
Competitive Online Algorithms for Multiple-Machine
Power Management and Weighted Flow Time

Ho-Leung Chan Sze-Hang Chan Tak-Wah Lam ∗ Lap-Kei Lee
Rongbin Li Chi-Man Liu

Department of Computer Science,
University of Hong Kong

Email: {hlchan, shchan, twlam, lklee, rbli, cmliu}@cs.hku.hk

Abstract

We consider online job scheduling together with
power management on multiple machines. In this
model, jobs with arbitrary sizes and weights arrive
online, and each machine consumes different amount
of energy when it is processing a job, idling or sleep-
ing. A scheduler has to maintain a good balance of
the states of the machines to avoid energy wastage,
while giving an efficient schedule of the jobs. We con-
sider a recently well-studied objective of minimizing
the total weighted flow time of the jobs plus the to-
tal energy usage. For the special case where all jobs
have the same weight, competitive algorithms have
been obtained (Lam et al. 2009, Chan et al. 2011).
This paper gives a non-trivial potential analysis of
a weighted generalization of the power management
algorithm in (Chan et al. 2011), coupled with a clas-
sic scheduling algorithm HDF. This leads to the first
competitive result for minimizing weighted flow time
plus energy. The result can be extended to the dy-
namic speed scaling model where the scheduler can
vary the speed of individual machines to process the
jobs and the energy usage depends on the speed of
the machines.

Keywords: sleep management, weighted flow time, en-
ergy efficiency, potential analysis.

1 Introduction

Server farms with hundreds to thousands of machines
are common nowadays, and energy consumption has
become an important concern. It has been reported
that the energy cost of running a machine for three
years indeed exceeds the hardware cost of the ma-
chine (Belady 2007). When a machine is turned on,
its energy consumption consists of the static power,
which is consumed even when the machine is idle,
and the dynamic power, which is the extra power
used for processing a job. For example, an Intel Xeon
E5320 server consumes 150W of energy when idling
and 240W when working. To reduce energy usage,
some machines can be put to the sleep state in which
energy consumption is reduced to essentially zero.
However, transiting a machine from the sleep state
to the awake state requires an extra amount of wake-
up energy, and it is energy inefficient to frequently

∗Tak-Wah Lam is partially supported by HKU-SPF
201109176197.
Copyright c©2013, Australian Computer Society, Inc. This pa-
per appeared at the 19th Computing: Australasian Theory
Symposium (CATS 2013), Adelaide, South Australia, January-
February 2013. Conferences in Research and Practice in Infor-
mation Technology (CRPIT), Vol. 141, Anthony Wirth, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

switch the machines on and off. In this paper, we
are interested in online algorithms for job scheduling
that can optimize the energy consumption of a pool of
machines as well as certain QoS (Quality of Service)
measure of the schedule.

Weighted flow time. A commonly used QoS
measure is the total weighted flow time (or simply
weighted flow) of the jobs. Formally speaking, jobs
arrive online at different times in an unpredictable
manner. Each job j has a size p(j) and weight w(j).
The weight w(j) reflects the importance of job j. The
flow time of a job is the length of the duration from
its arrival until its completion, and its weighted flow
time is simply its flow time multiplied by its weight.
We assume that all jobs are sequential, i.e., a job can
be processed by at most one machine at any time. We
consider preemptive scheduling and a preempted job
can be resumed at the point of preemption. Migration
incurs overhead in practice, so we only consider non-
migratory schedules in which each job is dispatched
to one machine and is run entirely on that machine.

Minimizing weighted flow is fundamentally harder
than minimizing unweighted flow even when energy
usage is not a concern: On a single machine, it is
well-known that the algorithm SRPT (Shortest Re-
maining Processing Time) is 1-competitive for un-
weighted flow time, while Bansal and Chan (Bansal
et al. 2009) showed that no online algorithm can be
O(1)-competitive for weighted flow time. To over-
come the hardness, most studies on weighted flow
time (without energy concern) consider resource aug-
mentation where the online algorithm is given faster
machines. Precisely, an s-speed machine can pro-
cess s units of work in one unit of time. On a sin-
gle machine, Becchetti et al. (Becchetti et al. 2006)
showed that the greedy algorithm HDF (Highest Den-
sity First) is (1 + ε)-speed (1 + 1

ε)-competitive for
any ε > 0, i.e., its total weighted flow time when
given a (1+ ε)-speed machine is at most (1+ 1

ε) times
that of the optimal offline schedule on a 1-speed ma-
chine. Note that the density of a job is its weight
divided by its size. HDF always schedules the jobs
with the highest density and it requires migration
when there are more than one machine. On multiple
machines, Becchetti et al. (Becchetti et al. 2006) also
showed that HDF is (2+ ε)-speed (1+ 1

ε)-competitive
when migration is allowed. The first non-migratory
result in the multiple machine setting was given by
Chadha et al. (Chadha et al. 2009) who gave a (1+ε)-
speed O(1

ε2)-competitive algorithm. The competitive
ratio was improved to O(1

ε) recently by Anand et
al. (Anand et al. 2012).

Energy-efficient scheduling. All the above results
assume energy usage is not a concern and the ma-

Proceedings of the Nineteenth Computing: The Australasian Theory Symposium (CATS 2013), Adelaide, Australia

11

chines are always awake. This paper extends the
study to the setting with sleep management. The
goal is to obtain an algorithm that is efficient in both
weighted flow time and energy usage. We model the
energy usage as follows. We are given m ≥ 1 ma-
chines. At any time, a machine can be in the sleep or
awake state. A machine can process a job only when
it is awake. Let σ ≥ 0 and ν ≥ 0 be the static and
dynamic power of a machine, respectively. Then, an
awake machine consumes energy at a rate of σ if it is
idling and at a rate of σ + ν when it is processing a
job. For convenience, we let µ = σ + ν. A sleeping
machine does not consume energy, but λ > 0 units of
wake-up energy is needed to switch a machine from
the sleep state to the awake state (we assume the re-
verse takes zero energy). Following the literature, we
assume that state transition is immediate. Our objec-
tive is to minimize the total weighted flow time plus
the total energy usage.

When all jobs have unit weight, Lam et al. (Lam
et al. 2009) studied the single machine setting and
they gave an O(1)-competitive algorithm for minimiz-
ing total unweighted flow plus energy usage. Their
algorithm may put the machine to sleep even when
there are unfinished jobs. Sleep management in the
multiple machine setting is more complicated. It is
natural to balance the workload evenly on all ma-
chines for minimizing total flow time, yet it may
be more energy-efficient to overload some machine
so as to let others sleep. Chan et al. (Chan et al.
2011) showed a multi-machine algorithm POOL that
is (1+ε)-speed O(1

ε)-competitive for minimizing total
unweighted flow plus energy usage. They also showed
that without resource augmentation, any algorithm
is Ω(m)-competitive, where m is the number of ma-
chines.

Our contributions. It has been conjectured that
POOL can be generalized to the weighted setting
when using HDF to schedule jobs on each machine.
Yet the potential analysis of flow time given in (Chan
et al. 2011) does not work in the weighted setting. In
this paper, we resolve this conjecture in the affirma-
tive by giving a weighted version of POOL which to-
gether with HDF gives a new algorithm (to be called
WPOOL) that is (1 + ε)-speed O(1

ε2)-competitive for
minimizing total weighted flow time plus energy us-
age. The main difficulty lies on the analysis, in
which a new potential function is given to relate the
weighted flow time plus energy usage of the online
algorithm and the optimal schedule. This involves
comparing the fractional flow time (which is a relaxed
notion of weighted flow time).

Remarks on speed scaling. The above result can be
extended to the dynamic speed scaling model where
an awake machine can run at any speed between
[0,∞) and each machine can scale its speed individ-
ually. The static power of an awake machine remains
σ, yet the dynamic power ν(s) becomes a function of
the current speed s. Following the literature (see (Al-
bers 2010) for a survey), we assume ν(s) = sα where
α > 1 is a small constant (typically 3 for CMOS-based
devices (Brooks et al. 2000)). When all jobs have the
same weight, Chan et al. (Chan et al. 2011) showed
that the algorithm POOL can be extended to the
speed scaling model. POOL exploits the speed scaling
algorithm AJC (Lam et al. 2008), which sets the pro-
cessor speed based on the number of the unfinished
jobs, and is O(α)-competitive for unweighted flow
plus energy. In this paper, we can extend WPOOL

to the speed scaling model. We generalize the speed
scaling algorithm BPS (Bansal et al. 2009) with the

static power σ taken into consideration (precisely, the
processor speed depends on the remaining fraction of
the weight of unfinished jobs and the value of σ). This
results in an O(α3

ln α)-competitive algorithm for min-
imizing total weighted flow time plus energy usage.
Due to the space limitation, we leave the details of
the speed scaling result to the full paper.

