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Abstract. We consider online scheduling algorithms in the dynamic speed scal-
ing model, where a processor can scale its speed between 0 and some maximum
speed T . The processor uses energy at rate sα when run at speed s, where α > 1
is a constant. Most modern processors use dynamic speed scaling to manage their
energy usage. This leads to the problem of designing execution strategies that are
both energy efficient, and yet have almost optimum performance.
We consider two problems in this model and give essentially optimum possible
algorithms for them. In the first problem, jobs with arbitrary sizes and deadlines
arrive online and the goal is to maximize the throughput, i.e. the total size of jobs
completed successfully. We give an algorithm that is 4-competitive for throughput
and O(1)-competitive for the energy used. This improves upon the 14 throughput
competitive algorithm of Chan et al. [10]. Our throughput guarantee is optimal
as any online algorithm must be at least 4-competitive even if the energy concern
is ignored [7]. In the second problem, we consider optimizing the trade-off be-
tween the total flow time incurred and the energy consumed by the jobs. We give
a 4-competitive algorithm to minimize total flow time plus energy for unweighted
unit size jobs, and a (2 + o(1))α/ ln α-competitive algorithm to minimize frac-
tional weighted flow time plus energy. Prior to our work, these guarantees were
known only when the processor speed was unbounded (T = ∞) [4].

1 Introduction

In the last few years, the increasing computing power of processors has caused dramatic
increase in their energy consumption. This not only leads to high cooling costs but also
to substantially reduced battery life in laptops and other mobile devices. Companies
such as IBM, Intel and AMD have made power aware design a key priority and even
scrapped the development of faster processors in favor of lower power ones. To be
more energy efficient, many modern processors now adopt the technology of dynamic
speed (voltage) scaling (see, e.g., [13,21,23]), where the processor can adjust its speed
dynamically in some range without any overhead. For example, IBM’s PowerPC 970FX
[1] allows the operating system to dynamically vary the speed (with zero overhead) at
various discrete points from 2.5GHz to 625MHz while the power consumption reduces
from 100W to less than 10W. In general, the rate of energy usage varies approximately
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as sα with speed s, where α is typically 2 or 3 [9,20]4. Most research in dynamic voltage
scaling has focused on how to exploit this capability to reduce energy consumption
without an apparent reduction in the functionality offered by the system.

A theoretical investigation of dynamic speed scaling was initiated by the seminal
paper of Yao, Demers and Shenker [24]. They considered a model where the proces-
sor can run at any speed between 0 and infinity, incurring an energy (cost) of sα per
time unit when run at speed s. We call this the infinite speed model. In this model,
Yao et al. studied the problem where jobs with arbitrary sizes and deadlines are re-
leased over time in an online manner. The goal is to find a schedule that completes
all jobs by their deadlines while minimizing the total energy used. They gave an al-
gorithm that is 2α−1αα-competitive for energy, and proposed another algorithm OA.
Bansal, Kimbrel and Pruhs [3] showed that OA is αα-competitive and this ratio is tight
(OA is discussed in further detail later). They gave another algorithm BKP which is
about 2eα+1-competitive for large α, and moreover showed that any algorithm must
be Ω((4/3)α)-competitive (as a function of α). The deadline scheduling problem has
also been considered for other measures such as minimizing the maximum speed and
minimizing the maximum temperature [3].

For scheduling jobs without deadlines, a commonly used Quality of Service (QoS)
measure is the flow time or more generally the weighted flow time. The flow time of a
job is the time taken to complete a job since it is released. Clearly, minimizing flow time
and minimizing energy usage are orthogonal objectives. To understand their tradeoffs,
Albers and Fujiwara [2] proposed combining the dual objectives into a single objec-
tive of total flow time plus energy.5 Albers and Fujiwara focused on scheduling jobs of
unit size, and they gave an 8.3e((3 +

√
5)/2)α-competitive algorithm for minimizing

unweighted flow time plus energy. Bansal, Pruhs and Stein [4] considered the more gen-
eral problem of minimizing weighted flow time plus energy. They gave a 4-competitive
algorithm for jobs of unit size and weight. They also gave a µεγ-competitive algo-
rithm for jobs of arbitrary size and weight, where ε can be any positive constant,
µε = max{(1 + 1/ε), (1 + ε)α} and γ = max{2, 2(α−1)

α−(α−1)1−1/(α−1) }. There are a
large number of other related works for dynamic speed scaling (in the infinite speed
model) and more generally for power management. We refer the readers to a survey by
Irani and Pruhs [15] for more details.

