
Non-clairvoyant Scheduling for Weighted Flow Time and Energy

on Speed Bounded Processors∗

Sze-Hang Chan† Tak-Wah Lam†‡ Lap-Kei Lee§ Hing-Fung Ting† Peng Zhang¶

† Department of Computer Science, University of Hong Kong, Hong Kong
§ Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany

¶ School of Computer Science and Technology, Shandong University, China

Abstract. We consider the online scheduling problem of minimizing total weighted flow
time plus energy in the dynamic speed scaling model, where a processor can scale its speed
dynamically between 0 and some maximum speed T . In the past few years this problem has
been studied extensively under the clairvoyant setting, which requires the size of a job to be
known at release time [1, 5, 6, 9, 15, 18–20]. For the non-clairvoyant setting, despite its practi-
cal importance, the progress is relatively limited. Only recently an online algorithm LAPS is
known to be O(1)-competitive for minimizing (unweighted) flow time plus energy in the infinite
speed model (i.e., T = ∞) [11, 12]. This paper makes two contributions to the non-clairvoyant
scheduling. First, we resolve the open problem that the unweighted result of LAPS can be
extended to the more realistic model with bounded maximum speed. Second, we show that
another non-clairvoyant algorithm WRR is O(1)-competitive when weighted flow time is con-
cerned. Note that WRR is not as efficient as LAPS for scheduling unweighted jobs as WRR has
a much bigger constant hidden in its competitive ratio.

∗This is the corrected version of the paper with the same title in CATS 2010 [13]; in particular, Lemmas 2 and

4 of Section 3 and the ordering of jobs in the potential analysis of Section 4 were given incorrectly before and are

fixed in this version. On the other hand, the conjecture, given in Section 5, about the generalization of LAPS to the

weighted setting has recently been resolved [14].
‡T.W. Lam is partly supported by HKU Grant 7176104.

1

1 Introduction

Energy consumption has become an important concern for the design of modern microprocessors.
Manufacturers like Intel and IBM are now producing processors that can support dynamic speed
scaling, which would allow operating systems to manage the power by scaling the processor speed
dynamically. Running jobs slower saves more energy, yet it takes longer time. Taking speed scaling
and energy usage into consideration makes job scheduling more complicated than before. The
challenge arises from the conflicting objectives of optimizing some quality of service (QoS) of the
schedule and minimizing the energy usage.

The theoretical study of speed scaling was initiated by Yao, Demers and Shenker [24]. They
considered a model where a processor can vary its speed s between 0 and infinity dynamically, and
it consumes energy at the rate sα, where α is a constant (commonly believed to be 2 or 3 [3, 22]
for CMOS-based processors). Under this infinite speed model, Yao et al. studied the deadline
scheduling and gave an online algorithm that is O(1)-competitive for minimizing the energy for
completing all jobs. Algorithms with better ratios were later obtained by Bansal, Kimbrel and
Pruhs [8] and Bansal, Chan, Pruhs and Katz [7]. The best ratio now is 4α/2

√
eα for general α

and is about 6.7 when α = 3. The infinite speed model is a convenient model to work with.
Among others, it allows an online algorithm to catch up arbitrarily fast and recover from any over-
conservative decision on speed. However, this is not a practical model. Recently, Chan et al. [10]
and Bansal et al. [5] have obtained several interesting results on speed scaling for a speed bounded
processor, where the maximum speed T is a fixed constant.

Flow and energy. The study of speed scaling and energy-efficient scheduling goes beyond
deadline scheduling. When scheduling jobs without deadlines, a commonly used QoS measure is
the total flow time of jobs. The flow time (or simply the flow) of a job is the time elapsed since the
job is released until it is completed. Note that job preemption is allowed, and a preempted job can
be resumed later at the point of preemption. Assuming jobs are equally important, it is natural
to find a schedule that minimizes the total flow time (which is also referred to as minimizing the
total/average response time in the literature). When jobs have varying importance or weights, it
is more meaningful to minimize the total weighted flow time.

Minimizing flow time and minimizing energy usage are orthogonal objectives. To understand
their tradeoff, Albers and Fujiwara [1] initiated the study of minimizing a linear combination of
flow and energy. The intuition is that, from an economic viewpoint, users are willing to pay a
certain (say, ρ) units of energy to reduce one unit of flow time. By changing the units of time and
energy, one can further assume that ρ = 1 and thus would like to minimize flow time plus energy,
or in general, weighted flow time plus energy.

Clairvoyant scheduling for flow plus energy. The problem of minimizing flow plus energy
has attracted a lot of attention [1, 5, 6, 9, 11, 18–20]. These works mainly focus on the clairvoyant
setting which assumes that the size of a job is known when the job is released. The work of
Albers and Fujiwara [1] focused on jobs of unit size. Bansal, Pruhs and Stein [9] were the first
to consider jobs of arbitrary sizes. In the infinite speed model, they gave an algorithm that is
O((α

lnα)2)-competitive for minimizing weighted flow plus energy. Bansal, Chan, Lam and Lee [5]
later adapted the BPS algorithm to the bounded speed model. The competitive ratio remains

2

O((α
lnα)2) when the algorithm uses a processor with maximum speed (1 + lnα−ln lnα

α)T .1 Very
recently, Bansal, Chan and Pruhs [6] improved the analysis of BPS; their work implies that BPS is
indeed O(α

lnα)-competitive, when the maximum speed is relaxed as before. It is worth-mentioning
that the recent lower bound result on weighted flow [4] implies that without relaxing the maximum
speed, no online algorithm can be constant competitive (in terms of α) for weighted flow plus
energy. However, the extra speed requirement does not apply to unweighted flow.