Notations. Given a schedule S, let F (S) denote
the total weighted flow time of all jobs. In the fixed-
speed setting, we assume that the online scheduler is
using (1+ ε)-speed machines, each can process (1+ ε)
units of work in one unit of time while consuming
energy at the same rate as a 1-speed machine used
by the optimal offline algorithm (i.e., µ). The energy
usage of a machine is the total energy usage when
it is awake plus the total wake-up energy used for
state transition. Let E(S) denote the total energy
usage of all machines. The objective is to minimize
G(S) = F (S) + E(S). A job is said to be active at
time t if it has been released but not yet completed
by time t.

2 The algorithm WPOOL

This section presents the algorithm WPOOL for
scheduling jobs with arbitrary weights. We first show
some basic facts related to the notions of fractional
weight and remaining working cost. Below Off de-
notes the optimal offline algorithm that minimizes the
total weighted flow plus energy for any input.

2.1 Fractional weighted flow and remaining
working cost

At any time t, for any job j, let p(j, t) be the un-
finished size of j at time t. The fractional weight
of j at time t, denoted w̃(j, t), is its weight mul-
tiplied by the fraction of its unfinished size. I.e.,
w̃(j, t) = p(j,t)

p(j) · w(j). The fractional weighted flow
of j is the integral of its fractional weight over time
from its arrival until its completion. For any sched-
ule S, denote F̃ (S) as the total fractional weighted
flow of all jobs. Obviously, F̃ (S) ≤ F (S). We first
notice that it is sufficient to design an algorithm that
is efficient in terms of total fractional weighted flow.
A similar result was proved in (Becchetti et al. 2006)
for the setting without energy concern.

Lemma 1. Let A be any algorithm with sleep man-
agement using s-speed machines. For any δ > 0,
we can transform A into another algorithm A′ us-
ing ((1 + δ)s)-speed machines such that F (A′) ≤
(1 + 1

δ)F̃ (A) and E(A′) ≤ E(A).

Proof. A′ schedules each machine and manages its
state identically as A, except that if a job j is already
completed by A′ but not A, then A′ will remain idle
when A is processing j. Obviously, E(A′) ≤ E(A).
At any time t, if a job j is not completed by A′, the
remaining size of j in A is at least p(j)− p(j)

(1+δ)s · s =
p(j) δ

1+δ . Hence the fractional weight of j in A is
at least δ

1+δ w(j). It implies that the total weight
of active jobs in A′ is at most (1 + 1

δ) times the to-
tal fractional weight of active jobs in A, and hence
F (A′) ≤ (1 + 1

δ)F̃ (A).

Hence, we first design an algorithm A with
bounded total fractional weighted flow plus energy
usage. Then by increasing the speed of A further by

CRPIT Volume 141 - Theory of Computing 2013

12

a factor of (1 + δ), we obtain an algorithm that is
competitive with respect to the total weighted flow
plus energy usage.

The density of a job j is the ratio of its weight
to size, i.e., w(j)/p(j). It is known that the algo-
rithm HDF (Highest Density First) minimizes the to-
tal fractional weighted flow on a single machine when
there is no energy concern (Becchetti et al. 2006). In
fact, our algorithm WPOOL schedules jobs by HDF
for each machine whenever it is awake. WPOOL dis-
patches a job to a machine once the job arrives. To
decide which machine a job is dispatched to, WPOOL

uses the following definition.

Definition 2. At any time t, the remaining working
cost (rwc) for a machine i, denoted rwci(t), is the to-
tal fractional weighted flow plus energy to be incurred
after time t by machine i while it is processing a job,
assuming no more jobs arrive after time t and assum-
ing it processes jobs by HDF whenever it is working.

We can compute rwci(t) as follows. Let T be
the intervals of time after t during which machine i
is processing a job. Let w̃i(x) be the total frac-
tional weight of all jobs dispatched to machine i that
are not yet completed by time x. Then rwci(t) =∫

T
w̃i(x)dx + |T |µ, where |T | is the total length of

the time intervals in T . Note that rwci(t) depends
only on the time when machine i is working, but not
the time when it is idle or sleeping. Furthermore,
it assumes that the machine processes jobs by HDF
whenever it is working.

The following lemma gives a more useful formula
for calculating rwci(t). The inverse density of a job j,
denoted q(j), is the inverse of its density, i.e., q(j) =
p(j)/w(j). At any time t, for any real q ≥ 0, let
ni(q, t) be the number of active jobs in machine i with
inverse density at least q, and let w̃i(q, t) be the total
fractional weight of those jobs. Let w̃i(t) = w̃i(0, t),
i.e., the total fractional weight of all active jobs in
machine i at time t.

Lemma 3. Suppose that machine i uses HDF to
schedule the jobs whenever awake. Then, at any time
t, rwci(t) =

∫∞
0

∫ w̃i(q,t)

0
z+µ

s dz dq, where s is the speed
of machine i. Moreover, if a job j of inverse den-
sity x arrives at time t and is dispatched to machine
i immediately, the increase in rwc due to j equals∫ x

0

∫ w̃i(q,t)+w(j)

w̃i(q,t)
z+µ

s dz dq (note that w̃i(q, t) refers to
the total fractional weight just before j arrives).

Proof. Let j1, j2, . . . , jn be the active jobs in machine
i at time t, ordered in non-decreasing order of density.
I.e., w(j1)

p(j1)
≤ w(j2)

p(j2)
≤ · · · ≤ w(jn)

p(jn) . If no job arrives af-
ter time t, then HDF executes the active jobs in the
order of jn, jn−1, . . . , j1. Since rwci(t) only includes
the cost incurred when machine i is working, we as-
sume w.l.o.g. that machine i does not sleep after time
t.

Consider the maximal period [tk, t′k] of time that
HDF is processing the job jk. Let G̃(tk, y) be the
fractional weighted flow plus energy incurred during
[tk, y] for some time y ∈ [tk, t′k]. Then, dG̃(tk,y)

dy =
w̃i(y)+µ and w̃i(y) is decreasing (w.r.t. y) at a rate of
sw(jk)

p(jk) = s
q(jk) (i.e., dw̃i(y)

dy = −s
q(jk)). Thus, dG̃(tk,y)

dw̃i(y) =

−(w̃i(y) + µ) q(jk)
s . At time tk, w̃i(tk) = w̃(j1, t) +

· · · + w̃(jk, t); also, at time t′k, w̃i(t′k) = w̃(j1, t) +

· · ·+ w̃(jk−1, t). Thus,

G̃(tk, t′k) =
∫ w̃(j1,t)+···+w̃(jk−1,t)

w̃(j1,t)+···+w̃(jk,t)

−(z + µ) · q(jk)
s

dz

= q(jk)
∫ w̃(j1,t)+···+w̃(jk,t)

w̃(j1,t)+···+w̃(jk−1,t)

z + µ

s
dz .

Notice that rwci(t) =
∑n

k=1 G̃(tk, t′k) =∑n
k=1 q(jk)

∫ w̃(j1,t)+···+w̃(jk,t)

w̃(j1,t)+···+w̃(jk−1,t)
z+µ

s dz. We expand
q(jk) for 1 ≤ k ≤ n−1 using q(jk) = q(jn)+(q(jn−1)−
q(jn)) + · · · + (q(jk) − q(jk+1)). Collecting those
terms with coefficient (q(jk) − q(jk+1)), the above
summation becomes q(jn)

∫ w̃(j1,t)+···+w̃(jn,t)

0
z+µ

s dz +∑n−1
k=1(q(jk) − q(jk+1)) ·

∫ w̃(j1,t)+···+w̃(jk,t)

0
z+µ

s dz =∫∞
0

∫ w̃i(q,t)

0
z+µ

s dz dq.
If a job j with q(j) = x arrives at time t and is

dispatched to machine i, then w̃i(q, t) increases by
w(j) for q ∈ [0, x]. Thus, the increase in rwci due to
j equals

∫ x

0

∫ w̃i(q,t)+w(j)

w̃i(q,t)
z+µ

s dz dq.

2.2 Algorithm definition

WPOOL attempts to maintain a small pool P of dis-
patchable machines; P contains one sleeping machine
initially and is always non-empty. At any time, ma-
chines in P are either all asleep or all awake, and P is
said to be asleep or awake, respectively. Machines not
in P are always asleep and do not have active jobs.
WPOOL would gradually include more machines into
P as jobs arrive, and they are immediately put into
the same state as P .