Even though the infinite speed model is rather unsatisfying to model a real proces-
sor, it is a convenient theoretical model to work with. Typically it allows the algorithm to
focus only on the speed setting aspect. For example in the deadline scheduling problem
described above, as all jobs can always be completed, any algorithm can be assumed
to schedule jobs by Earliest Deadline First (EDF) and hence it only needs to specify
the speed at any given time. Moreover, the only relevant measures of the quality of the
schedule are energy related. Another important reason is that it gives the online algo-
rithm flexibility to recover from past mistakes; for example if the algorithm realizes that
it has been working too slowly thus far, it can always try to catch up by speeding up.
This often makes the algorithm design easier and more amenable to analysis.

4 This does not hold at very low speeds due to leakage power effects that do not scale with speed.
5 Without loss of generality, by changing the units of time or energy if necessary, it can be

assumed that the user is willing to spend one unit of energy to improve one unit of flow time.
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Recently Chan et al. [10] introduced the bounded speed model, where the proces-
sor speed can vary between 0 and some maximum T . They considered the deadline
scheduling problem in this model. Note that when the maximum speed is bounded, even
the optimal offline algorithm may not be able to complete all jobs. A natural objective
is to maximize the throughput, defined as the total work of jobs that are successfully
completed by their deadlines. In traditional scheduling (where speed is fixed) Koren
and Shasha [16] gave an algorithm Dover which is 4-competitive on throughput. More-
over Baruah et al. [7] showed that this is the best possible throughput competitive ratio
for any online algorithm. Thus running Dover at speed T is clearly 4-competitive for
throughput; however it can be arbitrarily worse with respect to energy. Chan et al. [10]
considered energy efficient algorithms for throughput maximization. They designed an
online algorithm that is 14-competitive for throughput, and its energy consumption is
at most O(1) times that of any offline solution that maximizes the throughput.

1.1 Our Results

We consider two problems in the bounded speed model: energy efficient algorithms for
throughput maximization, and that for minimizing weighted flow time.

Throughput maximization. We first discuss the throughput maximization problem.
Our main result is an algorithm Slow-D which matches the optimum throughput guar-
antee of Koren and Shasha [16] while being O(1)-competitive for energy.

Theorem 1. There is an online algorithm Slow-D that is 4-competitive with respect to
throughput and (αα + α24α)-competitive with respect to energy.

Roughly speaking, Slow-D is a combination of OA and Dover. At any time, if all the
remaining jobs can be completed using speed T , Slow-D admits all jobs and runs at the
same speed as OA; otherwise, i.e., not all jobs can be completed, Slow-D uses the same
job selection rule as Dover and runs at speed T . Hence, Slow-D uses a more sophisti-
cated job selection method than the 14-competitive algorithm of [10], and differs from
Dover by running at a slower speed when there is little work remaining. To prove the
competitive ratio of Slow-D, the main novelty is a tighter analysis which accounts for
the jobs that Dover can complete but Slow-D may miss due to the slower speed.

The setting we have considered so far is overloaded in that there may be too much
work and no algorithm can finish all the jobs even running at the maximum speed at
all times. A special case is the underloaded setting where all jobs can be completed
by running at the maximum speed at all times. In traditional scheduling with a fixed
speed processor, running EDF clearly completes all jobs and hence is 1-competitive
for throughput. Yet no energy efficient algorithm can be 1-competitive with respect to
throughput6. However, we can show that near-optimum throughput can be achieved in
the underloaded setting. In particular, we have devised an algorithm called TimeSlot(ε)
that is (1 + ε)-competitive for throughput and (1 + 1/ε)ααα-competitive for energy.
Details will be given in the full paper.

