ≤ 2ω).

Property 1. Every time after POOL executes the job dispatching procedure, it
maintains the invariant that if |P | < m, there exists a machine with rwc < ω.

POOL never lets an awake machine idle if that machine has active jobs. Thus,
a machine can accumulate flow only when it is working or sleeping. Consider a
schedule of POOL. We divide POOL’s total flow F into two parts: the working flow
Fw and the sleeping flow Fs, which refer to the total flow incurred by the machines
when they are working and sleeping, respectively. We also divide POOL’s energy
usage E into three parts: Ei is the idling energy (static energy usage during the
idle state), Ew the working energy, and U the wake-up energy. Note that POOL’s
working cost Gw = Fw + Ew, and its total cost G = Fw + Fs + Ew + Ei + U .

The analysis of POOL centers on a rather complicated potential analysis of
Fw, which gives Lemma 1(i) below. Note that we will bound Fw by OPT’s
total cost G∗ together with the sleeping flow Fs, because the sleep management
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of POOL sometimes delays jobs and increases their flow. Such excess in flow is
related to Fs but not OPT. To upper bound the other components of G, we show
Lemma 1(ii). Lemmas 1(i) and (ii) would imply that POOL is O(1)-competitive.

Lemma 1. (i) Fw ≤ (9 + 10
ε )G∗ + 1

ε Fs; (ii) G ≤ 4Fw + 7G∗.

Proof (Sketch of Lemma 1(ii)). We derive three properties of POOL: (a) Fs ≤
G∗; (b) U ≤ Gw +G∗; (c) Ei ≤ U +Ew. As POOL uses (1+ε)-speedup machines,
Ew is less than OPT’s working energy and thus G∗. Thus, Lemma 1(ii) follows.

It is useful to partition the timeline into intervals called P -intervals, each of
which consists of a maximal asleep period of P , followed by a maximal awake
period of P . For a P -interval I, we can show that the total cost incurred by OPT
within I (denoted by G∗(I)) is at least ω. For (a), the sleeping flow accumulated
by POOL in the asleep period of I is ω ≤ G∗(I). Summing over all I’s gives
Fs ≤ G∗. For (b), within I, except for the first machine added to P , a machine
is added to P when the accumulated increase of rwc (i.e., counter C) reaches
a multiple of ω. When I ends, this accumulated increase in rwc would be fully
reflected in the working cost G∗ incurred within I. Thus, within I, the total wake-
up energy (including that for the first added machine) is at most the working
cost plus ω (at most G∗(I)). Summing over all I’s gives U ≤ Gw + G∗. For (c),
Ei can be incurred when D < ω and when D = ω. The first type increases at the
same rate as D and is at most U . The second type is incurred when |Pidle| = 1
but |P | ≥ 2, i.e., a working machine exists in P , which is thus at most Ew. ��

2.2 Potential Analysis of Fw

One might think that POOL is rather conservative in waking up machines and
might sacrifice flow for energy. Indeed POOL can always catch up in time its
number of machines and keep its flow under control. In particular, we can upper
bound POOL’s increase of flow even when it is using fewer machines than OPT.
The analysis is complicated because POOL and OPT may use different subsets
of (awake) machines. The rest of this section shows Lemma 1(i) using a potential
function that allows different match-up between machines of POOL and OPT.

Restricting OPT. In analyzing Fw, we restrict OPT to be the optimal offline
algorithm that always uses SRPT for job selection and has at most one procras-
tinating machine at any time. In Section 4, we show that such OPT incurs at
most three times the total cost of an unrestricted one. Henceforth, we focus on
the restricted OPT and show that POOL is O(1)-competitive against it.

Let Fw(t) denote the working flow Fw incurred up to time t by POOL. Sim-
ilarly, define G∗(t) for OPT’s total cost G∗. Assume that machines are labeled
with integers from 1 to n. At any time, we match each machine in POOL with
a certain machine in OPT. Below we denote x(i) as the machine in OPT cur-
rently matched with machine i in POOL. This matching is only for the purpose
of analysis and not known to the algorithms. Initially x(i) = i for all i. To show
Lemma 1(i), we define a potential function Φ(t) that reflects POOL’s remaining
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working cost discounted in view of OPT’s workload in the corresponding ma-
chines. Technically, we want Φ(t) to satisfy the following conditions: (i) Boundary
condition: Φ = 0 before any job is released and after all jobs are completed. (ii)
Job completion and state transition condition: Φ does not increase when a job
is completed or a machine changes its state in POOL or OPT. (iii) Job arrival
condition: After a job arrives and gets dispatched, we re-match the machines.
Φ may increase, yet the total increase due to all job arrivals is upped bounded
by O(G∗) (precisely, (8 + 9

ε ) ·G∗). (iv) Running condition: At any other time t,
dFw(t)

dt + dΦ(t)
dt ≤ (1 + 1

ε ) · dG∗(t)
dt + 1

ε · dFs

dt . By integrating the above conditions
over time, we have Fw ≤ (8 + 9

ε + 1 + 1
ε )G∗ + 1

ε Fs. Then Lemma 1(i) follows.