WPOOL maintains three real-value counters Xaf,
Xie and Xwc to keep track of the recent increase to the
accumulated flow (when P is asleep), idling energy,
and working cost, respectively. Initially, all counters
equal 0. As detailed below, they each keep increasing
until they trigger certain events, then they will be
reset.

• When P is asleep, Xaf increases continuously at
the rate of the total fractional weight of active
jobs. Once Xaf reaches λ, we wake up all ma-
chines of P and reset Xaf to zero.

• When P is awake, Xie increases continuously at
the rate of σ times the number of idle machines.
Once Xie reaches λ, if P has two or more idle
machines, we remove one idle machine from P ,
put it to sleep and reset Xie to zero. See the
algorithm below for the details of some boundary
cases.

• Xwc increases only when a job arrives. Intu-
itively, whenever Xwc reaches a value at least λ,
we try to include one machine into P and de-
crease Xwc by λ. Specifically, when a job j
arrives, WPOOL first assumes that j is dis-
patched to a machine with no active jobs and
calculates the increase in rwc. Denote this
amount of increase as null Inc rwc(j). If Xwc +
null Inc rwc(j) ≥ λ and |P | < m, WPOOL

will add one machine into P and dispatch j
to this machine (even if P already has idle or
sleeping machines), and Xwc is set to Xwc +
null Inc rwc(j) − λ. Otherwise, WPOOL dis-
patches j to a machine i in P that mini-
mizes the increase in rwc; below we denote

Proceedings of the Nineteenth Computing: The Australasian Theory Symposium (CATS 2013), Adelaide, Australia

13

machine i as `(j, P), and the amount of in-
crease in rwc as min Inc rwc(j, P). Xwc in-
creases by min Inc rwc(j, P) (which is at least
null Inc rwc(j)). At the end, if Xwc is at least
λ, we repeatedly try to add a machine into P and
decrease Xwc by λ.

Below is a complete description of the algorithm
WPOOL.

Increase Xaf and wake up P : At any time, if P is asleep,

• Xaf increases at the rate of the total fractional weight of
active jobs;

• If (Xaf = λ), then wake up all machines in P ; reset
Xaf = 0.

Increase Xie, remove & sleep an idle machine of P : At
any time, if P is awake,

• If (Xie < λ), then Xie increases at the rate of σ times
the number of idle machines.

• If (Xie = λ), then

� if P has ≥ 2 idle machines, remove and sleep one idle
machine from P ; reset Xie = 0;
� if P has only one idle machine and |P | = 1, put P to

sleep; reset Xwc = Xie = 0;
� otherwise, Xie remains equal to λ.

Dispatch a new job, increase Xwc and expand P :
When a job j arrives,

• If ((|P | < m) & (Xwc + null Inc rwc(j) ≥ λ)),
then add a machine to P ; dispatch j to this machine;

Xwc = Xwc + null Inc rwc(j)− λ;
else dispatch j to `(j, P); Xwc = Xwc +

min Inc rwc(j, P);

• While ((Xwc ≥ λ) & (|P | < m)) do
{ add a machine to P ; Xwc = Xwc − λ }

• If Xwc > λ, then Xwc = λ.

Job scheduling in each machine of P : When awake, use
HDF policy.

Property 4. Every time after WPOOL executes the
job dispatching procedure, it maintains the invariant
that if |P | < m, there exists a machine with rwc < λ.

Proof. Suppose, for the sake of contradiction, that
there exists a time t, such that immediately after some
job is dispatched at time t, |P | < m, and all machines
in |P | has rwc ≥ λ. Note that λ > 0. Let t0 ≤ t
be the latest time not later than t, such that at t0
all machines in P have rwc > 0, yet immediately
before t0 at least one machine in P has rwc = 0.
Hence, from time t0 to time t, all machines in P have
rwc > 0 and no machine is removed from P (since
WPOOL removes a machine from P only when it is
idle, which implies it has rwc = 0). Now, consider all
zero-rwc machines in P immediately before t0. By
the definition of WPOOL, at most one such machine
can be removed from P at time t0, and it cannot be
removed if it is the only one idle machine in P . Hence,
there exists a zero-rwc machine i0 in P immediately
before t0, such that i0 is still in P immediately after t0
but with rwc > 0 (due to some jobs dispatched to it).
Assume that there are x new machines added to P
from t0 to t (including the ones added at time t). As
mentioned above, no machine will be removed from P
from t0 to t. Hence, i0 and these x machines (totally
x + 1 machines) will remain in P at least until time
t, and each of them has rwc ≥ λ at time t. So, each
of them has an increase of rwc at least λ since t0.
By the definition of WPOOL, at least x + 1 machines
are added to P from t0 to t, which contradicts the
assumption that only x machines are added.

Our main result is as follows, which will be proved
in the next section.

Theorem 5. When WPOOL is given (1 + ε)-speed
machines, the total fractional weighted flow plus en-
ergy usage of WPOOL is at most O(1 + 1

ε) times the
total weighted flow plus energy usage of Off.

Then, together with Lemma 1, we have the follow-
ing corollary.

Corollary 6. There exists an algorithm WPOOL′

that is (1 + ε)-speed O(1
ε2)-competitive for total

weighted flow plus energy usage.

Proof. By Lemma 1 and Theorem 5, we can obtain
an algorithm WPOOL′ that is (1 + ε′)(1 + δ)-speed
O((1+ 1

ε′)(1+ 1
δ))-competitive. By putting ε′ = δ = ε

3 ,
the result follows.

3 Analysis of WPOOL

This section analyzes WPOOL and hence proves
Theorem 5. Consider a certain input sequence of
jobs. Recall that Off is the optimal offline sched-
ule. W.L.O.G., we can assume that Off dispatches a
job to a machine once the job arrives. A machine i
in Off is said to be procrastinating at time t if some
job dispatched to machine i is unfinished by time t
yet machine i is asleep at time t. Instead of analyz-
ing WPOOL with respect to Off directly, we analyze
WPOOL with another offline schedule Opt with the
following property.

Lemma 7. We can transform Off into another sched-
ule Opt such that Opt has at most one procrastinating
machine at any time and Opt schedules a machine by
HDF whenever the machine is working. Furthermore,
F̃ (Opt) ≤ F (Off) and E(Opt) ≤ 3E(Off).

Proof. Chan et al. (Chan et al. 2011) showed that we
can transform Off into another schedule Opt′ such
that Opt′ has at most one procrastinating machine
at any time, by changing some machines from the
sleep state to awake state when needed. The energy
usage of Opt′ is at most 3 times that of Off, i.e.
E(Opt′) ≤ 3E(Off). Furthermore, the transforma-
tion guarantees that the completion time of every job
j in Opt′ is no later than its completion time in Off,
so the total weighted flow of Opt′ is at most that of
Off, i.e. F (Opt′) ≤ F (Off). Then, we further trans-
form Opt′ into the targeted schedule Opt as follows:
for each job, Opt dispatches it to the same machine
as Opt′ does. For each machine i, at any time t, the
state (sleep, idle or working) and speed of i in Opt are
the same as the state and speed of i in Opt′. However,
for each machine i in Opt, i schedules jobs dispatched
to it by HDF whenever working. Obviously, Opt is
a valid schedule, and E(Opt) = E(Opt′). It is well
known that, on single machine, HDF minimizes the
fractional weighted flow when speed function is fixed,
hence, F̃ (Opt) ≤ F̃ (Opt′) ≤ F (Opt′).

In the following, we show that the total fractional
weighted flow plus energy usage of WPOOL is at most
O(1+ 1

ε) times that of Opt. Let F̃ and E be the total
fractional weighted flow and energy usage of WPOOL,
respectively. We divide F̃ into two parts: the work-
ing flow F̃w and the sleeping flow F̃s, which refer to

CRPIT Volume 141 - Theory of Computing 2013

14

the total fractional weighted flow incurred by the ma-
chines when they are working and sleeping, respec-
tively. Note that F̃ = F̃w + F̃s. We also divide E
into three parts: Ei is the idling energy (static energy
usage during the idle state), Ew the working energy,
and Eu the wake-up energy. Then E = Ei +Ew +Eu.
Let G̃ = F̃ + E be the cost of WPOOL. We use the
same notations with an extra asterisk to denote the
corresponding quantity in Opt. For example, F̃ ∗ is
the total fractional weighted flow of Opt, and G̃∗ is
the cost of Opt.