6 To be 1-competitive, an algorithm must always run at maximum speed on whatever little work
has arrived thus far, otherwise the adversary can release new jobs to make the algorithm fail to
complete all jobs.
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To achieve 1-competitiveness in throughput, we consider resource augmentation
where the online algorithm is allowed to relax its maximum speed to make up for
its lack of future knowledge. In the fixed speed setting without energy concern, Lam
and To [17] gave a 1-throughput competitive algorithm using a 2T -speed processor.
Chan et al. [10] gave an energy efficient algorithm that is (1 + 1/ε)-competitive for
throughput by relaxing the maximum speed to (1 + ε)T . We can show that for the
overloaded setting, there is an online algorithm that is 1-competitive for throughput and
(1 + 2/ε)α(αα + α24α)-competitive for energy when using maximum speed (2 + ε)T ;
and for the underloaded setting, there is an online algorithm that is 1-competitive for
throughput and (1 + 1/ε)ααα-competitive for energy when using maximum speed
(1 + ε)T .

Minimizing weighted flow time. We now discuss minimizing weighted flow time plus
energy in the bounded speed model. Our results are obtained by first obtaining a guaran-
tee for weighted fractional flow time plus energy (see Section 2 for definition) and then
rounding it. We first consider the case of jobs with unit size and weight. We are able to
show that there are online algorithms that are respectively 2-competitive for fractional
flow time plus energy, and 4-competitive for total flow time plus energy.

In this paper we focus on the case of jobs with arbitrary size and weight. Note
that when the maximum speed T is very small (say Tα is less than the smallest job
weight), any algorithm must work at speed T whenever there is unfinished work. In this
case, the problem reduces to the classic problem of minimizing weighted flow time on
a fixed speed processor, without any energy concern [6, 8, 11]. For this problem it has
been recently shown that no O(1)-competitive algorithm is possible without resource
augmentation [5]. Thus we need to relax the maximum speed of the online algorithm to
(1 + ε)T in order to be O(1)-competitive for total weighted flow time plus energy.

Theorem 2. For jobs with arbitrary size and weight, there is an online algorithm that
is ((2 + o(1))α/ ln α)-competitive for fractional weighted flow time plus energy. Fur-
thermore, there is an online algorithm that given any ε > 0, uses a processor with
maximum speed (1 + ε)T , and is µε((2 + o(1))α/ ln α)-competitive for total weighted
flow time plus energy, where µε = max{(1 + 1/ε), (1 + ε)α}.

Note that both guarantees mentioned above essentially match those of [4] for the
special case of the infinite speed model. Our results here are based on generalizing and
extending the analysis in [4]. As we will discuss in Section 2, the algorithms in the
infinite speed model set the speed such that at any time the rate of increase of flow time
is equal to the rate of increase of energy. However, this is not always possible in the
bounded speed model, which makes the analysis substantially harder.

Discrete speed levels. Our results can be easily adapted to discrete speed levels. The
idea is to set the maximum speed to the highest speed level and round up the speed
function to the next higher level. It maintains the performance on throughput and flow-
time, while the energy usage is increased by at most a factor of ∆α, where ∆ is the
maximum ratio of two consecutive non-zero speed levels.
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2 Preliminaries

Throughout the paper we assume jobs arrive online over time. We use r(J), p(J), d(J)
and w(J) (wherever applicable) to denote the release time, size (processing require-
ment), deadline and weight respectively of a job J . We consider scheduling algorithms
for a single processor, and assume that jobs can be preempted arbitrarily without any
penalty. The throughput of a schedule is defined as the total size of jobs that are success-
fully completed by their deadlines (no partial credit is obtained for incomplete jobs). All
our results for throughput assume that the jobs are unweighted.

Given a schedule, the flow time of a job is the amount of time since this job is re-
leased until it completes. Equivalently, flow time of a job is simply its total cost if it
pays one unit for each unit of time until it completes. The fractional flow time of a
job is defined as its total cost if at each time unit it pays an amount equal to its unfin-
ished fraction. The weighted flow time of a job and the fractional weighted flow time
are defined analogously. Often fractional weighted flow time is much more convenient
to work with. The (online) Highest Density First (HDF) algorithm, which at any time
works on the job with the highest weight to size ratio, is optimal for minimizing frac-
tional weighted flow time. On the other hand, no O(1)-competitive online algorithm
exists for weighted flow time [5]. Note that at any time the total weighted flow time
increases at a rate equal to the total weight of currently unfinished jobs, and the total
energy usage increases at a rate sα where s is the current speed. To trade off energy and
flow time, a natural algorithm first proposed by Albers and Fujiwara [2] and analyzed
in [4], is to set the speed s such that sα is equal to the unfinished weight. However,
this cannot be done in the bounded speed model as the unfinished weight can be much
larger than Tα.