A drawback of the BPS algorithm is that it scales the speed according to the fraction of un-
finished work and thus keeps changing the speed continuously over time. It is practically more
desirable to have an algorithm that changes the speed at discrete times (say, at job arrival or
completion) . Recently, focusing on (unweighted) flow plus energy, Lam et al. [20] studied another
speed scaling algorithm AJC (Active Job Count), which scales the speed as a function of the num-
ber of active jobs (i.e. unfinished jobs). In other words, AJC changes the speed only when a job
arrives or finishes. AJC when coupled with the job selection algorithm SRPT (shortest remaining
processing time) is indeed O(α

logα)-competitive for (unweighted) flow plus energy. This result holds
in both the infinite and bounded speed models. For the latter, unlike BPS, AJC does not demand
relaxation of maximum speed. Recently, Bansal, Chan and Pruhs [6] adapted AJC and gave a
tighter analysis; they showed that the competitive ratio is 3 for minimizing (unweighted) flow plus
energy (even when α is as small as 3, this result is still better than the O(α

logα) bound in [20], which
is equal to 3.25). Again, no extra maximum speed is needed. More recently, the analysis is further
tightened by [2] and the competitive ratio is reduced to 2.

For weighted flow plus energy, it has remained an open problem whether AJC (or any speed
scaling algorithm that changes the speed at discrete times) can lead to a competitive guarantee.

Non-clairvoyant scheduling for flow plus energy. All of the above results assume clair-
voyance. In the non-clairvoyant setting, the size of a job is not known when the job is released;
it is only known when the job is completed. This is a natural assumption from the viewpoint of
operating systems. Non-clairvoyant flow time scheduling (on a fixed-speed processor) has been an
interesting problem itself (e.g., [17, 21]). Chan et al. [11] initiated the study of non-clairvoyant
speed scaling. Under the infinite speed model, they consider an algorithm LAPS (Latest Arrival
Processor Sharing) which scales the speed as AJC and selects some most recently released jobs to
share the processor. LAPS is shown to be 4α3(1+(1+3/α)α) = O(α3)-competitive for (unweighted)
flow plus energy. Furthermore, they showed that no algorithm can be O(α1/3−ε)-competitive for
any ε > 0, illustrating that the non-clairvoyant setting is more difficult than the clairvoyant set-
ting. Recently, Chan et al. [12] improved the analysis of LAPS and reduce the competitive ratio to
O(α2

logα). Yet, not much is known for the bounded speed model, let alone weighted flow plus energy.
Our contributions. This paper considers non-clairvoyant scheduling on a processor whose

maximum speed T is a fixed constant. In the first part, we adapt the algorithm LAPS to run on
such a processor and show that it is 8α2 = O(α2)-competitive for (unweighted) flow plus energy
when the maximum speed is relaxed to (1 + 1

α−1)T . Note that unlike the clairvoyant setting,
even for unweighted jobs, extra maximum speed is necessary to achieve constant competitiveness.
This inherits from the lower bound result on non-clairvoyant (fixed-speed) scheduling by Motwani,

1In general, when using a processor with maximum speed (1 + ε)T for any ε > 0, the competitive ratio is

max{(1 + 1/ε), (1 + ε)α}(2 + o(1))α/ lnα.

3

Philips and Torng [21].
In the clairvoyant setting, existing results on the bounded speed model take advantage of a

local property that the online algorithm in concern accumulates at most O(Tα) jobs more than
the optimal offline algorithm [5, 6, 20]. With this local property, it is relatively easy to adapt the
analysis in the infinite speed model. In the non-clairvoyant setting, such a local property is no
longer valid for algorithms like LAPS. To analyze these algorithms in the bounded speed model,
we exploit a more “global” accounting of the rate of change of flow plus energy. Instead of using
the above property, we integrate the maximum speed constraint into the potential analysis.

The second result of this paper concerns the more difficult general case where jobs have arbitrary
weights. Under the bounded speed model, we give the first competitive algorithm called WRR
(Weighted Round Robin) for weighted flow plus energy; the competitive ratio is O(3α/ε) when
using a processor with maximum speed (3 + ε)T , where 0 < ε ≤ 3

α . Motivated by AJC, WRR uses
a generalized AJC for speed scaling; i.e., the speed is a function of the total weight (instead of
the number) of active jobs. Recall that all existing clairvoyant results [5, 9] on weighted flow plus
energy are based on the BPS algorithm, which scales the speed continuously. Our result of WRR
gives, as a by-product, the first competitive clairvoyant algorithm for weighted flow plus energy
that changes the speed discretely, but the competitive ratio is way worse than that of BPS.