3.1 Sleeping flow and energy usage

It is relatively easy to upper bound the sleeping flow
F̃s and the energy usage in terms of G̃∗ and F̃w. They
are summarized by the following lemma. The proof
is similar to that in (Chan et al. 2011).

Lemma 8. (i) F̃s ≤ G̃∗; (ii) Ew ≤ E∗
w; (iii) Eu ≤

F̃w + Ew + G̃∗; (iv) Ei ≤ Eu + Ew.

Proof. We divide the timeline into intervals called P -
intervals, each of which consists of a maximal asleep
period of P , followed by a maximal awake period of
P . Within a P -interval I, we use the correspond-
ing notation with a suffix (I) to denote the flow or
energy within this interval. Note that within each
P -interval, the sleeping fractional weighted flow ac-
cumulated during asleep period is λ, and the idling
energy accumulated during awake period is at least
λ.

To make the discussion easy, we charge the wake-
up energy of Opt to the time when it sleeps a machine.
We will first show that within each P -interval I, the
cost of Opt is at least λ, i.e. G̃∗(I) ≥ λ. The ar-
gument is as follows. If Opt sleeps a machine during
I, then it is obvious that G̃∗(I) ≥ λ. If Opt never
sleeps a machine during I, there are two cases: Case
(1), if Opt has all machines asleep at the beginning
of I and it does not wake up a machine during the
asleep period of I, then Opt would let the jobs ar-
rived during the asleep period of I to accumulate a
fractional weighted flow at least λ, thus G̃∗(I) ≥ λ.
Case (2), if OPT has at least one machine awake at
the beginning of I or it wakes up a machine during
the asleep period of I, then the static energy incurred
by this machine during I is at least the idling energy
incurred by WPOOL during I when P has only one
idle machine, which is at least λ. We are now ready
to prove items (i) to (iv)

(i) At the beginning of a P -interval I, all machines
in P are asleep and there are no active jobs. POOL
wakes up machines in P as soon as the accumulated
sleeping fractional flow increases to λ, and later, no
sleeping fractional flow is accumulated till the end of
I. Hence, F̃s(I) = λ ≤ G̃∗(I). Summing over all
P -intervals, we obtain F̃s ≤ G̃∗.

(ii) Note that WPOOL and Opt process the same
amount of work and WPOOL is using machines with
speed s ≥ 1. Hence, the total amount of time that
WPOOL is working is at most that of Opt. It implies
that the working energy of WPOOL is at most that of
Opt.

(iii) Note that at the beginning of a P -interval I,
there is only one machine in P and this machine is
asleep. Suppose that there are totally x machine ad-
ditions within I. Hence, the wake-up energy of POOL
within I is Eu(I) = (x + 1)λ. Note that a machine
is added into P only when the accumulated increase
of rwc (i.e. the counter Xwc) is at least λ. When I

ends, all jobs are completed and all the accumulated
increase in rwc have become part of F̃w(I) + Ew(I).
Hence, xλ ≤ F̃w(I) + Ew(I). It follows that Eu(I) =
(x+1)λ = xλ+λ ≤ F̃w(I)+Ew(I)+G̃∗(I). Summing
over all P -interval, we obtain Eu ≤ F̃w + Ew + G̃∗.

(iv) Ei can be divided into two types. The first
type is incurred when the counter Xie < λ and the
other type is incurred when the counter Xie = λ.
For the first type Ei, it increases at the same rate
as Xie. At any time t that Xie reaches λ, WPOOL
would sleeps a machine at time t or later. Hence,
the total of the first type Ei equals λ times the total
number of times WPOOL sleeps a machine, which is
exactly Eu.

For the second type Ei, it accumulates only when
P has only one idle machine and |P | > 1. So, there
exists another working machine in P when this type
of Ei is accumulated. Note that a working machine
consumes energy at a rate more than an idle machine.
Hence, this type of Ei is at most Ew.

3.2 Potential analysis of F̃w

It remains to analyze the working flow F̃w, which will
be bounded by the cost G̃∗ of Opt and the sleeping
flow F̃s of WPOOL. Precisely, we will show the fol-
lowing lemma.

Lemma 9. F̃w ≤ (12 + 15
ε)G̃∗ + 1

ε F̃s.

Notice that Lemmas 8 and 9 together imply that
G̃ ≤ (43 + 48

ε)G̃∗. By Lemma 7, G̃∗ ≤ 3G(Off).
Hence, Theorem 5 follows.

The rest of the section proves Lemma 9 using a
potential function that allows different match-ups be-
tween machines of WPOOL and Opt. Let F̃w(t) and
F̃s(t) denote respectively the working flow and sleep-
ing flow incurred by WPOOL up to time t. Let G̃∗(t)
be the cost incurred by Opt up to time t. Assume
that machines are labeled with integers from 1 to m.
At any time, we match each machine in WPOOL with
a certain machine in Opt. Below we denote x(i) as
the machine in Opt currently matched with machine
i in WPOOL. This matching is only for the purpose
of analysis and not known to the algorithms. Initially
x(i) = i for all i. To show Lemma 9, we define a po-
tential function Φ(t) that reflects WPOOL’s remain-
ing working cost discounted in view of Opt’s workload
in the corresponding machines. Technically, we want
Φ(t) to satisfy the following conditions: (i) Bound-
ary condition: Φ = 0 before any job is released
and after all jobs are completed. (ii) Job comple-
tion and state transition condition: Φ does not in-
crease when a job is completed or a machine changes
its state in WPOOL or Opt. (iii) Job arrival con-
dition: When a job j arrives, we re-match the ma-
chines (for analysis sake) before j is dispatched. Φ
may then increase, yet the total increase due to all job
arrivals is upper bounded by O(1 + 1

ε)G̃∗ (precisely,
(11+ 14

ε) · G̃∗). (iv) Running condition: At any other

time t, dF̃w(t)
dt + dΦ(t)

dt ≤ (1 + 1
ε) · dG̃∗(t)

dt + 1
ε ·

dF̃s(t)
dt .

By integrating the above conditions over time, F̃w ≤
(11 + 14

ε + 1 + 1
ε)G̃∗ + 1

ε F̃s = (12 + 15
ε)G̃∗ + 1

ε F̃s, and
Lemma 9 follows.

Potential function Φ. For any machine i of
WPOOL, for any q ≥ 0, recall that w̃i(q, t) denotes
the total fractional weight of active jobs dispatched

Proceedings of the Nineteenth Computing: The Australasian Theory Symposium (CATS 2013), Adelaide, Australia

15

to machine i with inverse density at least q at time t.
Define w̃∗

i (q, t) similarly for Opt. We will drop the
parameter t when t refers clearly to the current time.
Let (·)+ = max(·, 0). Below is the definition of the
potential function Φ(t).

Φ(t) =
m∑

i=1

Φi(t), where

Φi(t) =
1
ε

∫ ∞

0

∫ w̃i(q)

0

(z − w̃∗
x(i)(q) + µ)+ dz dq .

Machine re-matching. Recall that machine re-
matching is for the sake of analysis and not part of
WPOOL or Opt. hWe allow it to operate based on
a rather intricate view of the machine states. Details
are as follows. At any time t, we define three different
views of machine states in WPOOL and Opt, namely,
H−(t), H+(t) and H

R
(t). The first two are from an

operational viewpoint, and the last one is for the pur-
pose of re-matching and analysis only. W.L.O.G., we
assume that Opt, at any time, first performs all the
required wake-up operations before moving to other
operations.
• H−(t) refers to states of the machines in WPOOL

or Opt just before time t;

• H+(t) refers to states of the machines WPOOL or
Opt immediately after time t; and

• H
R
(t) is something in between H−(t) and H+(t),

it refers to the states after WPOOL and Opt
have performed only some operations at time t:
WPOOL has removed all idle machines from P
that should sleep at time t, but WPOOL has not
yet handled any job arriving at t (and has not in-
cluded more machine into P); and Opt has waken
up all machines that are scheduled to wake up at
time t, but Opt has not yet put any machine to
sleep and has not dispatched any job arriving at
t.

At any time t that a job j arrives, we re-match the
machines of WPOOL and Opt with respect to H

R
(t).

Re-matching actually means computing a new match-
ing function x(i) as follows.

Let x(i) be the current matching function.
Note that x(1), . . . , x(m) is a permutation of
1, 2, . . . ,m. With respect to H

R
(t), we figure

out whether a machine is in P or not in ac-
cordance with WPOOL, as well as whether
a machine is awake or sleep in accordance
with Opt. Then, as long as we find machines
i and i′ satisfying the following conditions,
we swap x(i) and x(i′).