Algorithm OA. We explain the Optimal Available (OA) algorithm proposed by
Yao, Demers and Shenker [24] for the infinite speed model. Note that in the infinite
speed model it suffices to specify the speed at any time (jobs are always scheduled by
EDF). Roughly speaking, the OA algorithm is the “laziest” possible algorithm that at
any time works at the average speed just enough to complete all jobs feasibly. Formally,
let pt(x) denote the amount of unfinished work at time t that has deadline within the
next x units, then pt(x)/x is a lower bound on the average rate at which any feasible
algorithm must work. At any time t, OA works at speed sOA(t) = maxx pt(x)/x. For
example, consider the instance where a job of size 1 and deadline n arrives at each of
the times 0, 1, 2, . . . , n − 1. The optimum schedule works at speed 1, and incurs total
energy of n. On the other hand, OA starts with speed 1/n during [0, 1], and has speed
1/n+. . .+1/(n−i) during [i, i+1] for i = 0, . . . , n−1. Note that during [n−1, n], OA
consumes energy at rate about (lnn)α, which is substantially larger than that consumed
by the optimum solution at any time. Interestingly however, OA is αα-competitive with
respect to energy [3].

Another useful view of OA is the following. At any time t, OA computes the opti-
mum energy schedule for the unfinished work assuming that no more jobs will arrive,
and proceeds accordingly. When more jobs arrive in the future it recomputes this sched-
ule and continues. Let st

OA(t′) denote the speed function (for times t′ > t) computed
by OA at time t, assuming no more jobs arrive after time t. st

OA is a decreasing piece-
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wise step function, i.e., it has speed sj during Ij = [tj , tj+1] for j = 0, 1 . . ., where
s0 > s1 > s2 > . . ., and t0 = t. Moreover, only jobs with deadlines in the interval Ij

are executed during Ij . The intervals Ij change when new jobs arrive, but for a fixed t′

the computed speed st
OA(t′) can only increase with time t.

3 Energy Efficient Throughput Maximization

Recall that no algorithm can be better than 4-competitive for throughput even without
energy concern. Moreover, executing Dover at the maximum speed T is 4-competitive
for throughput, but it does not guarantee energy efficiency. In this section, we give an
energy efficient algorithm Slow-D that is optimally competitive for throughput.

3.1 Algorithm Description

Consider the execution of OA with an unbounded speed processor. Let sOA(t) denote
the speed of OA at time t, and without loss of generality we assume that OA follows
the EDF policy. We design an algorithm Slow-D that simulates OA and makes deci-
sions based on its own state and that of OA. At any time t, Slow-D works at speed
s̃(t) = min{sOA(t), T}. Note that unlike OA (which works in infinite speed model),
Slow-D may not complete all the jobs, so we need to specify carefully a job selection
and execution strategy.

We first define the notion of down-time(t) that is critically used by Slow-D. At
any time t, consider the schedule st

OA computed by OA assuming no new jobs arrive.
We define down-time(t) as the latest time t′ ≥ t such that the speed st

OA(t′) ≥ T . If
sOA(t) < T , and no such t′ exists, we set down-time(t) to be the last time before t when
the speed was at least T (or 0 if the speed was always below T ). By the nature of OA,
down-time(t) is a non-decreasing function of t no matter how jobs arrive. At any time t,
we label all released jobs (including those OA has completed) based on down-time(t).
A job J is called t-urgent if d(J) ≤ down-time(t), and is called t-slack otherwise.
Note that a t-slack job may turn into a t′-urgent job at a later time t′ > t. However,
since down-time is non-decreasing, a t-urgent jobs stays urgent until it completes or
is discarded. We call a job slack if it always remains slack during its entire lifespan;
otherwise, it is called urgent. We now describe Slow-D.