Potential function Φ. For any machine i of POOL, for any q ≥ 0, recall that
ni,t(q) denotes the number of active jobs with remaining work at least q at
time t. Define n∗

i,t(q) similarly for OPT. We will drop the parameter t when t
refers clearly to the current time. Let (·)+ = max(·, 0). The potential function is

Φ(t) =
∑m

i=1 Φi(t) where Φi(t) = 1
ε

∫ ∞
0

∑ni(q)
k=1 (k − n∗

x(i)(q) + μ)+ dq .

Machine re-matching. x(1), . . . , x(m) form a permutation of 1, 2, · · · , m. At any
time once a new job has been dispatched to a machine by ALG and OPT, we
keep swapping x(i) and x(j) as long as we find machines i and j satisfying:

• POOL has i not in P and OPT has x(i) awake or procrastinating; and
• POOL has j in P and OPT has x(j) sleeping.

Note that Φi, Φj and Φ may change after a swapping. Interestingly, we can verify
that this change must be non-increasing.

Lemma 2. After some x(i) and x(j) are swapped, Φi and Φj does not increase.

We can easily show the boundary, job completion and state transition conditions.
The running condition depends solely on the job scheduling policy (SRPT) and
can be analyzed independently for each matched pair of machines using tech-
niques for the single-machine analysis [5,11]; details will be given in full paper.

The core of the potential analysis is the arrival condition, which depends on
both sleep management and job dispatching policies. Below we show that when
a job arrives, after a special re-matching of machines, the increase of flow or
technically Φ can be bounded in terms of some non-overlapping cost of OPT.

Lemma 3. The sum over all jobs of the increase in Φ due to a job arrival (and
machine re-matching) is at most (8 + 9

ε ) · G∗.

At the point after a job j arrives and gets dispatched by POOL and OPT,
we re-match their machines (i.e., compute a new matching function x(i)) be-
fore we re-calculate Φ. This re-matching process is for analysis sake and can
make reference to any information in the POOL and OPT’s schedule in the
past or future. To formally define the inputs to the re-matching process, we
need to first construct a list of “interesting” events ordered by time. There
are 6 types of events: JobArrive(j)—a new job arrives and is dispatched by
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POOL and OPT; POOL In(j)—POOL adds a machine into the pool P due to
job j; POOL Out—removes a machine from P ; OPT Wake—OPT wakes up a
machine; OPT Sleep—OPT sleeps a machine; and Rematch—execute the re-
matching procedure based on POOL and OPT’s status as defined up to the pre-
vious event. When there are multiple events at the same time, they are arranged
in the following order: POOL Out, all OPT Wake, JobArrive(j), Rematch, all
POOL In(j), JobArrive(j′), Rematch, all POOL In(j′), · · · , all OPT Sleep. Let
A = (e1, e2, . . . ec) be the list of events. For each event e, we define he to be
the number of machines in P immediately after e, and h∗

e the number of awake
machines in OPT. We omit e when it is clear that we refer to the current event.
Notice that before the first event of A, h = 1 and h∗ = 0.

Lazy intervals. A lazy interval is a maximal sequence of events in A containing
at least one JobArrive, in which all events e have he ≤ h∗

e. By definition, a lazy
interval must start with a POOL Out or OPT Wake event and end before a
POOL In or OPT Sleep event. For any lazy interval �, excluding the first event,
let I�, O�, W ∗

� and S∗
� be respectively the number of POOL In, POOL Out,

OPT Wake and OPT Sleep events in �. W.r.t. the first and the last event of a
lazy interval, h = h∗. This implies the following useful property of a lazy interval.

Property 2. For a lazy interval �, I� + S∗
� = W ∗

� + O�.

Type-0, Type-1 and Type-2 jobs. Define Type-0 jobs to be jobs which POOL

dispatches to a zero-rwc machine (i.e., no active jobs). For any other job, it is
Type-1 if its JobArrive event e is in a lazy interval and he < m; otherwise, it is
Type-2. Type-0 jobs are easy to analyze. Roughly speaking, Type-2 jobs arrive
when POOL is using more machines than the OPT (or is using all m machines);
after re-matching the machines, it is relatively easy to show that Φ has limited
increase (see Lemma 4; proof will be given in the full paper). For Type-1 jobs,
POOL might be using very few machines and POOL’s increase in rwc can be way
larger than OPT’s. We analyze Type-1 jobs interval by interval (instead of job
by job) and show that POOL’s increase in rwc is bounded by the static energy
and wakeup energy of OPT (see Lemma 5(b)). Then Lemma 3 follows.