• WPOOL has i not in P and Opt has
x(i) awake, or procrastinating, or to be
procrastinating (sleeping w.r.t. H

R
(t),

but j to be dispatched to x(i)); and
• WPOOL has i′ in P and Opt has x(i′)

sleeping and not procrastinating.

Note that Φi, Φi′ and hence Φ may change after a
swapping. Interestingly, we can show that this change
is always non-increasing.

Lemma 10. After some x(i) and x(i′) are swapped,
Φi and Φi′ do not increase.

Proof. Machine i is not in the pool P and has no
active jobs, so Φi = 0 before and after the swap-
ping. Next, we consider Φi′ . Before swapping,
machine x(i′) was sleeping and not procrastinating
in Opt, thus w̃∗

x(i′)(q) = 0 for all q. Since Φi′

changes from 1
ε

∫∞
0

∫ w̃i′ (q)

0
(z − w̃∗

x(i′)(q) + µ)+ dz dq to
1
ε

∫∞
0

∫ w̃i′ (q)

0
(z − w̃∗

x(i)(q) + µ)+ dz dq, it can only de-
crease after the swapping.

We are ready to consider the various conditions
imposed on Φ. The boundary condition trivially
holds. The job completion and state transition con-
dition also hold as follows. When a job is completed
by WPOOL or Opt, w̃i(q) and w̃∗

x(i)(q) are unchanged
for all i and all q, so Φ is unchanged. Furthermore, a
state transition does not affect Φ.

The running condition depends solely on the job
scheduling policy (HDF) and can be analyzed in-
dependently for each matched pair of machines us-
ing similar techniques for the single-machine analy-
sis (Bansal et al. 2009); details will be given in Sec-
tion 3.4.

The arrival condition depends on both sleep man-
agement and job dispatching policies. In the next
subsection, we show that when a job j arrives, af-
ter machine re-matching and job dispatching, the in-
crease of Φ due to j can be bounded in terms of some
non-overlapping cost of Opt.

3.3 Arrival Condition

When a job arrives, machines may be re-matched, and
then the job gets dispatched by WPOOL and Opt. Φ
would possibly increase. This section is devoted to
upper bounding such increase.

Lemma 11. The sum over all jobs of the increase
in Φ due to a job arrival (after machine re-matching
and job dispatching) is at most (11 + 14

ε) · G̃∗.

By Lemma 10, machine re-matching can not in-
crease Φ, hence, in the following, our analysis bases
on the assumption that machine re-matching is al-
ready done.

Recall that H−(t), H+(t) and H
R
(t) are different

views of machine states at time t. We define h−(t),
h+(t) and h

R
(t) to be the number of machines in P

with respect to H−(t), H+(t) and H
R
(t), respectively.

Define h∗
−
(t), h∗

+
(t) and h∗

R
(t) similarly for the number

of awake machines in Opt.
Type-0, Type-1 and Type-2 jobs. To prove

Lemma 11, we divide the jobs into three types and
analyze them separately. Define Type-0 jobs to be
the jobs which WPOOL dispatches to a zero-rwc ma-
chine (i.e. machine with no active jobs). For any
other job j, if at its arrival time t, h

R
(t) ≤ h∗

R
(t) and

h
R
(t) < m, j is Type-1; otherwise, j is Type-2.
Roughly speaking, Type-2 jobs arrive when

WPOOL is using more machines than Opt (or using
all the m machines). It is relatively easy to show that
for each Type-2 job j, Φ has limited increase (see
Lemma 12).

For any Type-0 or Type-1 job j, we first observe
that once j is dispatched, the increase in Φ can be up-
per bounded in terms of WPOOL’s increase in rwc due
to j. Let ∆rwc(j) be the increase in rwc to WPOOL
due to j. Φ only increases due to the increase in Φi,
where i is the machine to which WPOOL assigns j.

CRPIT Volume 141 - Theory of Computing 2013

16

This increase, by definition of Φ, is at most

1
ε
·
∫ q(j)

0

∫ w̃i(q)+w(j)

w̃i(q)

(z − w̃∗
x(i)(q) + µ)+ dz dq

≤ (1 + 1
ε) ·

∫ q(j)

0

∫ w̃i(q)+w(j)

w̃i(q)
z+µ
1+ε dz dq

= (1 + 1
ε) ·∆rwc(j)

where the last equality follows from Lemma 3. In
other words, consider all Type-0 and Type-1 jobs, the
total increase in Φ is at most (1 + 1

ε) times the to-
tal increase in rwc of WPOOL. Lemmas 13 and 14
below give upper bounds of the increase in rwc to
WPOOL due to Type-0 and Type-1 jobs, respectively.
Lemma 13 is relatively simple as we can show that for
each Type-0 job, WPOOL’s increase in rwc cannot ex-
ceed that of Opt. For Type-1 jobs, WPOOL might be
using very few machines and WPOOL’s increase in
rwc can be way larger than Opt’s. In Lemma 14, we
analyze Type-1 jobs interval by interval (instead of
job by job) and show that WPOOL’s increase in rwc
is bounded by the static and wakeup energy of Opt.
The proofs of Lemmas 12 and 13 will be shown in
Appendix A.

Lemma 12. The total increase in Φ due to Type-2
jobs is at most 3

ε · G̃
∗.

Lemma 13. WPOOL’s total increase in rwc due to
Type-0 jobs is at most G̃∗.

Lemma 14. WPOOL’s total increase in rwc due to
Type-1 jobs is at most 10G̃∗.

To analyze Type-1 jobs, we define lazy intervals
below, which would include all arrival times of Type-
1 jobs. Roughly speaking, inside a lazy interval,
WPOOL is lazy in the sense that WPOOL is using
no more machines than Opt.

Lazy intervals. A lazy interval ` = [t1, t2], where
t1 ≤ t2, satisfies the following property. Consider any
view of machine states Hγ(t) where t ∈ [t1, t2] and
γ ∈ {+,−, R}. If Hγ(t) ≡ H−(t1) or H+(t2), then
with respect to Hγ(t), the number of machines in P
is greater than the number of awake machines of Opt
(i.e., hγ(t) > h∗γ(t)); for any other view Hγ(t), the
number of machines in P is at most the number of
awake machines of Opt (i.e., hγ(t) ≤ h∗γ(t)).

Before proving Lemma 14, we observe the follow-
ing properties of WPOOL.

Property 15. When a job j arrives, if WPOOL dis-
patches it to a machine with non-zero rwc, then at
most two machines are added to P .

Proof. Suppose a job j arrives at time t. Con-
sider the moment just before WPOOL dispatches
j. If |P | = h

R
(t) ≥ m − 2, at most two ma-

chines can be added to P and the lemma holds.
Now assume that |P | < m − 2. First note that
null Inc rwc(j) = 1

1+ε

∫ q(j)

0

(
1
2 (w(j))2 + µw(j)

)
dq.

Since j is dispatched to a machine with non-zero rwc,
by the definition of WPOOL, Xwc+null Inc rwc(j) <
λ. Just before j is dispatched, let i be the machine in
WPOOL with the smallest rwc, and denoted the rwc

of it by rwc(i). Hence rwc(i) = 1
1+ε

∫∞
0

∫ w̃i(q)

0
(z +

µ)dzdq = 1
1+ε

∫∞
0

(
1
2 (w̃i(q))2 + µw̃i(q)

)
dq. Since

|P | < m, by Property 4, rwc(i) < λ.
Let Inc rwc(j, i, P) be the increase of rwc if j is

dispatched to machine i. In the following, we will

show that Xwc + Inc rwc(j, i, P) < 3λ. Hence Xwc +
min Inc rwc(j, P) < 3λ and at most two machines
are added to P .

Inc rwc(j, i, P)

=
1

1 + ε

∫ q(j)

0

∫ w̃i(q)+w(j)

w̃i(q)

(z + µ)dzdq

=
1

1 + ε

∫ q(j)

0

(
w̃i(q)w(j) +

1
2
(w(j))2 + µw(j)

)
dq

=
1

1 + ε

∫ q(j)

0

w̃i(q)w(j)dq + null Inc rwc(j)

≤ 1
1 + ε

∫ q(j)

0

1
2
(w̃i(q))2dq

+
1

1 + ε

∫ q(j)

0

1
2
(w(j))2dq + null Inc rwc(j)

≤ rwc(i) + 2 · null Inc rwc(j).

Therefore, Xwc +Inc rwc(j, i, P) ≤ rwc(i)+2(Xwc +
null Inc rwc(j)) < 3λ.