2 Definitions and Notations

We study job scheduling on a single processor. Jobs arrive over time in an online fashion; we have
no information about a job before it arrives. For any job j, we use r(j) and p(j) to denote its
release time and work requirement (or size). In some case, each job j may have a weight w(j).
We consider the non-clairvoyant setting, in which when a job j arrives, we only know its weight
w(j) (if any) but not its size p(j). And p(j) is known only when j is completed. At any time, the
processor can scale its speed between 0 and a maximum speed T . When running at speed s, the
processor processes s units of work per unit time and consumes energy at the rate sα, where α > 1
is a fixed constant. Preemption is allowed; a job can be preempted and later resumed at the point
of preemption without any penalty.

Flow and energy. Consider any job set I and some schedule S of I. At any time t, for
any job j, we let q(j, t) be the remaining work of j at t. A job j is an active job if it has been
released but not yet completed, i.e., r(j) ≤ t and q(j, t) > 0. The flow F (j) of a job j is the time
elapsed since j arrives and until it is completed. The total flow F is equal to

∑
j∈I F (j), which is

equivalent to
∫ ∞

0
n(t) dt, where n(t) is the total number of active jobs at time t. The energy usage

E is
∫∞

0 (s(t))α dt, where s(t) is the processor speed at time t. The objective is to minimize the
sum of total flow and energy usage, denoted by G = F + E.

In general, when jobs have different weights, we generalize the notion of total flow as follows.

The total weighted flow F̂ is equal to
∑

j∈I w(j)F (j), or equivalently,
∫ ∞

0
w(t) dt, where w(t) is the

total weight of active jobs at time t. The objective becomes minimizing total weighted flow plus
energy, denoted by Ĝ = F̂ + E.

4

3 Minimizing unweighted flow plus energy with bounded maxi-

mum speed

In this section, we consider jobs without weights and aim at minimizing total flow plus energy
in the bounded speed model. As mentioned in the introduction, no online algorithm can achieve
constant competitiveness when its maximum speed is the same as the optimal offline algorithm
OPT (which is denoted T below); thus, we consider allowing the online algorithm to use slightly
higher maximum speed. We adapt the non-clairvoyant algorithm LAPS (Latest Arrival Processor
Sharing) which was first given in [11] for the infinite speed model. When using a processor with
maximum speed (1 + δ)T , where δ = 1

α−1 , this algorithm is O(α2)-competitive for flow plus energy.
Below is the definition of LAPS, which assumes using a processor with maximum speed (1+δ)T

for some δ > 0.

Algorithm LAPS. Let 0 < β ≤ 1 be any real. Consider any time t. The processor
speed is set to sa(t) = min((na(t))1/α, (1 + δ)T), where na(t) is the total number of
active jobs at t. The processor processes the dβna(t)e active jobs with the latest release
time (ties are broken by job ids) by splitting the processor speed equally among these
jobs.

We compare LAPS with an optimal offline algorithm OPT using a processor with maximum
speed T . Our main result is the following theorem.

Theorem 1. When δ = 1
α−1 and β = 1

2α , LAPS is 8α2-competitive for (unweighted) flow plus
energy, using a processor with maximum speed (1 + δ)T .

To prove Theorem 1, our analysis exploits amortization and potential functions (e.g., [9, 10]). Let
Ga(t) and Go(t) denote the flow plus energy incurred up to time t by LAPS and OPT, respectively.
We drop the parameter t when it is clear that t is the current time. To show that LAPS is c-
competitive for some constant c ≥ 1, it suffices to define a potential function Φ(t) such that the
following conditions hold: (i) Φ = 0 before any job is released and after all jobs are completed; (ii)
Φ is a continuous function except at some discrete times (e.g., when a job arrives, or when a job
is completed by LAPS or OPT), and Φ does not increase at such times; (iii) at any other time,
dGa(t)

dt + γ dΦ(t)
dt ≤ c · dGo(t)

dt , where γ is a positive constant (to be set to 4α). Condition (iii) is also
known as the running condition. The sufficiency of these conditions for proving c-competitiveness
follows from integrating them over time.

Potential function Φ(t). Consider any time t. Let na(t) and no(t) be the number of active
jobs in LAPS and OPT, respectively. Let j1, j2, . . . , jna(t) be all the active jobs in LAPS, which are
ordered by release times such that r(j1) ≤ r(j2) ≤ · · · ≤ r(jna(t)) (ties are broken by job ids). For
any job j, let qa(j, t) and qo(j, t) be the remaining work of job j in LAPS and OPT, respectively.
For each ji, let xi = max{qa(ji, t)− qo(ji, t), 0} which is the amount of work of ji in LAPS that is
lagging behind OPT. We call a job ji lagging if xi > 0. The potential function Φ(t) is defined as

5

follows.

Φ(t) =
na(t)∑
i=1

ci · xi

where ci =
{
i1−1/α if i1/α ≤ (1 + δ)T ;
i/((1 + δ)T) otherwise.

We call ci the coefficient of ji. Note that ci is monotonically increasing.
We first check Conditions (i) and (ii). Condition (i) holds since Φ = 0 before any job is released

and after all jobs are completed. Now we check Condition (ii). When a job j arrives, j must be
non-lagging and the coefficients of all existing jobs of LAPS remain the same, so Φ does not change.
When OPT completes a job, Φ does not change. When LAPS completes a job, the coefficient of
any other job either stays the same or decreases, so Φ does not increase.