Slow-D stores all released jobs in two queues Qwork and Qwait. At any time t, it pro-
cesses the job in Qwork with the earliest deadline at speed s̃(t) = min{sOA(t), T}. As
we shall see Qwait is empty whenever Qwork is empty. Slow-D admits jobs as follows:

Job arrival. Consider a job J released at time rj . J is admitted to Qwork if
either J is rj-slack, or J and the remaining work of all rj-urgent jobs in Qwork

can be completed using speed T . Otherwise, J is admitted to Qwait. Note that
jobs admitted to Qwait are all urgent.
We say that an urgent period begins at rj if Qwork contains no urgent job before
rj and J is an urgent job admitted into Qwork.
Latest starting time (`st) interrupt. Whenever a job J in Qwait reaches its
latest starting time, i.e., current time t = d(J) − (p(J)/T ), it raises an `st in-
terrupt. At an interrupt we either discard J or else expel all t-urgent jobs in
Qwork to make room for J as follows:
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In the current urgent period7, let J0 be the last job admitted from Qwait to
Qwork (if no jobs have been admitted from Qwait so far, let J0 be a dummy
job of size zero admitted just before the current period starts). Consider all
the jobs ever admitted to Qwork that have become urgent after J0 has been
admitted to Qwork, and let W denote the total original size of these jobs. If
p(J) > 2(p(J0)+W ), all t-urgent jobs in Qwork are expelled and J is admitted
to Qwork.
Job completion. When a job J completes at time t, remove it from Qwork. If
Qwork contains no more t-urgent job, the current urgent period ends.

Note that the above urgent period is defined in such a way that at any time t during
an urgent period, only t-urgent job is being processed.

3.2 Analysis

As Slow-D works at speed min(st
OA, T ), the energy competitiveness follows directly

from the result of [10].

Theorem 3. [10] Any algorithm that works according to the speed function s̃(t) =
min(st

OA, T ) is (αα + α24α)-competitive for energy against any offline algorithm that
maximizes the throughput.

Our goal now is to show that Slow-D is 4-competitive with respect to throughput.
We partition the job sequence I into three sets. Let I` be the set of jobs admitted to
Qwait upon arrival (these may join Qwork later after raising `st interrupts). Among the
jobs admitted immediately to Qwork upon arrival, we let Is denote those that are slack
through their lifespan, and let It denote the ones that become urgent at some time before
they expire. Note that Is, It and I` are disjoint. Indeed, Is and It ∪ I` are respectively
the sets of all slack jobs and all urgent jobs in I .

We first show that all slack jobs are completed by Slow-D.

Lemma 1. Slow-D completes all jobs in Is.

Proof. Consider the execution of slack jobs under the unbounded speed OA. Since these
jobs never become urgent, they are always executed at speed strictly less than T by OA.
On the other hand, whenever OA runs at speed T or above, OA is working on an urgent
job. To ease our discussion, for any time t, we call t a peak time if OA is running at
speed T or above; otherwise, t is said to be a leisure time. At any leisure time t, Slow-D
as well as OA can only work on some t-slack job (because down-time(t) < t and all
t-urgent jobs must have deadline before t). A t-slack job can never been executed at
any peak time before t by OA; yet this might be possible for Slow-D. Together with the
fact that both Slow-D and OA are using EDF, we conclude that at any leisure time t,
Slow-D does not lag behind OA on any t-slack job (including any slack job). Thus all
the slack jobs are completed by Slow-D. ut

7 As we shall see `st interrupts occur only during urgent periods.
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We will show that Slow-D completes enough jobs in It and I`. In particular, we
consider each urgent period P = [SP , EP ] separately and derive a lower bound of the
total size of urgent jobs that Slow-D completes in P . The following lemma is key to our
lower bound. It requires two notations: join(P ) denotes the total size of jobs in It that
become urgent at some time in P . Let J∗ be the latest-deadline job in I` that is released
during P (irrespective of whether it is admitted to Qwork later or not). We define a
secured interval P ′ = [S′P , E′

P ] for P , where S′P = SP and E′
P = max{d(J∗), EP }.

Lemma 2. For any urgent period P , the total size of urgent jobs completed by Slow-D
is at least 1

4 of (join(P ) + |P ′| × T ).

Before proving Lemma 2, we show how it implies our main result. Let p(It) be the
total size of all jobs in It. Let span(I`) be the union of the spans of all jobs in I`, which
may consist of a number of disjoint intervals, and let |span(I`)| be the total length of
these intervals.