Property 16. Every Type-1 job must arrive within
a lazy interval.

Proof. Suppose a Type-1 job j arrives at time t. By
definition, h

R
(t) ≤ h∗

R
(t). We find the largest t1 ≤

t and the smallest t2 ≥ t satisfying the boundary
conditions of a lazy interval (the boundaries t1 and
t2 always exist because at time 0 and at the time te
when both schedules of WPOOL and Opt end, |P | = 1
and the number of awake machine in Opt is 0. Thus,
h−(0) = 1 > 0 = h∗

−
(0), and h+(te) = 1 > 0 = h∗

+
(te)).

Consider any time t′ ∈ [t1, t2]. If h−(t′) ≤ h∗
−
(t′)

or h+(t′) ≤ h∗
+
(t′) then h

R
(t′) ≤ h∗

R
(t′). It follows

that with respect to any view Hγ(t′), except the two
boundary views, we have hγ(t′) ≤ h∗γ(t′). Therefore,
[t1, t2] is a lazy interval covering time t.

Within a lazy interval ` = [t1, t2], let O` be the
number of times WPOOL has removed a machine from
P , let I` be the number of times WPOOL has added a
machine into P except those added at t2, and let W ∗

`
be the number of times Opt has waken up a machine.
The above definitions imply another useful property
of a lazy interval.

Property 17. For any lazy interval `, I` +1 ≤ W ∗
` +

O`.

Proof. By definition of a lazy interval, h−(t1) >
h∗
−
(t1) and h

R
(t2) ≤ h∗

R
(t2). By definition of O`, I`

and W ∗
` , h−(t1) − O` + I` ≤ h

R
(t2), and h∗

R
(t2) ≤

h∗
−
(t1) + W ∗

` . Therefore, h−(t1)−O` + I` ≤ h∗
R
(t2) ≤

h∗
−
(t1) + W ∗

` . Recall that h−(t1) > h∗
−
(t1). There-

fore, −O` + I` < W ∗
` , or equivalently, I` < W ∗

` + O`.
The lemma then follows since I`, W ∗

` and O` are in-
tegers.

We now prove Lemma 14. Note that we consider
only the lazy intervals in which at least one Type-1
job arrives, and ignore those lazy intervals without
any Type-1 job. Let ∆rwc′` be the increase in rwc to
WPOOL due to Type-1 jobs arriving in a lazy inter-
val `, and let ∆rwc′ the increase in rwc to WPOOL
due to all Type-1 jobs, respectively. Hence summing
∆rwc′` over all ` gives ∆rwc′. Let L be the set of
all lazy intervals. Then |L| is the total number of

Proceedings of the Nineteenth Computing: The Australasian Theory Symposium (CATS 2013), Adelaide, Australia

17

lazy intervals. Define IL =
∑

`∈L I` and similarly for
OL and W ∗

L. It is useful to define E∗
` to be the to-

tal wake-up energy plus the total static energy used
by OPT during `, and E∗

L to be the sum of E∗
` over

all ` ∈ L. Obviously, E∗
L ≤ G̃∗. We will prove the

following three relationships.

(A) ∆rwc′ < (IL + 3|L|)λ;
(B) (W ∗

L + OL − |L|)λ ≤ E∗
L;

(C) |L|λ ≤ E∗
L + 2G̃∗.

(A), (B) and (C), together with Property 17,
would imply Lemma 14 immediately. The argument
is as follows. By Property 17, for each ` ∈ L,
I` + 1 ≤ W ∗

` + O`. Summing over all ` ∈ L gives
IL + |L| ≤ W ∗

L + OL. Therefore,

∆rwc′ < (IL + 3|L|)λ ≤ (W ∗
L + OL + 2|L|)λ

≤ E∗
L + 3|L|λ ≤ 4E∗

L + 6G̃∗ ≤ 10G̃∗.

We come to the conclusion of this section.

Proof of Lemma 11. By Lemmas 13 and 14, the in-
crease of rwc due to Type-0 and Type-1 jobs is at
most (1+10)G̃∗, and hence the increase in Φ is at most
11(1+ 1

ε)G̃∗. On the other hand, by Lemma 12, the in-
crease of Φ due to Type-2 jobs is at most 3

ε ·G̃
∗. There-

fore, the total increase in Φ is at most (11+ 14
ε)G̃∗.

It remains to prove (A), (B) and (C).

Proof of (A). Consider a lazy interval `. Note that
WPOOL adds a machine to P whenever the accumu-
lated increase in rwc due to arrived jobs exceeds λ
and |P | < m, and when |P | = m, arriving jobs are
not Type-1. By the assumption that job arrival times
are distinct, at most one job arrives at t2. If that
job is Type-1, by Property 15, it can cause at most
two machines to be added to |P |. Thus, the accu-
mulated increase in rwc due to Type-1 jobs arriving
in ` is only enough to cause at most I` + 2 machine
additions to P , i.e., b∆rwc′`

λ c ≤ I` + 2. Note that

b∆rwc′`
λ c >

∆rwc′`
λ − 1 and hence ∆rwc′` < (I` + 3)λ.

Summing over all ` ∈ L, ∆rwc′ < (IL + 3|L|)λ.

Proof of (B). Consider a lazy interval `. For each
time Opt wakes up a machine, we charge its wakeup
energy λ. For each time except the first that WPOOL
removes a machine from P , λ units of idling energy
(counted in the counter Xie) must be accumulated in-
side ` by WPOOL. During the lazy interval `, Opt
has at least the same number of awake machines
as WPOOL and must also have incurred λ units of
static energy when WPOOL accumulates the λ units
of idling energy. Therefore, (W ∗

` + O` − 1)λ ≤ E∗
` .

Summing over all ` ∈ L, (W ∗
L +OL−|L|)λ ≤ E∗

L.

Proof of (C). For each lazy interval `, we want to
show that either E∗

` ≥ λ or we can charge λ non-
overlapping units from 2G∗. Then (C) follows. Let
us first consider two trivial cases of `. Suppose
(W ∗

` +O`) ≥ 2, then the charging scheme in the proof
of (B) implies E∗

` ≥ λ. Next, if W ∗
` = 1 and O` = 0,

then we can charge the wakeup energy of Opt and
E∗

` ≥ λ. Note that the costs of E∗
` charged in the two

cases are non-overlapping.
It remains to consider the case when W ∗

` = 0 and
O` = 1, which is indeed non-trivial. We call ` a lazy-
01 interval. We will use another charging scheme to

charge λ units from 2G̃∗; in other words, any cost of
Opt is charged at most twice. Let ` = [t1, t2]. We first
show that t1 6= t2. Suppose, for the sake of contradic-
tion, t1 = t2. Since we only consider lazy intervals in
which Type-1 job arrives, by the assumption that job
arrival times are distinct, one job arrives at t1 and this
job is a Type-1 job. By definition, h−(t1) > h∗

−
(t1)

and h
R
(t1) ≤ h∗

R
(t1). Together with the assumption

that W ∗
` = 0, WPOOL must have removed a machine

from P at t1. By the definition of WPOOL, there ex-
ists another idle machine in P , and WPOOL would
dispatch the job that arrives at t1 to this zero-rwc
machine, so the job is Type-0, contradicting that it is
Type-1. Therefore, we must have t1 6= t2.

By the definition of lazy interval, we have h−(t1) >
h∗
−
(t1), and for any t ∈ (t1, t2], h−(t) ≤ h∗

−
(t). Since

W ∗
` = 0 and O` = 1, we can conclude that WPOOL

removes a machine from P at t1, and for any t ∈
(t1, t2], h∗

−
(t) = h−(t) ≥ 1, where the last inequality

follows from that the size of P is always at least 1.
Let us consider all lazy-01 intervals in order of time

and group them into disjoint subsequences such that
in each subsequence {`1, `2, · · · , `p} where p ≥ 1, Opt
does not change the state of any machine from the
start of `1 to just before the end of `p (including the
time in between `i and `i+1 for all 1 ≤ i ≤ p−1), and
Opt wakes up at least one machine or puts at least
one machine to sleep after the end of `p and before the
start of any other lazy-01 interval.1 If Opt wakes up a
machine after `p and before another lazy-01 interval,
then we charge its wakeup energy λ; otherwise, Opt
puts a machine to sleep after `p and before another
lazy-01 interval, and we charge the wakeup energy λ
of the last wakeup in Opt before putting that machine
to sleep. Thus, each wakeup cost of Opt is charged
at most twice.