It remains to check the running condition (Condition (iii)). Consider any time t when Φ does
not have discrete change. Let sa and so be the current speeds of LAPS and OPT, respectively.
Then dGa

dt = na + sαa and dGo
dt = no + sαo . Let ` be the number of lagging jobs that LAPS is

processing. Note that ` ≤ dβnae. For convenience, we further define another real number φ ≤ β

such that (β − φ)na is an integer equal to dβnae − `. Note that φ can be less than zero if ` = 0.
To bound the rate of change of Φ, we consider how Φ changes in an infinitesimal amount of

time (from t to t+ dt), first due to LAPS only (Lemma 2), and then due to OPT (Lemma 3). We
denote the rate of change of Φ due to LAPS and OPT by dΦa

dt and dΦo
dt , respectively. Note that

dΦ
dt = dΦa

dt + dΦo
dt .

Lemma 2. dΦa
dt ≤ −

φ
β (1− β)na.

Proof. LAPS is processing dβnae jobs and ` of them are lagging jobs. For each of these lagging
jobs ji, its lagging size xi is changing at the rate of −sa/dβnae (we only consider the change due
to LAPS). For a non-lagging job ji, xi does not change.

First, consider the case that ` ≥ 1. To upper bound dΦa
dt , the worst case is that the ` lag-

ging jobs have the smallest coefficients among the dβnae latest released jobs, i.e., the jobs are
{jna−dβnae+1, · · · , jna−dβnae+`}. On the other hand, as ci is monotonically increasing, for any inte-
gers a < b, we have

∑b
i=a ci ≥ (b− a+ 1)ca. Then

dΦa
dt ≤ −

na−dβnae+`∑
i=na−dβnae+1

ci ·
sa

dβnae

≤ −`(cna−dβnae+1)
sa

dβnae
.

Recall that sa = min(n1/α
a , (1 + δ)T). By the definition of ci, we have cisa ≥ i for any 1 ≤ i ≤ na.

6

Furthermore, ` = dβnae − (β − φ)na and hence na − dβnae+ ` = na − (β − φ)na. Thus,

dΦa
dt ≤ −

(
`

dβnae

)
(na − dβnae+ 1)

≤
(
−dβnae+(β−φ)na

dβnae

)
(na − βna)

≤ (−1 + (β−φ)na

βna
)(1− β)na (since (β − φ) ≥ 0)

= −φ
β (1− β)na .

It remains to consider the case that ` = 0. In this case, dΦa
dt = 0. Recall that 0 < β ≤ 1. Note

also that φna = βna − dβnae+ ` ≤ 0, i.e., φ ≤ 0. Then −φ
β (1− β)na ≥ 0 = dΦa

dt .

Lemma 3. Assume that δ = 1
α−1 . Then dΦo

dt ≤ (1− 1
α)na + 1

αs
α
o .

Proof. To upper bound dΦo
dt , the worst case is that OPT is processing the job jna with the largest

coefficient cna . Thus, dΦo
dt ≤ cnaso.

If n1/α
a ≤ (1 + δ)T , we have cna = n

1−1/α
a and hence dΦo

dt ≤ n
1−1/α
a so. We apply the Young’s

Inequality [23], which is stated in Lemma 5 below, by setting p = 1/(1 − 1
α), q = α, x = n

1−1/α
a

and y = so. Then dΦo
dt ≤ n

1−1/α
a so ≤ (1− 1

α)na + 1
αs

α
o .

If n1/α
a > (1 + δ)T , we have cna = na

(1+δ)T . Recall that so ≤ T and δ = 1
α−1 . We conclude that

dΦo
dt ≤

(
na

(1+δ)T

)
so ≤

(
na

1+δ

)
= (1− 1

α)na. The lemma thus follows.

We are now ready to prove the running condition, which together with Conditions (i) and (ii),
implies Theorem 1.

Lemma 4. Assume that δ = 1
α−1 , β = 1

2α , and γ = 4α. At any time when Φ does not have discrete
change, dGa

dt + γ dΦ
dt ≤ 8α2 · dGo

dt .

Proof. We will show an equivalent version of the inequality, dGa
dt + γ dΦ

dt − 8α2 · dGo
dt ≤ 0.

LAPS is processing dβnae − ` non-lagging jobs, which are also active jobs in OPT. Thus,
no ≥ dβnae − ` = (β − φ)na. Note that dGa

dt = na + sαa ≤ 2na, and dGo
dt = no + sαo ≥ (β − φ)na + sαo .

Then
dGa
dt + γ dΦ

dt − 8α2 · dGo
dt ≤ 2na + γ dΦ

dt − 8α2(β − φ)na − 8α2sαo .

By Lemmas 2 and 3, γ dΦ
dt ≤ γ · (1−

1
α)na + γ

αs
α
o − γ

φ
β (1− β)na. Then,

dGa
dt + γ dΦ

dt − 8α2 · dGo
dt ≤ 2na + γ · (1− 1

α
)na +

γ

α
sαo − γ

φ

β
(1− β)na − 8α2(β − φ)na − 8α2sαo .