Lemma 3. The total size of urgent jobs completed by Slow-D is at least 1
4 (p(It) +

|span(I`)| × T ).

Proof. Let C be the collection of all urgent periods. By Lemma 2, the total size of
urgent jobs completed by Slow-D over all urgent periods is at least 1

4

∑
P∈C(join(P )+

|P ′| × T ).
For each job J ∈ It, J joins Qwork during some urgent period, so p(It) =

∑
P∈C join(P ).

Similarly, for each job J ∈ I`, J is released during some urgent period, so |span(I`)| ≤∑
P∈C |P ′|. Summing the above two equality and inequality, we obtain

∑
P∈C(join(P )+

|P ′| × T ) ≥ p(It) + |span(I`)| × T. ut

Theorem 4. Slow-D is 4-competitive on throughput.

Proof. Let p(Is) be the total size of all jobs in Is. By Lemma 1 and 3, the total size of
jobs completed by Slow-D is at least p(Is)+ (1/4)× (p(It)+ |span(I`)|×T ). Clearly,
any offline algorithm can complete at most p(Is) work on jobs in Is, at most p(It) work
on jobs in It and at most |span(I`)|×T work on jobs in I`, which implies the result. ut

The rest of this section proves Lemma 2. Consider an arbitrary urgent period P =
[SP , EP ]. At SP , some urgent jobs start to appear in Qwork. These jobs may be re-
leased at SP , or already in Qwork before SP but just become urgent as down-time(SP )
becomes greater than their deadlines. As time goes on, more urgent jobs may appear
in Qwork, and jobs in Qwait may raise `st interrupts. Assume that k jobs J1, J2, ..., Jk

in Qwait are admitted successfully to Qwork during P at times L1 ≤ L2 ≤ · · · ≤ Lk,
respectively. For notational convenience, we let J0 and Jk+1 be jobs of size zero, ad-
mitted at L0 = SP just before any urgent job appears in Qwork and at Lk+1 = EP just
after all urgent jobs are removed from Qwork, respectively. Note that during P , Slow-D
always runs at speed T and works on urgent jobs. It completes at least Jk and all jobs
in Qwork that are found to be urgent after Jk is admitted and before EP , as these urgent
jobs are not expelled by an interrupt.

We now show a useful property about `st interrupts of jobs in I`.
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Lemma 4. Every job J ∈ I` that is released during an urgent period P must raise an
`st interrupt in P (irrespective of whether it is admitted to Qwork later or not).

Proof. Consider the time r(J) during P when J is released. Since J was placed in
Qwait, there was more than T (d(J)− r(J)− (p(J)/T )) urgent work in Qwork at r(J).
At time progresses, more jobs in It may join Qwork, or some jobs in I` may be admitted
successfully. In either case, the total amount of admitted urgent work can only increase.
Thus, EP > r(J) + (d(J)− r(J)− (p(J)/T )) = d(J)− (p(J)/T ) which is exactly
when J raises the interrupt. ut

To lower bound the work completed by Slow-D in P , we refine the notation join as
follows: For any i, i′ such that 0 ≤ i < i′ ≤ k + 1, let join(Ji, Ji′) be the total size of
jobs in It that become urgent after Ji and before Ji′ are admitted to Qwork. Note that
join(P ) = join(J0, Jk+1).

Following the above discussion of P , the total size of urgent jobs that Slow-D com-
pletes during P is at least p(Jk) + join(Jk, Jk+1). To prove Lemma 2, if suffices to
show that p(Jk) + join(Jk, Jk+1) is at least 1

4 (join(P ) + |P ′| × T ). We prove this via
an inductive argument whose statement is described by Lemma 5.

Lemma 5. For any urgent period P = [SP , EP ] and its secured interval P ′, we have
that (1) p(Ji) ≥ join(J0, Ji)+(Li−SP )×T , for i = 0, 1, . . . , k, and (2) join(J0, Jk)+
|P ′| × T ≤ 4× p(Jk) + 3× join(Jk, Jk+1).