Next, we show how to charge for `2, · · · , `p. By the
definition of the subsequence, h∗

−
(t) remains a con-

stant, say M , which is at least 1, from the start of `1
to the end of `p; and inside each `i, h−(t) = h∗

−
(t) =

M . As shown before, a lazy-01 interval starts with
that WPOOL removes a machine from P . Thus, at
some time after `i−1 and before `i (for 2 ≤ i ≤ p), λ
units of idling energy is incurred when WPOOL has
exactly M +1 machines in P . Since Opt has M awake
machines during these times and M ≥ M+1

2 , Opt
has incurred at least λ

2 static energy, which can be
charged twice for `i (giving an amount of at least λ
units of static energy). Note that this static energy
will not be charged again by any other lazy-01 inter-
val. Therefore, we have charged Opt a cost of at most
2λ for each lazy-01 interval.

Summing over the three types of intervals, |L|λ ≤
E∗

L + 2G̃∗.

3.4 Running condition

We show the following running condition of the poten-
tial analysis of F̃w, which considers how Φ changes in
an infinitesimal amount of time [t, t + dt] when there
is no job arrival or completion, and both WPOOL and
Opt have no change in machine state.
Lemma 18. Consider any time t without job ar-
rival, completion, and machine state transition in
both WPOOL and Opt. Then dF̃w

dt + dΦ
dt ≤ (1 + 1

ε) ·
dG̃∗

dt + 1
ε

dF̃s

dt .
1At least one sleep must exist since h∗

−
(t) ≥ 1 and Opt must

put this machine to sleep after `p.

CRPIT Volume 141 - Theory of Computing 2013

18

Since Φ(t) =
∑m

i=1 Φi(t), we analyze on a per-
machine basis. We focus on analyzing a certain ma-
chine i in WPOOL and the matching machine x(i) in
Opt. Let t be the current time. Let w̃i(t) and si(t) be
respectively the total fractional weight and the speed
of machine i in WPOOL at time t. Define w̃∗

x(i)(t)
and s∗x(i)(t) similarly for machine x(i) in Opt. We
drop the parameter t when it refers to the current
time.

Lemma 19. Suppose w̃i > 0. (i) If w̃∗
x(i) > w̃i + µ,

dΦi

dt = 0. (ii) If w̃∗
x(i) ≤ w̃i + µ, then dΦi

dt ≤ 1
ε (w̃i −

w̃∗
x(i) + µ)(−si + s∗x(i))

Proof. We focus on machine i in WPOOL and ma-
chine x(i) in Opt, and consider how the processing of
WPOOL and Opt changes Φi. Let qa and qo be the
smallest inverse density of an active job in machine i
of WPOOL and machine x(i) of Opt, respectively (0
if no active jobs). The processing of WPOOL causes
w̃i(q) to decrease by sidt

qa
for q ∈ [0, qa]. Similarly,

the processing of Opt causes w̃∗
x(i)(q) to decrease by

s∗x(i)dt

qo
for q ∈ [0, qo].

(i) Suppose w̃∗
x(i) > w̃i +µ. Processing of WPOOL

cannot increase Φi. We focus on bounding the in-
crease in Φi due to Opt. For any q ∈ [0, qo], w̃∗

x(i)(q) =
w̃∗

x(i) > w̃i+µ ≥ w̃i(q)+µ, so w̃i(q)−w̃∗
x(i)(q)+µ < 0.

Thus, Φi does not increase due to Opt and dΦi

dt ≤ 0.
(ii) w̃∗

x(i) ≤ w̃i + µ. Consider the change to
Φ due to the working of WPOOL. The inner in-
tegral of Φ decreases by

∫ w̃i(q)

w̃i(q)−
sidt

qa

(z − w̃∗
x(i)(q) +

µ)+ dz = sidt
qa

(w̃i(q) − w̃∗
x(i)(q) + µ). The change of

Φ due to WPOOL is − 1
ε

∫ qa

0
[sidt

qa
(w̃i(q) − w̃∗

x(i)(q) +
µ)] dq ≤ −1

ε

∫ qa

0
[sidt

qa
(w̃i−w̃∗

x(i)+µ)] dq = − 1
ε sidt(w̃i−

w̃∗
x(i) + µ). Similarly, the change of Φ due to Opt is

1
ε s∗x(i)dt(w̃i − w̃∗

x(i) + µ).

Lemma 19 allows us to prove Lemma 18 as follows.

Proof of Lemma 18. We focus on machine i in
WPOOL and machine x(i) in Opt. Let (dF̃w

dt)i be the
rate of change of F̃w due to machine i, and dF̃w

dt =∑m
i=1(

dF̃w

dt)i. Similarly define (dG̃∗

dt)i and (dF̃s

dt)i for
G̃∗ and F̃s. To show the lemma, it suffices to show
that (dF̃w

dt)i + dΦi

dt ≤ (1 + 1
ε) · (dG̃∗

dt)x(i) + 1
ε (dF̃s

dt)i. If
w̃i = 0, WPOOL is not working and hence (dF̃w

dt)i = 0.
Furthermore, w̃i(q) = 0 for all q, so dΦi

dt = 0. It is
trivial that (dF̃w

dt)i+ dΦi

dt ≤ (1+ 1
ε)·(dG̃∗

dt)x(i)+ 1
ε (dF̃s

dt)i.
Henceforth, we assume w̃i > 0.

We will consider four cases depending on si and
s∗x(i).

Case 1: si > 0 and s∗x(i) > 0. In this case, we have

(dF̃w

dt)i = w̃i, (dG̃∗

dt)x(i) ≥ w̃∗
x(i), si = 1 + ε and s∗x(i) =

1. We split the analysis into subcases depending on
w̃i and w̃∗

x(i).
Case 1.1: w̃∗

x(i) > w̃i +µ. By Lemma 19, dΦi

dt = 0.

Thus, (dF̃w

dt)i + dΦi

dt = w̃i ≤ w̃∗
x(i) ≤ (dG̃∗

dt)x(i) ≤ (1 +
1
ε) · (dG̃∗

dt)x(i) + 1
ε (dF̃s

dt)i.

Case 1.2: w∗
x(i) ≤ wi + µ. By Lemma 19, dΦi

dt ≤
1
ε (w̃i − w̃∗

x(i) + µ)(−si + s∗x(i)). Thus, (dF̃w

dt)i + dΦi

dt ≤
w̃i − 1

ε (w̃i − w̃∗
x(i) + µ)(−si + s∗x(i)) ≤ w̃∗

x(i) + µ ≤
(1 + 1

ε) · (dG̃∗

dt)x(i) + 1
ε (dF̃s

dt)i.
Case 2: si > 0 and s∗x(i) = 0. In this case, we

have (dF̃w

dt)i = w̃i, (dG̃∗

dt)x(i) ≥ w̃∗
x(i), si = 1 + ε and

s∗x(i) = 0. Similarly as in Case 1, we can divide the
analysis into subcases and verify in each subcase that
(dF̃w

dt)i + dΦi

dt ≤ (1 + 1
ε) · (dG̃∗

dt)x(i) + 1
ε (dF̃s

dt)i.
Case 3: si = 0 and s∗x(i) > 0. For WPOOL,

(dF̃w

dt)i = 0 but (dF̃s

dt)i = w̃i. For Opt, (dG̃∗

dt)x(i) ≥
w̃∗

x(i) + µ. Furthermore, si = 0 and s∗x(i) = 1.
Similarly as before, we can also divide the analy-
sis into subcases and verify that (dF̃w

dt)i + dΦi

dt ≤
(1 + 1

ε) · (dG̃∗

dt)x(i) + 1
ε (dF̃s

dt)i.
Case 4: si = 0 and s∗x(i) = 0. In this case,

(dF̃w

dt)i = 0. By Lemma 19, dΦi

dt ≤ 0, so it is trivial
that (dF̃w

dt)i + dΦi

dt ≤ (1 + 1
ε) · (dG̃∗

dt)x(i) + 1
ε (dF̃s

dt)i.

References

Albers, S. (2010), ‘Energy-efficient algorithms’,
CACM, 53(5), 86–96.

Anand, S., Garg, N., & Kumar, A. (2012), Resource
augmentation for weighted flow-time explained by
dual fitting, in ‘Proc. SODA’, pp. 1228–1241.

Bansal, N. & Chan, H.L. (2009), Weighted flow time
does not admit O(1)-competitive algorithms, in
‘Proc. SODA’, pp. 1238–1244.

Bansal, N., Pruhs, K., & Stein, C. (2009), ‘Speed
scaling for weighted flow time’, SIAM Journal on
Computing, 39(4), 1294–1308.