We set β = 1
2α and γ = 4α.

dGa
dt + γ dΦ

dt − 8α2 · dGo
dt ≤ (4− 8α2)sαo + na

[
2 + (4α− 4)− φ(8α2 − 4α)− (4α− 8α2φ)

]
≤ na(−2 + 4αφ)

≤ 0 (since φ ≤ β =
1

2α
) .

7

Below is the formal statement of Young’s Inequality, which is used in the proof of Lemma 3.

Lemma 5 (Young’s Inequality [23]). For positive reals p, q, x, y where 1
p + 1

q = 1, xy ≤ 1
px

p + 1
qy

q.

4 Minimizing weighted flow plus energy with bounded maximum

speed

In this section, we consider jobs with arbitrary weights and give a non-clairvoyant algorithm WRR
(Weighted Round Robin) that is O(α3α)-competitive for weighted flow plus energy, when using
a processor with maximum speed (3 + ε)T , where ε = 3

α . The algorithm WRR scales its speed
based on the total weight of active jobs and shares the processor among the active jobs according
to the ratio of their weights. Below is the definition of WRR, which assumes using a processor with
maximum speed (3 + ε)T for any ε > 0.

Algorithm WRR. Consider any time t. The processor speed is set to sa(t) = (3 + ε) ·
min((wa(t))1/α, T), where wa(t) is the total weight of active jobs at t. The processor
processes all active jobs such that each active job j receives processor speed equal to
s(t) · (w(j)/wa(t)).

We compare WRR against an optimal offline algorithm OPT that uses a processor with maxi-
mum speed T . Our main result is the following theorem.

Theorem 6. Using a processor with maximum speed (3 + ε)T , where 0 < ε ≤ 3
α , WRR is c-

competitive for weighted flow plus energy, where c = (18
ε + 4)(1 + (3 + ε)α) ≤ (18

ε + 4)(1 + 3αe) =
O(3α/ε).

Notice that when ε = 3
α , the competitive ratio in the above theorem becomes (6α + 4)(1 +

3α(1 + 1
α)α) = O(α3α). The rest of this section is devoted to proving Theorem 6. Let Ĝa(t) and

Ĝo(t) be the weighted flow plus energy incurred up to time t by WRR and OPT, respectively. We
drop the parameter t when it is clear that t is the current time. Similar to Section 3, to prove that
WRR is c-competitive, we derive a potential function Φ(t) that satisfies the following conditions:
(i) Φ = 0 before any job is released and after all jobs are completed; (ii) Φ is a continuous function
except at some discrete times where Φ does not increase; (iii) Running condition: at any other

time, d bGa(t)
dt + γ dΦ(t)

dt ≤ c ·
d bGo(t)

dt , where γ is a positive constant (to be set to (2− 1
α)(1 + (3 + ε)α)).

Potential function Φ(t). Consider any time t. For any job j, let qa(j, t) and qo(j, t) be the
remaining work of j at t in WRR and OPT, respectively. An active job j in WRR is lagging if
WRR has processed less on j than OPT at time t. Let L = {j1, j2, . . . , j`} be the set of lagging
jobs in WRR, ordered in ascending order of the latest time when the job becomes lagging. For
each ji ∈ L, let xi = qa(ji, t)− qo(ji, t); note that xi > 0. We define the potential function Φ(t) as
follows.

8

Φ(t) =
∑̀
i=1

ci · xi where ci =

(
i∑

k=1

w(jk)

)1−1/α

if
i∑

k=1

w(jk) ≤ Tα;

2α
2α− 1

(
i∑

k=1

w(jk)
T

)
otherwise.

We call ci the coefficient of ji. Note that ci is monotonically increasing with i.
We first check Conditions (i) and (ii). Condition (i) holds since Φ = 0 before any job is released

and after all jobs are completed. Now we show that Condition (ii) holds. When a job ji joins L,
xi tends to zero and ji must be at the end of L, so the coefficients of all other jobs do not change
and Φ does not change. When a job ji leaves L (e.g., WRR completes ji), xi must be zero and the
coefficient of any other lagging job either stays the same or decreases, so Φ does not increase.

It remains to check the running condition (Condition (iii)). Consider any time t when Φ does
not have discrete change. Let wa and wo be the total weight of active jobs at t in WRR and
OPT, respectively. Let w` =

∑`
i=1w(ji) be the total weight of jobs in L. Note that w` ≤ wa.

Furthermore, let sa and so be the current speeds of WRR and OPT, respectively. As stated in
Section 2, d bGa

dt = wa + sαa and d bGo
dt = wo + sαo . We will divide the analysis into cases depending on

whether w` is small or big.
To bound the rate of change of Φ, we consider how Φ changes first due to OPT only (Lemma 7)

and then due to WRR (Lemma 8). We denote the rate of change of Φ due to OPT and WRR by
dΦo
dt and dΦa

dt , respectively. Note that dΦ
dt = dΦo

dt + dΦa
dt .

Lemma 7. If w` ≤ Tα, dΦo
dt ≤

1
αs

α
o + (α−1

α)w`; if w` > Tα, dΦo
dt ≤ (2α

2α−1)w`.