Proof. We prove Statement (1) by induction. For i = 0, p(J0) = 0, join(J0, Ji), and
(L0 − SP ) all equal to zero. Assume the claim is true for i. For i + 1 (s.t. i + 1 ≤ k),

join(J0, Ji+1) + (Li+1 − SP )× T

= join(J0, Ji) + join(Ji, Ji+1) + ((Li+1 − Li) + (Li − SP ))× T

≤ p(Ji) + join(Ji, Ji+1) + (Li+1 − Li)× T (by induction)
≤ 2× (p(Ji) + join(Ji, Ji+1)) < p(Ji+1) .

The second last step follows as the maximum work Slow-D can process during [Li, Li+1]
is at most (p(Ji)+join(Ji, Ji+1)). The final step follows as Ji+1 is admitted from Qwait.

Before proving Statement (2), we observe the following bounds of J∗:

(d(J∗)− Ep)× T ≤ p(J∗) ≤ 2(p(Jk) + join(Jk, Jk+1)) .

The first inequality follows from Lemma 4. If J∗ is admitted to Qwork, then J∗ = Ji

for some i ≤ k; otherwise, p(J∗) ≤ 2(p(Ji) + join(Ji, Ji+1)) for some i ≤ k. In both
cases, p(J∗) ≤ 2(p(Jk) + join(Jk, Jk+1)). Thus,

join(J0, Jk) + |P ′| × T = join(J0, Jk) + (EP − SP )× T + max{d(J∗)− EP , 0} × T

≤ join(J0, Jk) + (Lk − SP )× T + (EP − Lk)× T + p(J∗)
≤ p(Jk) + (EP − Lk)× T + p(J∗) ( by (1))
≤ p(Jk) + p(Jk) + join(Jk, Jk+1) + p(J∗)
≤ 4× p(Jk) + 3× join(Jk, Jk+1) . ut
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4 Minimizing Weighted Flow Time Plus Energy

We first consider the problem of minimizing the total fractional weighted flow time
plus energy on a variable speed processor, in the bounded speed setting. Let wa(t)
and wo(t) denote the total fractional weight of jobs in the online algorithm and some
fixed optimum schedule at time t. Consider the algorithm that works at speed sa(t) =
min{wa(t)1/α, T} and schedules jobs using HDF. We prove Theorem 5, which matches
the guarantee of [4] up to lower order terms, who showed it for the case of T = ∞. Then
by the same technique in [4], we can use this result to obtain a competitive algorithm for
total (integral) weighted flow time plus energy using a processor with maximum speed
(1+ ε)T (recall that the speed augmentation is necessary to obtain a constant guarantee
for this measure). We begin with a useful lemma relating the total fractional weight of
jobs under both online and any offline algorithm.

Lemma 6. For any offline algorithm, at any time t we have that wa(t)− wo(t) ≤ Tα.

Proof. Clearly the result holds if wa(t) ≤ Tα, and hence we consider the case when
wa(t) ≥ Tα. Thus at the current time t, the speed sa(t) = T . Let t0 be the latest time
before t such that the speed just before t0 (we denote this time by t−0 ) is less than T .
Consider the set S of jobs that arrive during [t0, t] and let w(S) denote their total weight.
Let w̃ denote the amount of fractional weight completed by the offline algorithm by
time t restricted to the jobs in S. As our algorithm always schedules the highest density
job, the amount of fractional weight completed by our algorithm during [t0, t] when
considered over all possible jobs (and not just jobs in S) is at least w̃. Thus it follows
that wa(t)−wa(t−0 ) ≤ w(S)− w̃ ≤ wo(t). This implies that wa(t)−wo(t) ≤ wa(t−0 )
which is at most Tα since sa(t−0 ) < T . ut
Theorem 5. The algorithm described above is 2α/(α − (α − 1)1−1/(α−1)) = ((2 +
o(1))α/ ln α)-competitive with respect to fractional weighted flow time plus energy.

Proof. For notational ease, we will drop the time t from the notation, since all variables
are understood to be functions of t. We will show that there is a potential function Φ,
such that the value of the function is 0 at the beginning and at end of the schedule, never
increases upon the release of a job, and satisfies the condition dΦ

dt ≤ c(wo+sα
o )−(wa+

sα
a ) for some c ≥ 1. As observed by [4], this proves that the algorithm is c-competitive

for total fractional weighted flow plus energy. In fact as wa ≥ sα
a for our algorithm, it

suffices to show that
dΦ

dt
≤ c(wo + sα

o )− 2wa . (1)

Consider the potential function Φ = η
(β+1)

∫∞
0

(
wa(h)β+1 − (β + 1)wa(h)βwo(h)

)
dh,

where β = 1− 1/α, and wa(h) and wo(h) are the total fractional weight of active jobs
that have an inverse density (defined as the size of a job divided by its weight) of at least
h under our algorithm and for some fixed optimum schedule respectively. The constant
η will be chosen appropriately later.