Becchetti, L., Leonardi, S., Marchetti-Spaccamela, A.
& Pruhs., K. (2006), ‘Online weighted flow time
and deadline scheduling’. J. Discrete Algorithms,
4(3), 339–352.

Belady, C. (2007), ‘In the data center, power and cool-
ing costs more than the IT equipment it supports’,
Electronics Cooling Magazine, 13(1), 24–27.

Brooks, D. M., Bose, P., Schuster, S. E., Jacobson, H.,
Kudva, P. N. Buyuktosunoglu, A., Wellman, J. D.,
Zyuban, V., Gupta, M., & Cook, P. W. (2000),
‘Power-aware microarchitecture: Design and mod-
eling challenges for next-generation microproces-
sors’. IEEE Micro, 20(6), 26–44.

Chadha, J., Garg, N., Kumar, A. & Muralidhara,
V. (2009), A competitive algorithm for minimiz-
ing weighted flow time on unrelated machines with
speed augmentation, in ‘Proc. STOC’, pp. 679–684.

Chan, S.H., Lam, T.W., Lee, L.K., Liu, C.M. & Ting,
H.F. (2011), Sleep management on multiple ma-
chines for energy and flow time, in ‘Proc. ICALP’,
pp. 219–231.

Gupta, A., Krishnaswamy, R. & Pruhs, K. (2010),
Scalably scheduling power-heterogeneous proces-
sors, in ‘Proc. ICALP’, pp. 312-323.

Khuller, S., Li, J. & Saha, B. (2010), Energy efficient
scheduling via partial shutdown, in ‘Proc. SODA’,
pp. 1360-1372.

Proceedings of the Nineteenth Computing: The Australasian Theory Symposium (CATS 2013), Adelaide, Australia

19

Lam, T.W., Lee, L.K., Ting, H.F., To, I. & Wong, P.
(2009), Sleep with guilt and work faster to minimize
flow plus energy, in ‘Proc. ICALP’, pp. 665–676.

Lam, T. W., Lee, L. K., To I. & Wong, P. (2008),
Speed scaling functions for flow time scheduling
based on active job count, in Proc. ESA, pp. 647–
659.

Appendix A: Omitted Proofs

In this appendix, we give the proofs omitted from
Section 3.

Lemma 12. The total increase in Φ due to Type-2
jobs is at most 3

ε · G̃
∗.

Proof. We analyze job by job. Consider a Type-2 job
j arriving at time t. Let ∆rwc and ∆rwc∗ be the
increase in the rwc due to j in WPOOL and Opt,
respectively. We will show that after WPOOL and
OPT dispatch j, the change of Φ, denoted ∆Φ, is at
most 3

ε ·∆rwc∗. Summing ∆rwc∗ over all jobs equals
the working cost of Opt, which is at most G̃∗. Hence,
the total increase in Φ due to Type-2 jobs is at most
3
ε · G̃

∗.
Suppose WPOOL and Opt dispatch j to machines i

and k, respectively. Let x(i) be the matching function
updated just before dispatching j. Also define u such
that x(u) = k. Both w̃i(q) and w̃∗

k(q) increase by w(j)
for q ∈ [0, q(j)]. We consider two cases depending on
whether x(i) = k.

Case 1. When x(i) 6= k, i.e. i 6= u. We can show
that when j arrives at time t, u is in P just before
WPOOL dispatches j. The argument is as follows.
Consider H

R
(t), since j is a Type-2 job, h

R
(t) > h∗

R
(t)

or h
R
(t) = m. By definition, Opt has at most one

procrastinating machine at time t, or precisely, with
respect to H−(t), H+(t) and hence H

R
(t). Thus, at

H
R
(t), |P | (= h

R
(t)) is at least the number of awake or

procrastinating machines in Opt. All those machines
in Opt, including k, must be matched with a machine
in P . As x(u) = k, we have u ∈ P .

By Lemma 3, ∆rwc∗ =
∫ q(j)

0
w(j)

(
w̃∗

x(u)(q) +
1
2w(j) + µ

)
dq. Note that ∆Φ = ∆Φi + ∆Φu.

First consider ∆Φi. ∆Φi = 1
ε

∫ q(j)

0

∫ w̃i(q)+w(j)

w̃i(q)
(z −

w̃∗
x(i)(q)+µ)+ dz dq ≤ 1

ε

∫ q(j)

0

∫ w̃i(q)+w(j)

w̃i(q)
(z +µ) dz dq.

As shown above, u ∈ P when WPOOL handles j,
but WPOOL assigns j to machine i instead of u. By
definition of WPOOL, ∆rwc =

∫ q(j)

0

∫ w̃i(q)+w(j)

w̃i(q)
(z +

µ)/(1+ε) dz dq ≤
∫ q(j)

0

∫ w̃u(q)+w(j)

w̃u(q)
(z+µ)/(1+ε) dz dq.

Hence, we have

∆Φi ≤ 1
ε

∫ q(j)

0

∫ w̃u(q)+w(j)

w̃u(q)

(z + µ) dz dq

=
1
ε

∫ q(j)

0

w(j)
(

w̃u(q) +
1
2
w(j) + µ

)
dq.

Then consider ∆Φu. For any q ∈ [0, q(j)], let
δ(q) =

∫ w̃u(q)

0

(
(z − w̃∗

x(u)(q) + µ)+ − (z − w̃∗
x(u)(q) −

w(j) + µ)+
)
dz. Then −∆Φu = 1

ε

∫ q(j)

0
δ(q) dq. De-

fine S ⊆ [0, q(j)] such that w̃∗
x(u)(q) + w(j) − µ ≤ 0

for all q ∈ S. Define S̄ = [0, q(j)] \ S. For any

q ∈ S, δ(q) = w(j)w̃u(q); for any q ∈ S̄, δ(q) ≥
w(j)

(
w̃u(q)− w̃∗

x(u)(q)− w(j) + µ
)
. Hence, we have

−∆Φu ≥ 1
ε
(
∫

q∈S

w(j)w̃u(q) dq +∫
q∈S̄

w(j)
(
w̃u(q)− w̃∗

x(u)(q)− w(j) + µ) dq
)

It follows from the bounds of ∆Φi and ∆Φu that,

∆Φ = ∆Φi + ∆Φu

≤ 1
ε
(
∫

q∈S

w(j)
(1

2
w(j) + µ

)
dq

+
∫

q∈S̄

w(j)
(
w̃∗

x(u)(q) +
3
2
w(j)

)
dq)

≤ 1
ε

(∫ q(j)

0

w(j)
(
w̃∗

x(u)(q) +
3
2
w(j) + µ

)
dq

)

≤ 3
ε
∆rwc∗

Case 2. When x(i) = k, i.e. i = u. By Lemma 3,
∆rwc∗ =

∫ q(j)

0
w(j)

(
w̃∗

x(i)(q) + 1
2w(j) + µ

)
dq. Note

that ∆Φ = ∆Φi. For any q ∈ [0, q(j)], let δ(q) =∫ w̃i(q)

0

(
(z − w̃∗

x(i)(q) + µ)+ − (z − w̃∗
x(i)(q) − w(j) +

µ)+
)
dz. Let ∆1 = 1

ε

∫ q(j)

0

∫ w̃i(q)+w(j)

w̃i(q)
(z − w̃∗

x(i)(q) −

w(j)+µ)+ dz dq, and let ∆2 = − 1
ε

∫ q(j)

0
δ(q) dq. Then

we have ∆Φi = ∆1 + ∆2. Observe that ∆1 and ∆2,
respectively, plays the same role as ∆Φi and ∆Φu
in Case 1. By a similar calculation, we have ∆Φ =
∆Φi = ∆1 + ∆2 ≤ 3

ε ∆rwc∗.

Lemma 13. WPOOL’s total increase in rwc due to
Type-0 jobs is at most G̃∗.

Proof. Recall that WPOOL dispatches a Type-0 job
j to a zero-rwc machine. Suppose Opt dispatches
j to machine k. By Lemma 3, the increase in rwc

to WPOOL due to j is
∫ q(j)

0

∫ w(j)

0
(z+µ

1+ε) dz dq, which

must be less than
∫ q(j)

0

∫ w̃∗
k(q)+w(j)

w̃∗
k(q)

(z + µ) dz dq (the
increase in rwc to Opt due to j). Summing over all
Type-0 jobs, the total increase in rwc to WPOOL due
to dispatching all Type-0 jobs is at most G̃∗.

CRPIT Volume 141 - Theory of Computing 2013

20