Lemma 4. The total increase in Φ due to Type-2 jobs is at most 1
ε · G∗.

For Type-0 and Type-1 jobs, it is relatively easy to see that the total increase
in Φ is at most (1+ 1

ε ) times the total increase in rwc of POOL. Thus, Lemma 5
implies that the increase in Φ due to Type-0 and Type-1 jobs is most 8(1+ 1

ε )·G∗.

Lemma 5. (a) POOL’s total increase in rwc due to Type-0 jobs is at most G∗.
(b) POOL’s total increase in rwc due to Type-1 jobs is at most 7G∗.

Lemma 5(a) is obvious: when a Type-0 job arrives, POOL’s increase in rwc
cannot exceed that of OPT. To show Lemma 5(b), let ΔG′

� and ΔG′ be the
increase in rwc to POOL due to Type-1 jobs in a lazy interval � and all Type-1
jobs, respectively. Let L be the set of all lazy intervals and let |L| be the size
of L. Define IL =

∑
�∈L I� and similarly for OL, W ∗

L and S∗
L. It is useful to define
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E∗
� to be the total wake-up energy used by OPT during � plus the static energy

used by OPT during � (precisely, during the time period enclosing all events in
�), and E∗

L to be the sum of E∗
� over all � ∈ L. Obviously, E∗

L ≤ G∗. We can
show Lemma 6 below; details will be given in the full paper. Roughly speaking,
Lemma 6(i) and (ii) show respectively that POOL can wake up more machines
in react to a large increase in working cost, and POOL does not put machines
to sleep too frequently. Thus, POOL is not over-conservative when having fewer
awake machines than OPT. Together with Property 2, Lemma 5(b) follows.

Lemma 6. (i) ΔG′ < (IL + 2|L|)ω; (ii) (W ∗
L + OL)ω ≤ E∗

L; |L|ω ≤ 3E∗
L.

3 Sleep Management and Speed Scaling

In this section, we consider the speed scaling model, where each processor can
scale its speed s in [0,∞) and consumes energy at rate P (s) = sα + σ, where
α > 1. We adapt the algorithm POOL presented in Section 2 such that each
awake processor in P scales its speed by AJC (active job count) [11], as follows.
For machine i, define ni,t and ni,t(q) similarly as before.

Speed scaling in each machine of P : When awake, if machine i has
active jobs (ni,t > 0), set its speed to (ni,t + σ)1/α; else its speed is 0.

We can verify that the rwc of a machine i becomes 2
∫ ∞
q=0

∑ni,t(q)
k=1 (k+σ)1−1/α dq.

Theorem 2. With speed scaling, POOL is O(α)-competitive for flow plus energy.

To prove Theorem 2, our main idea is similar to that in Section 2, as most
properties of POOL do not depend on the power function and remains valid.
In particular, we compare POOL with a restricted optimal algorithm OPT that
keeps at most one machine procrastinating and follows SPRT and AJC. Such
restriction allows us to calculate the rwc of OPT. In Section 4, we show that
this only increases the competitive ratio by six times. We show Lemma 7 below
which is analogous to Lemma 1 in Section 2. The sleeping flow Fs, idling energy
Ei and wake-up energy U can be bounded using the same techniques, which gives
Lemma 7 (ii). Yet in the speed scaling model, we can no longer bound Ew by E∗

w

easily. Even though we restrict OPT to use AJC as the speed scaling policy, there
is no simple relation between Ew and E∗

w. Thus, we will consider Ew and Fw

together and analyze Gw, the working cost. Using a modified potential function,
the potential analysis framework used in the fixed speed model is adaptable to
the speed scaling model, allowing us to show Lemma 7(i).

Lemma 7. In the speed scaling model, (i) Gw ≤ 11α · G∗ + (2α − 2) · Fs; (ii)
G ≤ 4Gw + 4G∗.

We now define the potential function Φ for proving Lemma 7(i). As shown in
Section 2, we want Φ to capture POOL’s remaining working cost in discounted in
view of OPT’s workload in the corresponding machines. We modify Φ in view of
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the new rwc of POOL. At any time, let x(i) to be the machine in OPT currently
matched with machine i in POOL. Then we define

Φ(t) =
∑m

i=1 Φi(t) where Φi(t) = 2α
∫ ∞
0

∑ni,t(q)
k=1 (k − n∗

x(i),t(q) + σ)1−1/α
+ dq .

We will follow a similar framework in analyzing Φ. It is easy to show the
boundary, job completion and state transition conditions. The arrival and run-
ning conditions can be proven using similar ideas but requires some modification
mostly due to the new definition of rwc. We only state the arrival and running
conditions and leave the detailed proofs in the full paper.