Proof. To upper bound dΦo
dt , observe that the worst case is when OPT is processing the job j` with

the largest coefficient c`. Then xi is increasing at the rate of so (we only consider the change due
to OPT) and hence dΦo

dt ≤ c`so. When w` ≤ Tα, c` = w
1−1/α
` and thus dΦo

dt ≤ w
1−1/α
` so. We apply

the Young’s Inequality (Lemma 5 in Section 3) with p = α, q = α/(α− 1), x = so and y = w
1−1/α
` .

Then we have
dΦo
dt ≤

1
α
sαo + (

α− 1
α

)w` .

When w` > Tα, c` = (2α
2α−1)(w`T). Since so ≤ T , dΦo

dt ≤ c`so ≤ c`T ≤ (2α
2α−1)w`.

Lemma 8. If w` ≤ Tα, dΦa
dt ≤ −(α

2α−1)w2−1/α
` (sawa

); if w` > Tα, dΦa
dt ≤ −(α

2α−1)(3 + ε)(w
2
`

wa
).

Proof. To upper bound dΦa
dt , note that each job ji ∈ L is being processed at the rate of sa · w(ji)

wa
(we

only consider the change due to WRR), and thus xi is changing at the rate of −sa · w(ji)
wa

. To ease
discussion, let yi =

∑i
k=1w(jk). Note that y0 = 0, y` = w`, and for any 1 ≤ i ≤ `, yi−yi−1 = w(ji).

9

First, consider w` ≤ Tα. In this case, for each job ji ∈ L, ci = y
1−1/α
i .

dΦa
dt =

∑`
i=1 y

1−1/α
i ·

(
−sa · w(ji)

wa

)
= − sa

wa

∑̀
i=1

y
1−1/α
i · (yi − yi−1) (since yi − yi−1 = w(ji))

≤ − sa

wa

∑̀
i=1

∫ yi

yi−1

x1−1/α dx (since x1−1/α is monotonically increasing)

≤ − sa

wa

∫ y`

0
x1−1/α dx

= − sa

wa
(
y

2−1/α
`

2− 1/α
)

= −(
α

2α− 1
)w2−1/α

` (
sa

wa
)

Next, consider w` > Tα. In this case, wa ≥ w` > Tα and hence sa = (3 + ε) ·min(w1/α
a , T) =

(3 + ε)T . Note that y` = w` > Tα. We let g < ` be the largest integer such that yg ≤ Tα. Then

dΦa
dt =

∑̀
i=1

ci ·
(
−sa ·

w(ji)
wa

)

= −

 g∑
i=1

w(ji)y
1−1/α
i +

∑̀
i=g+1

2α
2α− 1

w(ji)yi
T

 · (sa

wa

)

≤ −

(∫ yg

0
x1−1/α dx+

2α
(2α− 1)T

∫ y`

yg

x dx

)
·
(
sa

wa

)
= −

(
(

α

2α− 1
)y2−1/α
g +

α

(2α− 1)T
(y2
` − y2

g)
)
·
(
sa

wa

)
≤ −

(
α

(2α− 1)T
(y2
g + y2

` − y2
g)
)
·
(

(3 + ε)T
wa

)
(since y1/α

g ≤ T and sa = (3 + ε)T)

= − (
α

2α− 1
)(3 + ε)(

y2
`

wa
)

= − (
α

2α− 1
)(3 + ε)(

w2
`

wa
) .

We are ready to show the following running condition, which together with Conditions (i) and
(ii), implies Theorem 6.

Lemma 9. Assume that γ = (2 − 1
α)(1 + (3 + ε)α). At any time when Φ does not have discrete

change, d bGa
dt + γ dΦ

dt ≤ c ·
d bGo
dt , where c = (18

ε + 4)(1 + (3 + ε)α).

10

Proof. The analysis is divided into three cases depending on whether wa > Tα and whether w` >
Tα. In each case, we further divide the analysis depending on whether w` > (1 − β)wa, where
β = ε/(6 + 2ε). It is useful to note that (3 + ε)(1− β)2 ≥ 3.

Case 1: wa ≤ Tα. In this case, sa = (3 + ε) ·min(w1/α
a , T) = (3 + ε)w1/α

a . Since w` ≤ wa, we
also have w` ≤ Tα.

If w` > (1− β)wa, then by Lemmas 7 and 8,

d bGa
dt + γ dΦ

dt ≤ (wa + sαa) + γ
αs

α
o + γ · (α−1

α)w` − γ · (α
2α−1)w2−1/α

` (3 + ε)w1/α−1
a

≤ (1 + (3 + ε)α)wa + γ
αs

α
o + γ · (α−1

α)wa − γ · (α
2α−1)((1− β)wa)2−1/α(3 + ε)w1/α−1

a

≤ γ
αs

α
o +

(
(1 + (3 + ε)α) + γ · (α−1

α)− γ · (α
2α−1)(1− β)2−1/α(3 + ε)

)
wa .