That the potential function does not increase upon job arrival follows from Lemma 10
in [4] which implies that the content of the integral wa(h)β+1 − (β + 1)wa(h)βwo(h)
never increases when both wa(h) and wo(h) are increased by the same amount. Thus
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we analyze the case when a job is being executed. The analysis starts similar to [4]. We
let ma and mo be the inverse density of the job being executed by our algorithm and
the optimum schedule at the current time. Then we have

dΦ

dt
= −η(

∫ ∞

0

(wa(h)β − βwa(h)β−1wo(h))
dwa(h)

dt
− wa(h)β dwo

dt
dh)

= −η(
∫ ma

0

(wa(h)β − βwa(h)β−1wo(h))
sa

ma
dh) + η(

∫ mo

0

wa(h)β so

mo
dh)

≤ −η(wβ
asa − βwβ−1

a wosa) + η

∫ mo

0

wβ
a

so

mo
dh)

= −ηwβ
asa + ηβwβ−1

a wosa + ηwβ
aso

≤ −ηwβ
asa + ηβwβ−1

a wosa + η(µβwa + βsα
o ) . (2)

The second step follows from the HDF nature of our algorithm. The final step follows
by applying Young’s inequality with a = wβ

a , b = s0, p = 1/β, and q = α, and

µ = (α− 1)−1/(α−1), which gives wβ
aso ≤ µβwa +

(
1
µ

)αβ (
sα

o

α

)
= µβwa + βsα

o .

We now show that (1) holds. We divide the analysis in three different cases. In each
case we show that dΦ/dt ≤ −η(1−µβ)wa +η(w0 +sα

o ). Setting η = 2/(1−µβ), this
implies a competitive ratio of 2/(1− µβ), which by substituting the values of µ and β
gives our claimed guarantee. The first case is when wo ≥ wa ≥ Tα. Observe that in
this case sa = T . Starting with (2),

dΦ

dt
≤ η(−wβ

aT + βwβ−1
a woT + µβwa + βsα

o )

< η(−wβ
aT + wβ−1

a woT + µβwa + sα
o ) ( as β < 1)

= η(wβ−1
a (wo − wa)T + µβwa + sα

o )
≤ η(wβ−1

a (wo − wa)w1/α
a + µβwa + sα

o ) (as wa > Tα and wo > wa)
= −η(1− µβ)wa + ηwo + ηsα

o .

The second case is when wa ≥ Tα and wa > wo. Again, sa = T .

dΦ

dt
≤ η(−wβ

asa + βwβ−1
a wosa + µβwa + βsα

o )

= −ηwβ−1
a (wa − βwo)T + ηµβ wa + ηsα

o ( as β < 1)
≤ −ηwβ−1

a (wa − βwo)(wa − wo)1/α + ηµβwa + ηsα
o (Lemma 6 and (wa − βwo) > 0)

≤ −ηwβ−1
a w1−β

a (wa − wo)β(wa − wo)1/α + ηµβwa + ηsα
o

= −η(1− µβ)wa + ηwo + ηsα
o .

The third step follows as (wa − wo) < Tα by Lemma 6. The fourth step follows by
using that fact that (1 − βx) ≥ (1 − x)β for any 0 ≤ β ≤ 1 and 0 ≤ x < 1, which
implies that (wa − βwo) ≥ w1−β

a (wa − wo)β .
Finally we consider the case that wa < T . Here sa = w

1/α
a , and this is ex-

actly the case handled by [4]. We reprove it here for completeness. dΦ
dt ≤ −ηwβ

asa +
ηβwβ−1

a wosa +ηβµwa +ηβsα
o = −η(1−βµ)wa +ηβwo +ηβsα

o ≤ −η(1−βµ)wa +
ηwo + ηsα

o . Thus the result follows. ut
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