Lemma 8. (i) The sum over all jobs of the increase in Φ due to a job arrival
(and machine re-matching) is at most 9α · G∗. (ii) Consider any time t without
job arrival, completion, machine reordering and state transition in both POOL

and OPT. dGw

dt + dΦ
dt ≤ 2α · dG∗

dt + (2α − 2)dFs

dt .

4 Transformation of Offline Schedule

This section describes the transformation for getting the suitable offline schedule.

Theorem 3. Given any schedule S that uses speed scaling, we can transform
S into another schedule S′ that also uses speed scaling, and (i) S′ has at most
one procrastinating machine at any time, (ii) it uses SRPT for job selection and
AJC for speed scaling, and (iii) the total cost of S′ is at most 6 times that of S.

We first transform S into a schedule S0 with the following invariants: (1) If a
job j is assigned to some machine i, then j is completed before i goes to sleep
for the first time after the release of j (this invariant is mainly for simplifying
analysis); and (2) it has at most one procrastinating machine at any time. The
total cost of S0 is at most 3 times that of S. Then, we show how to transform
S0 to S′ that uses SRPT and AJC, and this will further blow up the cost by a
factor of at most 2. Observe that we have a similar transformation for the fixed
speed model, which blows up the total cost by a factor of 3 instead of 6: we
transform S0 to S′ that uses SRPT, which does not further increase the cost.

We now give the essential ideas for proving Theorem 3; details will be given in
the full paper. The construction of S0 from S starts by copying the wakeup and
sleeping times of each machine from S into S0 (i.e., each machine has the same
sequence of awake periods in both schedules). Then, we schedule each job into
S0 in order of release times; a job may be assigned to a different machine and
different time slots than it is in S. Suppose we are considering job j, whose “ex-
ecution profile” in S is 〈i, (t1, �1, s1), (t2, �2, s2) . . . , (tm, �m, sm)〉, meaning that
j is assigned to i, running at time t1 for �1 time units at speed s1, and so on.
Then, we copy this execution profile to S0. If the resulting schedule violates an
invariant, we do the following before moving on to schedule the next job.

Suppose Invariant (1) is violated, i.e., [t1, tm + �m] covers several awake pe-
riods of i. Then we “leftpack” the schedule as follows: Let u be the time ma-
chine i goes to sleep for the first time after the release of j. Then u < tm + �m.
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We extend the awake period that ends at u as much as possible by executing
j in this period. If j still cannot be completed before the next sleep time, we
repeat this process. For example, suppose that j is released at time 8 and its
execution profile in S is 〈i, (12, 1, 1), (17, 6, 3), (30, 1, 1)〉, and i’s awake periods
after 8 is [10, 13], [17, 23], [29, 32]. After leftpacking, the schedule for j in S0

becomes 〈i, (12, 1, 1), (13, 4, 3), (17, 2, 3), (23, 1, 1)〉, and the awake periods of i
after 8 is [10, 24] and [29, 32]. The extra cost for executing j during [13, 17]
equals the cost saved by not executing j during [19, 23], and during this period,
i becomes idle and costs static energy; but this will at most double the original
energy cost.

Now we briefly describe how to maintain Invariant (2). Before scheduling j,
Invariant (2) ensures that S0 has at most one procrastinating machine p at the
release time u of job j. If p = i, the new schedule still satisfies Invariant (2).
Suppose p 
= i, and after leftpacking, there is a period [u, v] during which both p
and i are procrastinating. If j’s length (i.e. total execution time) is larger than
|[u, v]|, we can wake up p earlier at u so that it becomes awake during [u, v].
Note that the extra static energy cost during this idle period is no greater than
that for processing j and thus we double the energy at most. If the length of j is
smaller than |[u, v]|, we re-assign j to p and execute it during [v− �, v] where � is
the length of j. Now machine i no longer procrastinates during [u, v] and hence
Invariant (2) is satisfied. But there is a subtle problem here: it is possible that j
completes before v in S, so in the new schedule j has an increased flow time. In
such case, we employ a different strategy which involves moving multiple jobs
from i to p, and the analysis becomes rather complicated (see the full paper).

Finally, we describe how to transform S0 to S′, which uses SRPT and AJC.
Consider any machine i. Whenever i is awake in S0, i is also awake in S′, pro-
cessing jobs using SRPT and AJC (or idles if no job remains). If i goes to sleep
in S0 at some time t, i also goes to sleep in S at time t only if it has no active
jobs; otherwise it stays awake and processes the jobs using SRPT and AJC until
there are no more active jobs, say at time t′. Then it copies the status of i at
time t′ in S0, i.e., it goes to sleep in S′ if and only if i is asleep in S0 at time t′.
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