Choosing γ = (2− 1
α)(1 + (3 + ε)α), we have (1 + (3 + ε)α) = γ · (α

2α−1). By the definition of β and
the fact that 0 < β < 1, we have (1− β)2−1/α(3 + ε) > (1− β)2(3 + ε) ≥ 3. Furthermore, observe
that 2α

2α−1 > 1 > α−1
α . Therefore,

1 + (3 + ε)α + γ(
α− 1
α

)− γ(
α

2α− 1
)(1− β)2− 1

α (3 + ε)

≤ γ(α
2α−1)(1 + 2− 3)

= 0

Since γ
α = 1

α · (2−
1
α)(1 + (3 + ε)α) ≤ 2(1 + (3 + ε)α) and c = (18

ε + 4)(1 + (3 + ε)α), it follows

that c ≥ γ
α and thus d bGa

dt + γ dΦ
dt ≤

γ
αs

α
o ≤ c · d bGo

dt .
If w` ≤ (1−β)wa, we simply adapt the bound of dΦa

dt in Lemma 8 as dΦa
dt ≤ 0. Since any active job

in WRR that is not lagging must also be an active job in OPT, wo ≥ wa−w` ≥ wa−(1−β)wa ≥ βwa.
Choosing γ = (2− 1

α)(1 + (3 + ε)α) and recalling that β = ε/(6 + 2ε), by Lemma 7,

d bGa
dt + γ dΦ

dt ≤ (1 + (3 + ε)α)wa + γ
αs

α
o + γ · (α−1

α)w`
≤ γ

αs
α
o + ((1 + (3 + ε)α) + γ)wa

≤ γ
αs

α
o +

(
(1 + (3 + ε)α) + (2− 1

α)(1 + (3 + ε)α)
)
wa

≤ γ
αs

α
o + 3(1 + (3 + ε)α)wo

β

= γ
αs

α
o + (18

ε + 4)(1 + (3 + ε)α)wo

≤ c · d bGo
dt .

Case 2: wa > Tα and w` ≤ Tα. In this case, sa = (3 + ε) ·min(w1/α
a , T) = (3 + ε)T . Since

w` ≤ Tα and wo is at least the total weight of non-lagging jobs in WRR (because if a job is
non-lagging in WRR, it must be active in OPT), we have wa ≤ wo + w` ≤ wo + Tα.

11

If w` > (1− β)wa, then by Lemmas 7 and 8,

d bGa
dt + γ dΦ

dt ≤ (wa + (3 + ε)αTα) + γ
αs

α
o + γ · (α−1

α)w` − γ · (α
2α−1)w2−1/α

`
(3+ε)T
wa

≤ ((wo + Tα) + (3 + ε)αTα) + γ
αs

α
o + γ · (α−1

α)Tα − γ · (α
2α−1)((1− β)wa)2−1/α (3+ε)T

wa

≤ wo + γ
αs

α
o +

(
(1 + (3 + ε)α) + γ(α−1

α)− γ(α
2α−1)(1− β)2−1/α(3 + ε)

)
Tα

(since wa > Tα).

Choosing γ = (2− 1
α)(1 + (3 + ε)α) and then using the same argument as in Case 1, we can argue

that the coefficient of Tα is non-positive. Therefore, d bGa
dt + γ dΦ

dt ≤ wo + γ
αs

α
o ≤ c · d bGo

dt .
If w` ≤ (1 − β)wa, we simply use the bound dΦa

dt ≤ 0. Note that wa > Tα and wa ≥ w`. By
Lemma 7, we have

d bGa
dt + γ dΦ

dt ≤ (wa + (3 + ε)αTα) + γ
αs

α
o + γ · (α−1

α)w`
≤ γ

αs
α
o + ((1 + (3 + ε)α) + γ)wa .

Choosing γ = (2− 1
α)(1 + (3 + ε)α) and then using the same argument as in Case 1, we can show

that d bGa
dt + γ dΦ

dt ≤ c ·
d bGo
dt .

Case 3: wa > Tα and w` > Tα. In this case, sa = (3 + ε)T ≤ (3 + ε)w1/α
a .

If w` > (1− β)wa, then by Lemmas 7 and 8,

d bGa
dt + γ dΦ

dt ≤ (1 + (3 + ε)α)wa + γ · (2α
2α−1)w` − γ · (α

2α−1)(3 + ε)w
2
`

wa

≤ (1 + (3 + ε)α)wa + γ · (2α
2α−1)wa − γ · (α

2α−1)(3 + ε) ((1−β)wa)2

wa

Choosing γ = (2 − 1
α)(1 + (3 + ε)α), we have (1 + (3 + ε)α) = γ · (α

2α−1). By the definition of β,

(1−β)2(3 + ε) ≥ 3. Therefore, d bGa
dt +γ dΦ

dt ≤
(
γ · (α

2α−1) + γ · (2α
2α−1)− γ · (3α

2α−1)
)
wa = 0 ≤ c · d bGo

dt .

If w` ≤ (1 − β)wa, we simply use the bound dΦa
dt ≤ 0. Recall that in this case, wo ≥ βwa.

Choosing γ = (2− 1
α)(1 + (3 + ε)α) and recalling that β = ε/(6 + 2ε), by Lemma 7,

d bGa
dt + γ dΦ

dt ≤ (1 + (3 + ε)α)wa + γ · (2α
2α−1)w`

≤ 3(1 + (3 + ε)α)wa

≤ 3(1 + (3 + ε)α)wo
β

= (18
ε + 4)(1 + (3 + ε)α)wo

≤ c · d bGo
dt .

In conclusion, the running condition is satisfied in all the three cases.

5 Conclusion

In this paper we have given two non-clairvoyant scheduling algorithms for minimizing flow plus
energy. The first algorithm (LAPS) is 8α2-competitive for (unweighted) flow plus energy, when

12

using a processor with maximum speed α
α−1T . The second algorithm (WRR) is O(3α/ε)-competitive

for weighted flow plus energy, when using a processor with maximum speed (3 + ε)T , where 0 <
ε ≤ 3

α . We believe that LAPS can be generalized to minimize weighted flow plus energy, and the
competitive ratio would remain O(α2).

References

[1] S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time minimization. ACM Transactions
on Algorithms, 3(4):49, 2007.

[2] L. Andrew, A. Wierman, and A. Tang. Optimal speed scaling under arbitrary power functions. ACM
SIGMETRICS Performance Evaluation Review, 37(2):39–41, 2009.

[3] D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N. Kudva, A. Buyuktosunoglu, J. D. Wellman, V.
Zyuban, M. Gupta, and P. W. Cook. Power-aware microarchitecture: Design and modeling challenges
for next-generation microprocessors. IEEE Micro, 20(6):26–44, 2000.

[4] N. Bansal and H. L. Chan. Weighted flow time does not admit O(1)-competitive algorithms. In Proc.
SODA, pages 1238–1244, 2009.

[5] N. Bansal, H. L. Chan, T. W. Lam, and L. K. Lee. Scheduling for speed bounded processors. In Proc.
ICALP, pages 409–420, 2008.

[6] N. Bansal, H. L. Chan, and K. Pruhs. Speed scaling with an arbitrary power function. In Proc. SODA,
pages 693–701, 2009.

[7] N. Bansal, H. L. Chan, K. Pruhs, and D. Katz. Improved bounds for speed scaling in devices obeying
the cube-root rule. In Proc. ICALP, pages 144–155, 2009.

[8] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and temperature. Journal of
the ACM, 54(1):3, 2007.

[9] N. Bansal, K. Pruhs, and C. Stein. Speed scaling for weighted flow time. SIAM Journal on Computing,
39(4):1294–1308, 2009.

[10] H. L. Chan, W. T. Chan, T. W. Lam, L. K. Lee, K. S. Mak, and P. W. H. Wong. Optimizing throughput
and energy in online deadline scheduling. ACM Transactions on Algorithms, 6(1):10, 2009.

[11] H. L. Chan, J. Edmonds, T. W. Lam, L. K. Lee, A. Marchetti-Spaccamela, and K. Pruhs. Nonclairvoyant
speed scaling for flow and energy. In Proc. STACS, pages 255–264, 2009.

[12] H. L. Chan, J. Edmonds, and K. Pruhs. Speed scaling of processes with arbitrary speedup curves on a
multiprocessor. In Proc. SPAA, pages 1–10, 2009.

[13] S. H. Chan, T. W. Lam, L. K. Lee, H. F. Ting, and P. Zhang. Non-clairvoyant scheduling for weighted
flow time and energy on speed bounded processors. In Proc. CATS, pages 3–10, 2010.

[14] S. H. Chan, T. W. Lam, L. K. Lee. Non-clairvoyant speed scaling for weighted flow time. In Proc. ESA,
pages 23–35, 2010.

[15] G. Greiner, T. Nonner, and A. Souza. The bell is ringing in speed-scaled multiprocessor scheduling. In
Proc. SPAA, pages 11–18, 2009.

[16] S. Irani, S. Shukla, and R. K. Gupta. Algorithms for power savings. ACM Transactions on Algorithms,
3(4):41, 2007.

13

[17] B. Kalyanasundaram and K. Pruhs. Minimizing flow time nonclairvoyantly. Journal of the ACM,
50(4):551–567, 2003.

[18] T. W. Lam, L. K. Lee, H. F. Ting, I. K. K. To, and P. W. H. Wong. Sleep with guilt and work faster
to minimize flow plus energy. In Proc. ICALP, pages 665–676, 2009.

[19] T. W. Lam, L. K. Lee, I. K. K. To, and P. W. H. Wong. Competitive non-migratory scheduling for flow
time and energy. In Proc. SPAA, pages 256–264, 2008.

[20] T. W. Lam, L. K. Lee, I. K. K. To, and P. W. H. Wong. Speed scaling functions for flow time scheduling
based on active job count. In Proc. ESA, pages 647–659, 2008.

[21] R. Motwani, S. Phillips, and E. Torng. Nonclairvoyant scheduling. Theoretical Computer Science,
130(1):17–47, 1994.

[22] T. Mudge. Power: A first-class architectural design constraint. IEEE Computer, 34(4):52–58, 2001.

[23] J. M. Steele. The Cauchy-Schwarz master class: An introduction to the art of mathematical inequalities,
page 136. Cambridge University Press, 2004.

[24] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In Proc. FOCS, pages
374–382, 1995.

14

